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A study of configuration interaction in the ground state of He 1 has been carried through by expanding
the various angular components of the three parameter wave function of Hylleraas in orthonormal sets of
functions. The different sets have been constructed from symmetrized products of hydrogenic wave functions
with different values of the parameter Z. The importance of the various configurations for Z=2 is com-
mented upon at some length. Configurations involving a free electron are shown to make surprisingly large
contributions. The changing importance of the various components with changing Z is illustrated. In
particular, the minimum with respect to Z of the contribution of configurations containing a free electron
is pointed out. The implications of the results of these expansions for attempts to obtain wave functions
for both normal and excited states of two-electron systems by the minimum principle from linear combi-
nations of products of hydrogenic functions of the proper symmetry are discussed.

XCELLENT approximate solutions of the Schro-
- —~ dinger equation can be obtained variationally for
two-electron systems by using as one coordinate r»,
the interelectron distance. It has been pointed out' '
that a study of configuration interaction in these simple
structures can be carried out by expanding such
excellent solutions in central field wave functions. 4 In
earlier work' an expansion of this type in symmetrized
numerical self-consistent 6eld functions was undertaken
for the three- and the six-parameter wave functions
given by Hylleraas' for the ground state of He I. For
the three-parameter function a second expansion was
also obtained using analytic variationally determined

wave functions for the 1s' and 1s2s configurations.

However, the coefficient of the 1s2s configuration was

distinctly different in the numerical and the analytic
expansions. It seemed probable that the same would be
true of other con6gurations as well. This would mean

that, unless one made relatively complete expansions in

sets of orthonormal functions, one would find differing

importance for the various angular components of the
ground-state wave function depending on which type
of radial functions was employed in the expansion.
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Furthermore, the size of the various expansion coeK-
cients suggested that for the purpose in hand one would
not obtain a satisfactory approximation to a complete
set unless one considered a large number of con6gura-
tions, The eftort required to find the necessary numerical
radial functions appeared to be prohibitive.

To avoid these difhculties, an expansion of the form'

+H (rt, r2r12)=Z;c4', "(rt,r2)P' (cos8)

was employed. ' Here 0'yl~ is the normalized Hylleraas
wave function of r& and ~2, the nuclear distances of the
two electrons, and ri2, the interelectron distance. The
C,.~'s are normalized functions of ri and ~2 whose form
is determined by Eq. (1).' The PP's are the normalized
Legendre polynomials of order i of the cosine of the
angle between the two radius vectors. N~~ was normal-
ized with respect to integration over r~, 01, and q l, the
coordinates of the 6rst electron, r2 for the second
electron, r», and q, the Euler angle, which together
with r12 specifies the direction of r2 with respect to ri.
The C,~'s were normalized with respect to integration
over r», ei, p1, r~, and p. The expressions for the C;~'s
and the values of the c s have been presented in an
earlier paper for both the three- and the six-parameter
Hylleraas functions. ' This earlier work also gives the
values of the E;,'s, the interaction energies between the
ith and jth angular components, that is,

E=Q; E; =) Q;(cP~P")*HQ (c4 ~P N)dr. (2)

The results obtained in this way, as to the importance
of the various angular components of +~~, are, of
course, not dependent on the choice of the radial

The value of an expansion in terms of Legendre functions was
pointed out to two of us (L. C. G. and M. M. M.) by Dr. E. U.
Con don.
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eigenfunctions of any particular central-field problem.
One of the most interesting results of this work was
the large size found for the nonspherically symmetric
components of the ground state wave function.

In the present paper we extend this earlier work by
expanding the 4;~'s for the three-parameter Hylleraas
function in terms of symmetrized products of the
eigenfunctions of hydrogenic central fields for several
di6'erent Z's.

