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Derivation of Magnetostriction and Anisotropic Energies for Hexagonal,
Tetragonal, and Orthorhombic Crystals
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In order to determine the measurements necessary to characterize the anisotropic energy and the satura-
tion magnetostriction in hexagonal cobalt, a phenomenological derivation has been given for the equations
which characterize the effects. Out to fourth rank tensors, the results are the same as those for circular
symmetry and it requires two constants to specify the anisotropic energy and four to specify the magneto-
striction. When sixth rank tensors are evaluated, a characteristic hexagonal symmetry appears. It requires
four constants to characterize the anisotropic energy and mine to characterize the magnetostriction. These
constants can be measured by using two oriented slabs. Four of the constants can be determined by measure-
ments parallel to the saturation magnetization, four when the magnetostriction is perpendicular to the
magnetization and one when they are 45' apart.

In the Appendix the first approximations for the magnetostrictive and anisotropy energies are derived
for tetragonal and orthorhombic crystals.

I. INTRODUCTION
" 'N order to determine what measurements have to
~ - be taken to characterize the saturation magneto-
striction and the magnetic anisotropic energy of a
hexagonal cobalt crystal (class 6/m, 2/m, 2/m), which
are discussed in an accompanying paper by R. M.
Bozorth, a phenomenological derivation has been given
for the equations which describe these eGects. These
equations can be derived from a general thermodynamic
function of which there are several depending on which
variables are considered the fundamental ones. In
order to give directly the measured magnetostriction
constants and the magnetic anisotropic energy at con-
stant stress (the ordinarily measured values), it is
better to use the stresses, intensities of magnetization,
and entropy as the fundamental variables. Furthermore,
since we are not interested in temperature eGects, we
can assume the entropy constant and introduce only
the stresses and intensity of magnetization as the
fundamental variables.

A general expression has been derived in a previous
paper' for a crystal with a center of symmetry. Since

cobalt belongs to the crystal class 6/m, 2/m, 2/m
(Herman-Mauguin) or Dek (Schonflies), it has a center
of symmetry and hence the expression derived previ-
ously is valid. In tensor notation, this expression can be
written in the form

2II1 Pij kl Tij Tki++ijkinoIiIj TklTno+W jmnIiIj T'mn

+1V,,kim„I,I,IkIiTmn]+K „rI I„+K „,„rI+„I,I„
+Kmnonqr ImInIoIpIqlr. (1)

In this equation T;; are the stresses expressed as a
second rank tensor with i interchangeable with j, I;
are the three magnetic intensities along the three
rectangular coordinates, s;;1,~1 are the elastic compli-
ances, R;,A, E„, are the terms added to the elastic com-
pliances when the crystal is magnetized in various
directions (neglected in the present paper), M,;„„are
the erst-order magnetostriction terms, S;;I,~ „ the
second-order magnetostriction terms, and the three E
terms are the first-, second-, and third-order anisotropic
energy terms, all measured for constant stress.

All that is required to evaluate these terms is a
knowledge of the components of the tensors in the sym-
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FIG. 1. Relation between x, y, and s rectangular axes
and the crystallographic axes.

' W. P. Meson, Phys. Rev. 82, 715 (1951).
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FIG. 2. Relation between spherical coordinate angles
and rectangular x, y, and z axes.
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metry system 6/333, 2/433, 2/m. Up to fourth rank ten-
sors, the number and kinds of terms are well known and
are given in Sec. II.

The components of sixth rank tensors for this sym-
metry have been derived only recently. ' As discussed
in Sec. III, these components can be used to evaluate
the morphic R constants, the second-order (13') mag-
netostriction terms and the third-order anisotropic
energy terms. In all the sixth rank tensors, the char-
acteristic hexagonal symmetry appears and the results

are different from those derived on the basis of circular
symmetry.

II. ELASTIC COMPLIANCES, FIRST-ORDER
MAGNETOSTRICTION, AND FIRST- AND

SECOND-ORDER ANISOTROPIC
ENERGY TERMS IN COBALT

The matrices of the second and fourth rank tensors
using the engineering shearing strains, i.e., (S,;=BN;/Bx,
+Du/Bx~) rather than the tensor strains, can be written
in the form'

Ell 0
0 Eli
0 0

$1111

0 $1122

S" = $1133
) Sijkl 0

E33

0

$1122

$1188

0
0
0

$1133 0 0
$1133 0 0

0 s2323 0
0 0 s2323

0 0 0

0
0
0
0
0

2 ($1111 $1123)

limno p—

+1111
+1122
&1138

0
0
0

~1111
~1122
~3311

0
0
0

+1122
+1111
+1183

0
0
0

~1122
~llll
&3..11

0
0
0

+1133
+1183
+3333

0
0
0

~1133
~1133
&3338

0
0
0

0
0
0

+1133
0
0

0
0
0

~2323
0
0

0
0
0
0

+1133
0

0
0
0
0

M232„
0

0
0
0
0
0

+llll +1122

0
0
0
0
0

~1111 ~1122

(2)

Since the first two and last two numbers of the sub-
scripts can be interchanged with each other, it has be-
come customary to replace two interchangeable indices
by single indices according to the convention

1=11; 2=22' 3=33' 4=23; 5=13; 6=12.
With this substitution we can write the expression for
II1 as

2HX ———[s11 (T,'+Ts')+2s13 T1TX+2s13 (T1+Ts)Ts

+$33'Ts'+$44 (T4'+ Ts')+2 (s» s13 )To'—
+2M »(IPTX+Is'Ts)+'2M 13(I1'Ts+Is'T1)
+2M(3(I13Ts+Is'Ts)+2M31[I33(T1+Ts)]
+2M33I3'Ts+4M44 (IXI3T4+I,I3T6)
+4(M11 M12)I1I2T6]+El (I1 +I2 )+Es Is
+E1 (I1'+2I,'I33+I34)+6E13 (I '+I ')I '

+Ess Is', (3)
where the s or 3 axis coincides with the c hexagonal axis
as shown by Fig. 1, and the x axis coincides with one of
the 6 hexagonal a axes.

These equations hold for a crystal with a large num-
ber of domains when the directions of the domains are
uncorrelated, for then the components of magnetization
are independent. For a single domain or for a saturated
crystal, the intensity of magnetization has a fixed

' R. Fieschi and F. G. Fumi, Nuovo cimento 10, 865 (1933).
Hexagonal and trigonal systems were also considered by Dr.
H. %'ondratschek and are in course of publication.

value I„and only the direction of magnetism can be
Changed. If nl, n2, n3 are the direCtiOn COSineS Of the
intensity of magnetization with respect to the crystal
axes, one has

Il=nlI8
&

I2= n2I8
& I3=n3Isp (4)

where n '+n '+n '= 1
Furthermore, the energy Hl is usually expressed as

a change from the energy of the demagnetized crystal.
For cobalt the direction of easy magnetization is along
the hexagonal axis with n3= &1.Hence, on the average,

n 1 n

P ns ——0; —P ns' 1. ——
1 e 1

Kith these substitutions the expression for 2H1 becomes

2H1 ———[s11 (TX'+Ts')+2$13 T1T3+2s13 (T1+Ts)T3
+$33 T3 +$44 (T4 +To )+2 ($11 $12 )T6 ]
—[2 (M11—M13)Ig'(n1'T1+ns'Ts+2n1nsT6)
+2 (M33 M13)I4 ((x3'—1)Ts+2 (M31 M13)
QIg ((13'—1)(T1+Ts)+4M44I. '(nsnsT4+(X1(X3T3)]

+[(E1 Es)Ie'+ (2E11—6E—13)I.'][1—ns']
+[4E13—E11—E'33]I,4[1—n34]. (5)

'The E~ tensor is similar to the dielectric tensor and the
s;;&& tensor is given in W. P. Mason, I'iesoelectric Crystals and
Their A PPliooliors so Ultrosor(ies (D. Van Nostrand Company, Inc. ,
New York, 1950). The X „,~ tensor can be obtained from the
s;,-I,& tensor by interchanging all the subscripts. The 3f;;II tensor is
similar to the photoelastic tensor of Pockels as corrected by
Hhagavantum.
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Since

(1—n33) = 1—cos30= sin'0, (1—a3') = (1—cos'0)