The expansion has the form

242~4 i =P c„~ i[2+28(rs,m)] '

X (R~(nl l 1)R~(ml
~

2)+R~(ml
~

1)R~(ril
~
2) }

+R~(d~1)R~(ed~2))de+ c,i„~[2+28(e,tl)] '

X (R"(el (
1)R~(nl

~
2)+R (nll1)R" (eel 2))ded~ (»

Here 4 ~~ is the particular normalized angular compo-
nent of the ground-state wave function that is to be
expanded. The c's are the various expansion coe%cients.
The 5's are Kronecker deltas. R~(rd) and R~(ml) are
normalized radial eigenfunctions for discrete states of
the central field, and R~(d) and R~(rll) are normalized
radial eigenfunctions for states lying in the continuum.
These continuum eigenfunctions are normalized, so that
for su%ciently large p the amplitude will approach'

1 2Z 1(l+1)

Here e is the energy measured in units of EH,hc, where

RH, is the Rydberg constant for He expressed in cm ',
and p is the nuclear distance expressed in atomic units.
The factor 2v27r on the left side of Eq. (3) arises from
the diGerence in the normalization of the C;~'s and the
R~'s. The complexity which might accompany an
expansion in central field wave functions has been

greatly reduced in Eq. (3) by several considerations.
In the first place, superposition of configurations can
only occur between configurations of the same parity. '
Thus, among the configurations of even parity which
involve electrons with smaller / values, we need only
consider ss, pp, sd, and dd. Second, the intervals in the

1s2p 'P term of Her are roughly two thousand times
smaller than the separation of the V' and 'I'. The
coupling is therefore closely Russell-Saunders. If the
assumption is made that it is precisely so, it is only
necessary to include on the right-hand side of Eq. (3)
terms with the same I. and S as the He x ground state

7 K. C. Kemble, Fundamental I'rinci p/es of Quantum 3IIechunics
IMcGraw-Hill Book Company, Inc. , New York, 1937), p. 178.

E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1935), p. 366.

since these are the only ones which interact in pure
Russell-Saunders coupling. ' The sd configurations can
therefore be dropped since they do not yield a '5 term,
and in the ss, pp, and dd configurations, only those
combinations of single electron wave functions which
yield '5 terms need to be considered. In the third
place, the only configurations which can contribute to
the spherically symmetric component of the ground
state are the ss configurations, since these are the only
ones for which the spherical harmonics in Oi, p~, and
8s, ps can combine to yield Ps (cos8). Similarly the
only ones which can contribute to the expansion of
4P are pp configurations. The justification for the
notation in Eq. (3) is now clear: the only nonvanishing
coefficients in the expansion of C~~ are those of the
symmetrized products of the radial components of the
ll configuration.

The choice still remains as to what type of radial
wave functions to employ in the expansions. Earlier
work' suggested that to obtain a relatively complete
expansion, it would be necessary to employ a large
number of configurations. Although a rapid convergence
in the first few terms could be had by using numerical
Hartree functions, it was not clear that the convergence
would be more rapid in the later terms than with other
simpler orthogonal sets. Among the possible sets of
analytic functions, the hydrogenic functions oGered
the advantages of relative simplicity and of reasonably
rapid convergence. It was decided to use two diferent
sets of hydrogenic functions. In the first set, the
emphasis in the expansion was to be on ease of deter-
mining the coe%cients. It was expected that this
expansion would require a large number of configura-
tions to obtain a satisfactory approximation to com-
pleteness. In the second set, the emphasis was to be on
the rapidity of the convergence. It was thought that
the physical interpretation of the results would be
about equally easy in the two cases. For the first set,
hydrogenic functions with Z=2 were employed, that
is, the solutions of the radial part of the Schrodinger
equation for He+. For the second set, certain expansion
coe%cients were evaluated for hydrogenic functions
for a series of values of Z, and then that Z was chosen
which made the sum of the squares of those coe%cients
a maximum.