= 2 sin'0 —sin40,

To evaluate the M constants in terms of the measured
values of magnetostriction, we Grst put the Geld in the
same direction as the magnetostriction. Then ul ——Pl,
~3=p„3=p„and

ll= (M„-M„)I,'(1-p,3)3

+ ( M33+M13+2M44)I, 3(1 P3 )—P3'. (10)
where 8 is the angle of the saturation magnetization
from the hexagonal axis, as shown by Fig. 2, the aniso-
tropic energy can be written in the form

A sin38+8 sin48,
where

3 = 31 (K,—K3)I 3+ (K,3 K;,3)I,',—
8= ', (Kl,+—K33 4K', 3)—I,' llA (Mll M31)It I ~D [4 (Mll M31)

+3 ( M33+—Mls+2M44)]I, 3. (11)

Hence, only two constants can be obtained under these

(7) conditions. These are obtained by setting ni=. pi=1,
giving llA and nl ——Pl ——1/K2, n3 P——3 1/——v2, giving XD.
From Eq. (10),

This is a well-known result for cobalt. "

The form of the saturation magnetostriction, which
has not previously been derived, can be obtained from
the equation for the magnetostrictive strain in any
direction which is given by the formula

t9Hy BHy BHy
Pi' —P3' —P3'-

BTy 8T2 BT3

BHg BHg BHg
P3P3 —P1P3 —P1P3—, (g)

BT4 BT5 BT6

where Pl, P, , P3 are the direction cosines of the direction
for magnetostrictive strain with respect to the x, y,
and s axes defined above and X is the saturation mag-
netostriction. Performing the above differentiation and
collecting terms,

(Mll M12)Is (&1p1+rr2p2) + (M12 M31)

&(I 3(1—+33) (1—P33)+ (M„—M33)I,'(1—n33)P33

+2M44I, '(rrlpl+rr3p2)rzsp3 (9).
Z=c

To determine the other two constants, we have to
determine the expansion in a diferent direction from
the field. The two simplest directions are when the
field is perpendicular to the hexagonal axis and the
saturation magnetostriction is measured at right angles
to the field in the basal plane, and perpendicular to the
basal plane. Calling XB(nl ——1, P3 ——1) and lip(o. 1=1,
P3

——1) the two values, we find for these

XB= (M 13—M31)I,', Xc= (M13—M33)I,'. (12)

With these values, the four constants become

(Mll —M13)I,'= XA —'AB,

(M13 M31)I,'='A—B) (M13—M33)I.'=llo,

2M44I 3= (—XA+4llD —lip). (13)

Inserting these values in the magnetostrictive equation,
we find

llA[(1zlpl+&2p2) (&1pl+&2p2)&3p3]

+~B[(1—r33') (1—p3') —(rrlpl+lz2p2)']

+l.[(1— ')P. '-( P+ P) P]
+4llD(&lPl+&2P2)&3P3 (14)

These four constants have been evaluated for cobalt
in the following paper by Bozorth, who finds the fol-
lowing values:

X=+
~~= —45X10 ', Xa= —95X10 ',

lio=+110)(10 ', XD ———100)&10 '. (15)

Fzo. 3. Relation between rotated coordinate system x', y', and s'
and original rectangular coordinate system x, y, and s.

' R. M. Bozorth, Ferromrsgletesm (D. Van Nostrand Company,
Inc. , New York, 1951),p. 564.

The properties of polycrystalline materials can be
calculated to this order of approximation by assuming
that all orientations of the crystal grains are equally
probable. The two quantities of interest are the mag-
netostriction )«' along a rod in the direction of the
applied field and the change in dimension, X~, per-
pendicular to the applied field. The volume magneto-
striction cv is then equal to

ol = limni+ 2Xs, .
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If we saturate along a given direction, the increase
in length along this direction for any orientation in the
crystal is given by

A —/AC (1—n3') —(1—n3 )n ]+4&n(1—n )n (17)

where n3 is the direction cosine between the direction
of the magnetic field and the Z axis of the crystal. If
we call this angle 0, the expression for X is

III. ANISOTROPIC ENERGY AND SATURATION
MAGNETOSTRICTION TAKING ACCOUNT

OF SIXTH RANK TENSORS

When one takes account of the sixth rank tensors of
Eq. (1), additional terms are added to the anisotropic
energy terms and the saturation magnetostriction, and
these reveal the hexagonal properties of the crystal.
The simplest term to consider is the anisotropy energy
term

X—A+[sin'8 —sin'8 cos'8]+4XD sin'8 cos'8 (18) K „,„q,I+„I,I„I,I„. (26)

To obtain A.„, we have to average this expression over
all possible orientations. The average values of sin40

and sin'Ocos'0 over a unit sphere are given by the
integrals

Hence

~
~/2

sin'8d0= —,
15 ~p

2
sin'8 cos'8d8= —. (19)

15

X„=—28) ~+ (g/15)XD. (20)

)t.t2

sin38d8 = -'„

0

(23)

we And that the volume magnetostriction for a poly-
crystalline material is

co= —', P g+)ill+Ac).

From Eqs. (16) and (20) we find

(24)

),4, = (2/15)Kg+8 () ii+)lc) —(4/15))ill. (25)

The volume magnetostriction of a single crystal ma-
terial can be calculated by taking a three-axis system
x', y', s' located in any orientation and adding the
magnetostrictive strains in all three systems. If we take
the axes of the three-axis system with respect to the
axes for which the direction of magnetization has the
direction cosines n&, n&, n3 as shown by Fig. 3, the direc-
tion cosines for the x', y' and s' axes are given by

x': Pl ——cos8 cosy; P2 ——cos8 sin 82; P3 ———sin8;

y': pl= —sin82; p2 cos82; p3 ————0;
2': Pl ——sin8 cos4I2; P2 ——sin8 sin82; P3 ——cos8.

Using these values in Eq. (14), leaving nl, n2, n3 arbi-

trary, and adding all these values of X, we And

()l, +)l„+X.) = a& = () ~+Xii+Xc) (1—n32)

= ()lg+Xii+) c) sin'8, (22)

where 0 is the angle of magnetization with respect to
the hexagonal axis. Hence, irrespective of the orienta-
tion of the crystallite considered, the volume magneto-
striction depends only on the direction of the intensity
of magnetization with respect to the hexagonal axis.

For a polycrystalline material, this angle is averaged
over all directions and hence, since

Ig=ngI8) I2=n2I„ I3=e3I,) (30)

and subtracting out the demagnetization energy, the
sixth rank term becomes

ElllIs (nl —6nl n2 +9nl n2 )
+K222I8 (n2 6n2 ni +9n2 nl )
+15Kll3I, (nl+a2) n3+15Kl33I, (ai'+n2')n3

+E333I,8(n38 —1). (31)

If we go to spherical coordinates as shown by Fig. 2,

nl ——sin8 cos82; n2= sin8 sin@2; n3 ——cos8. (32)

Introducing these values and combining and reducing
terms, and adding the lower order terms of (7), the
total anisotropic energy can be written in the form

A sin28+8 sin48+sin88(C+D cos622),
where

A = ', (El E3)I 2+ (E„—-E8,,)I—,'——,'K„,I,',

(33)

8= -,'(Ell+K„—4El,)I,'
+2(15Kll3 30E233+3K333)I8

C—f2 (—15Ell3+ 15Kl33 K333)+4 (Klll+K222)]Is

4 (Kill E222)Is . (34)

According to Fieschi and Fumi, ' the energy product
has the form

ElllIl +15E112Il, I2 +15E122I1I2 +15K113I1I3

+15E223I2'I3'+90E223Ii'I2'I3'+ 15K233Ii'I3'

+15E233I2'I3'+E333I3'. (27)

In the hexagonal system 6/228, 2/228, 2/288(D88), there
are a number of relations between the constants. For
the case where all six indices can be interchanged, in
three-index symbols, these relations take the form

5K112 2K111+3K222 j 5K122 3K111 2K222 j

K113 3K123 ) K113 K223 j K133 K238 (2g)

Introducing these values, the expression for the aniso-
tropic energy becomes

EillLI '—6Il'I '+9I 'I2']

+E222[I2' —6I2'I,'+9I2 Il']+15Kli3[Il +I2'] I3'