EXPANSION COEFFICIENTS FOR Z=2

The results of the expansion of Co~, the spherically
symmetric component of the ground-state wave func-
tion, in terms of hydrogenic functions with Z=2 are
given in Table I. In the first section the values of the
expansion coe%cients and their squares are given for
each of the configurations listed in the first column.
The integrals necessary to determine these quantities
were first computed directly and were then checked by
the factorization method. ' In the second section is given

' L. Infeld and T. E. Hull, Revs. Modern Phys. 23, 21 (1951).
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Configuration

1$
1s2s
1$3$
1s4s
1s5s
2$2

n=eO

(&lans)
n=6

t'~ eo

(clews) d6
e=o

Sum

Cneme

0.96430—0.21637—0.07586—0.04316—0.02913—0.01437

(mneme) 2

0.92988
0.04682
0.00576
0.00186
0.00085
0.00021

0.00156

0,01199

0.99893

I &oat, ~heeler, and Breit, Phys. Rev. 49, 174 (1936).

the value for the sum of the squares of the coefficients
for all the configurations from 1s6s to 1s~ s, estimated
as described below, and the integral from &=0 to c= ~
of the square of the coefficient for configurations
involving a 1s function and an s continuum function.
The final line of Table I gives the sum of the squares of
the coefficients for all configurations which were con-
sidered. If the expansion represented Co~ exactly, this
sum would be one since both the wave functions for
the different configurations and Co~ are normalized.

The estimated value, which appears in Table I, for
the sum of the squares of the coefficients for the con-
figurations from 1s6s to 1s~s was arrived at in the
following manner. The series of discrete states from
6s to ~s was replaced by a continuum of states. The
wave functions for these states were taken to be the
series expansion for the hydrogenic continuum function
in terms of powers of the energy, e, and Bessel functions
of the nuclear distance, r." This expansion converges
rapidly for small e. Symmetrized products of this wave
function and a 1s wave function were constructed in
the usual manner. The accuracy with which this sym-
metrized function gives the square of the expansion
coefficients for the discrete states was determined by
computing the integral of the square of the expansion
coefficient between negative values of e corresponding
to the quantum numbers e=3.5 and m =4.5 and between
values corresponding to v=4.5 and m=5.5. The values
of these integrals were then compared with the values
found for (cr,4,)' and (cr,s,)' by the usual methods. The
diGerences proved to be 4.8 percent and 2.6 percent,
respectively. It therefore seemed probable, that if the
sum of the squares of the expansion coeKcients for the
configurations from 1s6s to 1s~s was taken to be the
value of the above integral from an ~ corresponding to
v=5.5 to &=0, the resulting error would be less than
2.0 percent.

The values of the expansion coefficients for configur-
ations involving a free electron were computed using
the hydrogenic s continuum function. For small values
of e the results were checked by the use of the Bessel
function expansion for the continuum function. "The

TABLE I. CoefIKients for the expansion of 40~ in the form of
Eq. (3) where the R~'s are hydrogenic functions with Z= 2.

TABLE II. CoeKcients for the expansion of 4»+ in the form of
Eq. (3) where the R~'s are hydrogenic functions with Z= 2.

Configuration

2P2
2P3P
2P4P
3P'
n =00

Z (c2,~,)'
n=5

f (C2r, u)'de

Sum

&npmp

—0.47010—0.27863—0.16661—0.08401

0.22100
0.07763
0.02776
0.00706

0.0387

0.290

0.662

results were further checked over a wider range of e by
using numerical hydrogenic wave functions computed
at the Watson Scientific Computing Laboratory of
IBM at Columbia University. Among other values of
e, the values of c~„, were found at &=0.0, 2.0, 4.0,
10.4, and 21.6 to be —0.1043, —0.0407, —0.0215,
—0.0059, and —0.0017, respectively. When the values
of c&„,had been determined, the integral of the square
of these coefficients from &=0 to &=21.6 was computed
numerically. Beyond &=21.6 the integrand was esti-
mated to be too small to contribute in the fifth decimal
place to the value of the integral. The integral is
therefore listed in the next to last line of Table I as
extending from &=0 to ~= ~.

The last line of Table I shows that the expansion of
CON is relatively complete in spite of the fact that only
one configuration not involving a 1s electron has been
considered. This is true even though Z has been set
equal to 2, a value which must be rather far from that
which best describes the average fieM acting on each
electron. With Z=2 one might expect that configura-
tions including two excited electrons would play an
important role. In fact, configurations involving 1s
electrons account for at least 99.82 percent of the sum
of the squares of the expansion coe%cients. Perhaps
the most interesting result in Table I is the large
contribution of those configurations in which one elec-
tron is in a continuum state. In fact the 1ses configur-
ations taken together account for more than any other
configuration except 1s' and 1s2s. The continuum con-
figurations which are considered here account for 49
percent of what remains after the contribution of the
1s' and 1s2s configurations have been removed from
the sum of the squares of expansion coe%cients.
Without a complete expansion of Co, it is, of course,
impossible to say what the absolute importance of the
higher configurations is in the wave function, but it is
clear that the relative importance of 1s2s and the
continuum configurations to the 1s' is large.

The results of the expansion of Ci~ in terms of
hydrogenic functions with Z=2 are given in Table II.
The arrangement of Table II is the same as that of
Table I. The computations for the various quantities
were carried out in the same way as described above,
except that in the case of c»,„, only numerical cop-
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TABLE III. CoefBcients for the expansion of C p using symmetrized
products of hydrogenic s wave functions with Z= 2.

Wave functions

1$~

is2s
1$3$
is4s
2$
3$
4s'
%=00

(cites)
n 5

(clews) I6
0

Sum

cnsme

—0.84620
0.24799
0.12162
0.07130—0.09154—0.04515—0.02696

(c )2

0.71605
0.06150
0.01479
0,00508
0.00838
0.00204
0.00073

0.0075

0.113

0.929

TABLE IV. Squares of the coeKcients in the expansion of 40~ in
hydrogenic s wave functions for different values of Z.

1.5 1.6
Z

1.7 1.8 1.9 2.0

(Causa) 2

(Ct 2 )2
(cger)~
J'(ctsee) md~

Sum

0.98338
0.00145
0.00026
0.010
0.995

0.98967
0.00406
0.00053
0.0012

0.99247
0.00015
0.00043
0.0030
0.9961 0.9955

0.97704
0.01332
0.00051
0.00303
0.99390

0.95653
0.02772
0.00039
0.00722

0.99186

0.92988
0.04682
0.00021
0.01199
0.98890

tinuum functions and the Bessel function expansion for
the continuum function were employed. The values of
c2„,„were estimated for ~ greater than 4.0.

The most interesting result which appears in Table II
is the small size of the contribution to Ci~ of 2p', the
lowest configuration considered. The higher discrete
configurations contribute more to the expansion relative
to the lower than in the case of Co~. This is clearly
shown by the importance of the continuum configur-
ations, which contribute more to the expansion than
any one of the discrete configurations considered. The
sum of the squares of the c's in the final line of Table II
is rather far from 1.0, that is, the expansion is rather
far from complete. This result is somewhat surprising
in view of the considerable number of configurations
which are included in the expansion. One notes that
(ci,m)' for the expansion of CP is 0.92988 but that
(c»2)' for the expansion of C,~ is only 0.22100. Further-
more (c3e*)' for the expansion of C» is still smaller,
0.00140. It is therefore clear that any relatively
complete expansion of the C;~'s for i&0 in terms of hy-
drogenic functions with Z=2 will be a laborious under-
taking. One reason for this situation is that the expo-
nential factor is the same in all C,~'s, but increasingly
different from the exponential factors in the (nl)' wave
functions as 3 increases. It therefore seemed worthwhile
to attempt the expansion of the higher C;~'s in terms of
s electron wave functions even though s wave functions
used in this way cannot be considered as belonging
strictly to the class of central field wave functions. The
results of this expansion are given in Table III. The
arrangement of Table III is similar to that of Table II
and the computations for the various quantities have

been carried out in the same way. It is clear that for
low e,s wave functions are much more effective in
representing CP than are the P wave functions. Simi-
larly the expansions of C2 and C3 in terms of is
yield 0.60635 and 0.50747 for (c&,~)'. The former value
is more than 400 times as large as (c3d~)' found for the
expansion of C2~ in 3d'. These results, and those given
in Table III, suggest. the desirability of using values of
Z other than 2 in the expansions.

The same suggestion also follows from the work of
Taylor and Parr on He r."These authors constructed
various linear combinations of 1s', 2p', 3d', and 4f'
hydrogenic wave functions. The 1s' configuration was
assigned one or two values of the parameter Z. To
each of the other configurations, a single value of Z was
assigned. The particular combination which gave the
lowest energy was then chosen. They obtained a wave
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FIG. 1. Squares of the coef5cients for the expansion of C0~ in
symmetrized products of hydrogenic s wave functions for diferent
values of Z.

function giving the ground-state energy correct to
0.2 percent by the choice of Z=4.95 for the 2p function,
Z=11.3 for the 3d, and Z= 19.0 for the 4f. The expo-
nents in the exponential factors in these wave functions
were therefore 2.5, 3.8, and 4.8 whereas for the choice
of Z=2 they would have been 1.0, 0.67, and 0.50,
respectively.

EXPANSION COEFFICIENTS FOR S VARIABLE

In view of the above results, the C,~'s were also
expanded in hydrogenic functions with variable Z with
the purpose of choosing that Z which would give the
best representation of the C;~'s in a few terms.

The results of the expansion of C(i~ in terms of
various configurations of s electrons for diferent Z's
are presented in Table IV and Fig. 1. Values of c1„,
"G. R. Taylor and R. G. Parr, Proc. Nat. Acad. Sci. U. S. 38,

154 (1952).
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.990-
SUM

EtP
O

CL
ElP

d
'a
C

—.020
Ct

CL

were found using the analytic hydrogenic es continuum
function in all cases except for Z=2, which has been
discussed previously. The computations were made for
a series of values of ~ up to at least &=16.8. Beyond
this point the values of ci„, were estimated. It is
thought that any error resulting from these estimates
will not be large enough to change the values of the
integrals of (ci„,)' in Table IV by more than 1 in the
last decimal place given.

By summing the squares of the coefficients for various
groups of the con6gurations given in Table IV, and
interpolating for the value of Z which makes the sum
a maximum, one finds the results in Table V.

The corresponding information on the expansion of
Ci in terms of configurations of p electrons is given in
Tables VI and VII and Fig. 2. Values of c2„,„were
found using the hydrogenic 2p continuum function for

I.OOO

-.030

Configurations

1$
is 1$2$
is, 1$2$) 2$'
1$ s 1$2$) 2$ ) 1$cS

1.62
1.67
1.67
1.60

Sum of squares
of coefficients

0.99279
0.99396
0.99438
0.996

s configurations for Z= 2 which are given in Tables II
and III, respectively. Over the ranges of values of Z
shown in Figs. 1 and 2, the contributions of the higher

p configurations to CP are considerably less than that
of the higher s con6gurations to C 0

It is extremely interesting to see in Tables IV and
VI or Figs. 1 and 2 how the importance of the various
configurations changes with changing Z. For example,
the rapid falling off of (c&,2)' and the accompanying
increase in (ci,~,)' and in the integrated value of
(ci„,)' for larger Z is very obvious from Fig. 1. One
also notes that in both Figs. 1 and 2, the plots of the

TABLE VI. Squares of the coefficients in the expansion of c» in
hydrogenic P wave functions for di6'erent values of Z.

TABLE V. Expansion of C 0 in hydrogenic $ wave functions
with Z chosen to give the maximum sum for the squares of the
coefficients.

CL

OCV

.980-

e

CL
tO

O

.0l 0
cP

(c2~~)2

(~2&3~)'
(~3&2)'
(~4 ')~

Sum

0.97453
0,00550
0.00151
0,00012
0.00337a

4.3

0.98131
0.00248
0.00161
0,00012
0.00197

0.98503 0.98749

Z
4.4 4.5

0.98562 0.98760
0.00063 0.00000
0.00177 0.00199
0.00012 0.00012
0.00096a 0.00033

0.98910 0.99004

4.6 4 7 4.8

0.98740 0.98517
0.00059 0.00240
0.00230 0.00269
0,00013 0.00013
0.00009a 0.00023

0.98100
0.00540
0.00319
0.00014
0.00076»

0,99051 0.99062 0.99049

.9YO-

—, ~.000
4.20 4 50 4,40 4.50 4.60 4.70 4.80 4P

a Interpolated or extrapolated from the values of J'(cd,&)2d~ computed
for Z =4.3, 4.5, and 4.7.

FIG. 2. Squares of the coefficients for the expansion of CiP in
symmetrized products of hydrogenic P wave functions for different
values of Z.

Z=4.3, 4.5, and 4.7. The computations for each Z were
carried out to at least &=100. Beyond this point the
values of c2„,„were estimated. In no case did the
estimated values contribute to the integral of (c2„,„)'
as much as one in the last decimal place in the 6gures
given in Table VI.

The improvement of the representation which can
result from allowing Z to vary is at once obvious from
an examination of Tables IV and VI. Whereas, the
value of (ci.~)' for Z= 2 is 0.92988, its value for Z= 1.62
is 0.99279. For the value of (ci,m)'+ (ci,2,)' one obtains
0.97670 when Z=2, but 0.99396 when Z=1.67. The
results for (c2~~)2 are even more improved. For Z=2
one finds (c2„~)'=0.22100 but for Z=4.54 one obtains
0.98777. This latter value is also considerably better
than the 0.71605 found for (ci,m)' when C&~ was ex-

panded in radial s wave functions. Indeed the 2p'
con6guration for Z=4.54 represents Ci~ more elec-
tively than the entire list of either p configurations or

Configurations

2p'
2P' 2P3P
2P'', 2P3P 3P'
2P', 2P3P 3P' 4P' 2P~P

4.54
4.60
4.65
4.69

Sum of squares
of coefficients

0.98777
0.98799
0.99036
0.99062

c"s for configurations of the nonequivalent electrons
are distinctly concave upward in the neighborhood of
the maximum of (c&,2)' and (c»2)', respectively. This is
not true for the plots of the c"s for the remaining
equivalent electrons.

One aspect of particular importance in the changing
size of the contribution of the diferent configurations
with changing Z, is the low minimum found for the
integrated (ci„,)' and (c~~„)'. The importance of this
point arises in connection with any attempt to obtain
a good ground-state wave function by the minimum

principle, using linear combinations of symmetrized
products of hydrogenic wave functions as trial func-
tions. By far the most dificult con6gurations to include

TABLE VII. Expansion of C»~ in hydrogenic P wave functions
with Z chosen to give the maximum sum for the squares of the
coefficients.
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TABLE VIII, Energies in units of RH,hc octained by the mini-
mum principle from linear combinations of symmetrized products
of hydrogenic s wave functions with Z=2.

Superposed
configurations

Conventional configuration assignments
1$s is2s is3s is4s

1s2
1$~, 2$2
1s2, 1s2s
is2, is2s, is3s
is2, is2s, is3s, is4s

Experimental

—5.50000—5.50189—5.66088—5.67730—5.68278
—5.80752

—3.91183—4.27238—4,27380
—4.29213

—3.64645—4.11489
—4.12273

—3.53477
—4.06736

in such treatments are those involving continuum
functions. The necessity for their inclusion in the case
of hydrogenic functions with Z= 2 is indicated in
Table VIII, where the best linear combination of the
configurations on the left have been chosen by the
minimum principle to yield the energies for the con-
ventional configuration assignments along the top. The
last line of Table VIII gives the experimental values of
the energies of the '50 terms in the configurations at
the heads of the columns. " The successive values of
the energy of the ground state, which appear in the
second column, make it unlikely that the addition of
more configurations of bound s electrons with Z=2
would give an energy as low as —5.76, the energy which
spherically symmetric functions may be expected to
yield. ' The only remaining spherically symmetric config-
urations are those involving a free electron. In the expan-
sions above of Co~ in hydrogenic functions with Z=2,
configurations involving a free electron have, of course,
been shown to be important. On the other hand, both
Table IV and Fig. 1 suggest that if in the attempt to
obtain a ground-state function one uses a linear combi-
nation of symmetrized products of hydrogenic s func-
tions with Z=1.70, one may hope to find a very good
spherically symmetric component, even though no con-
tinuum wave functions are employed.

In comparing the results of expanding Co~ with the
results of an attempt to obtain the spherically sym-
metric component of the ground-state wave function

by the minimum principle, it is also of interest to
compare the values of the squares of the expansion
coeKcients with the squares of the weighting constants
for the various configurations in the linear combination.

Superposed
configurations (c18g,)2 (Cls3s) 2 (C1s48)

1$
is2 2s2
is' is2s
is', is2s, is3s
is', is2s, is3s, is4s

1.00000
0.99954
0.90802
0.90874
0.90926

0.09198
0.08110 0.01016
0.07805 0.00937 0.00332

'2 The experimental values of the energies were taken from
Charlotte E, Moore, Atomic Energy Levels, National Bureau of
Standards Circular 467 (U. S. Government Printing Oi5cel
Washington, D. C., 1949), p. 5.

TABLE IX. Values of the squares of the weighting constants
obtained by the minimum principle in linear combinations of
symmetrized products of hydrogenic s functions with Z= 2.

TABLE X. Energies in units of RH, hc obtained by the minimum
principle from linear combinations of symmetrized products of
hydrogenic functions for is2, is2s, and 2s2 for variable Z.

Conven-
tional

configur-
ation

assign-
ment 1.5 1.6 1.7 1.8 1.9 2.0

1s2 —5.62821 —5.68175 —5.70725 —5.70920 —5.69250 —5.66199
1s2s —4.05341 —4,10078 —4.11335 —4.08790 —4.02205 —3.91394
2s2 —1.35924 —1.38313 —1.41737 —1.42693 —1.42054 —1.39521

highest root, the energies obtained are at once recog-
nizable as corresponding to certain experimental values.
It seemed possible that if, following the suggestion
above for avoiding the inclusion of continuum wave
functions, one made up trial solutions using hydrogenic
functions with Z=2, one might obtain a better spheri-
cally symmetric component for the ground state but
poorer components for the excited states. To investigate
this point the energies yielded by the superposition of
1v', 1s2s, and 2s' were computed for six values of Z.
The results appear in Table X. The values in Table X
suggest that a choice of Z in the neighborhood of 1.7
would yield a good spherically symmetrical component,
not only for the ground state, but also for at least some
of the excited states as well. Therefore, the possibility
is strengthened of obtaining moderately good wave
functions for both ground and excited states from
linear combinations which do not include continuum
functions.

On the other hand, there is considerable doubt that

"L. Pauling and E. B. Wilson, Intr odlcti on to Quantum
3Achamics (McGraw-Hill Book Company, Inc. , New York, 1935),
p, I88.

The latter quantities are presented in Table IX, where
all the functions which are concerned have been normal-
ized. A comparison of Tables I and IX shows that for
the configurations considered (cr,~)' is somewhat larger
and (c&,s,)', (c&,s,)', and (c&,4,)' are considerabiy smaller
for the expansion. However, as more configurations are
included in the application of the minimum principle,
there is a tendency for a slow increase in (ct,m)' and
corresponding decrease in the other c"s.

An attractive aspect of the application of the mini-
mum principle to a linear combination of configurations
is the fact that by using the diferent roots of the
secular equation to determine the c's, one obtains not
only a ground-state wave function, but also wave
functions for the excited configurations as well. Table
VIII lists the various energies found from wave func-
tions obtained in this way. These results illustrate the
well-known theorem" that the roots of the secular
equation of a variational trial solution which is a linear
combination of the first e members of an orthonormal
set of functions will separate the roots of the equation
of a trial solution made from the first v+1 members of
the set. In each case in Table VIII, except for the
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wave functions of high accuracy for the two-electron
systems can be found in the form of variationally chosen
linear combinations of hydrogenic wave functions of
the proper symmetry unless continuum functions are
included. This statement follows from the fact that a
relatively poor wave function may yield a relatively
good energy, or stated in other words, the minor
components of a wave function as measured by their
contribution to the energy may make up proportionately
a much larger part of the wave functions. This result is
well-known, and specific examples have been given in
earlier papers in the present series. '' As a further
illustration, one sees from Table IX that in the super-
position of 1s' and 1s2s the ratio ci.,2, to ci, 2 is 0.32 but
the ratio of the contributions to the ground state energy
of the 1s2s configuration and the interaction term
between the 1s' and the 1s2s to the contribution of the
1s' configuration is 0.13.

In summary, the present work has presented expan-
sions of the various angular components of the three-
parameter wave function of Hylleraas for the He r

ground state in terms of symmetrized products of
hydrogenic wave functions for diQ'erent values of the
parameter, Z. The results of these expansions are
interpreted in terms of configuration interaction. The
changing importance of the different configurations
with changing Z is illustrated. In particular, the mini-
mum with respect to Z of the integral over all positive
e of (c~„,) is pointed out. The implications of these
results are discussed for attempts to obtain wave func-
tions for both ground and excited states of two-electron
systems by the minimum principle from linear combi-
nations of products of hydrogen functions of the proper
symmetry.

The authors wish to thank Anita Y. Schwab for help
in the computations leading to Tables IV and VI.
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Auger Ejection of Electrons from Tungsten by Noble Gas Ions
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Experimental investigation of electron ejection from atomically clean tungsten by singly and multiply
charged ions of the noble gases is reported. Total electron yield, &;, and. distribution in kinetic energy of the
secondary electrons have been measured. Ion energies range from 10 to 1000 ev for singly charged ions. p; is
found in each case to be roughly constant over this interval although the variations observed are significant
and can be accounted for by theory. y; values of 0.293, 0.213, 0.094, 0.047, and 0.018 were obtained for 10
ev He+, Ne+, Ar+, Kr+, and Xe+ ions, respectively. Comparison with theory makes it quite clear that for
10-ev ions essentially all electrons observed are ejected by a process of Auger neutralization in which the
interaction of two conduction electrons causes one electron to neutralize the ion in the ground state and the
other to be excited into the continuum above the filled band. The observed p; is determined by the
probability that these excited electrons escape from the metal. In the case of Ne+, indications are that
as ion energy increases toward 100 ev a two-stage electronic transition process occurs in a small fraction
of the encounters. In this process the ion is first resonance neutralized to an excited state and the result-
ing excited atom is subsequently de-excited in an Auger ejection process. Variation of the electron energy
distribution with ion energy has been investigated. Careful measurement for Ne" and Ne'2 at 200 ev shows

y; to be independent of nuclear mass. Results of y; and energy distribution measurements for electrons
from multiply charged ions up to Xe'+ are also reported. A value of ca 6.3 ev for the energy of the Fermi
level above the ground state in the conduction band in tungsten comes out of this work.

I. INTRODUCTION

A SERIES of studies of electron ejection from
atomically clean metals by ions of the noble

gases is extended in this work to tungsten. The singly
charged ions of He, Ne, Ar, Kr, and Xe, as well as a
number of the multiply charged ions ranging up to
Xe'+, have been used. Evidence presented indicates
the tungsten surface to be atomically clean.

The use of singly charged ions of all the noble gases
has proved to be particularly fruitful. Comparison
with theory shows that for very slow ions ((10 ev)
essentially all the electrons are ejected from tungsten
by the process of direct Auger neutralization. Here the
role of the incoming ion is to provide a low-lying vacant

electronic level (its ground state) for the Auger process.
Since the position of this level is determined by the
ionization energy of the atom, it is clearly advantageous
to study the process for a series of ions.

Of interest is the somewhat anomalous case of Ne+
on tungsten. Here it appears that for ions of energies
near 100 ev a fraction ( 10 percent) of the ions are
resonance neutralized, the excited atoms so formed
being subsequently de-excited in an Auger process
in which a secondary electron may be ejected. The
explanation of the restriction of this possibility to
Ne+ and the means of its detection in that case are
thought to be particularly convincing of the essential
correctness of the theoretical picture.