+15K133(I1+I2 )I3 +K333I3 ~ (29)

Introducing the values
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The sixth rank magnetostriction tensor containing
the second-order magnetostrictive terms can be evalu-
ated in a similar manner. The energy products become

1V111I1'T1+(1V112I1'T2+6N, 21I1'Is'Tl+ 81V166I1'I2T6)

+ (1V221I2'T1+6N 122I1'I2'Ts+8N266I1I2'Ts)

+ (N113I1 T8+6N181I1 Is Tl+8N165I1 I3T5)

+ (N831I8 Tl+6N138I1 I3 Ts+8N855I1I8 T6)

+ (N223I2 Ts+6N232I2 I3 T2+SN244I2'I8T4)

+ (N332I3 Ts+6N233I2 I3 Ts+8N344I3 I2T4)

+ (6N123I1 I2 T8+6N182I1 Is T2+6N231I2 Is Tl

+24N, 44I1'I2I3 T4+24N255I1I2'Is Ts

+24N366I1I2I3 Ts)+1V222I2 Ts+N333I3 Ts. (35)

For a hexagonal symmetry 6/238, 2/238, 2/288 there are
a number of relations between these constants. On
account of the form of Eq. (1), we can interchange the
first four indices or, in terms of three-index terms,

sum cari be written in the form of a nine-constant
equation:

ll=A[2nln2pl+(nl n2 )P2) +Bns [(nlP1+n2P2)

(n—,p n—p,) )+C[(n p,+n p )' (n—,p n—p )']
+D(1—nss) (1—pss)+Ensspss(1 —nss)+Fns'(1 —nss)

+Gps'(1 —ns')+Hnsps(nlpl+nsps)

+In8 ps( nl pl+ n2 P2) s (39)
where

A = (N222 —N ill)Is",

B=[3(1V181 Nlss+N 121)+Nlll —2N222]Is

C [(2N222 Nlll 3N121)Is +2 (~ll ~12)Is ]9

[(2N111 2N222+3N121 N331)Is

+ 2 (1if 11+~12 2M31)Is ) 9

E= [2(N111 N222)+3(N121 Nlsl N182 N123)

+6N188+Nssl 1V888]I

(36) F [2 (N222 N111) N331+3(N131+N132 N121)]I

From this relationship, the equivalences given by
Fieschi and Fumi' take the form

N112 2N111+3N222 4'N166 s

3N121 2N111+3N222 2N 166 $

N122 N ill+ 2N222 2N166 2N121 s

N266 Nlll N222+N166 j

N221 2N222 N111 4+166 j

Nlls 3N123 N223 s N131 N132+2N366 N282 s

N133 N233 j N213 N123 j

G= [(3N128—1V888)I,'+ (M 1™33)3I s];

H = [81V155I,'+23f44I,2];

I=8(N844 N, 55)I,'. —

To evaluate the 9 constants requires the measurement
of 9 independent orientations. The simplest measure-
ments are those for which the magnetization is parallel
or perpendicular to the saturation magnetostriction.
Eight independent constants can be determined from
these measurements. The remaining constant has to be
determined when the magnetization and magneto-
striction are in directions not 0' or 90' with respect to
each other. For the parallel case,

N331= N332 j +355, N344 j N132 N231 j

N 1(5=3N 144 N244. (37)
nl Pl) n2 P29 n3 Ps)

and the equation becomes

(40)

These 16 relations reduce the number of constants
appearing in the equation to 11. Introducing these
values, the sixth rank tensor, after subtracting the de-
magnetized value N381I,'(1—Ps')+N388I, 'Ps', becomes

NlllIs [nl pl +2nl p2 8nl n2plp2+3n2 pl +6nl n2 p9 )
+N222Is [n2 P2 3nl P2 +12nl n2Plp2 . 4n2 pl

6nl n2 p2 +4nln2 plp2]+6N121Is (nlp2 n2pl) (1 n3 )
+3N128Is Ps (1 ns) +6N181I.'n8'(nlPl+n2P2)'

+6N132Is ns (nlP2 n2P1) + 8N1 55Ins3P3(1 n8 )
X (nlpl+n2p2)+N831Is (n3 1)(1 Ps )
+6N138Is ns ps'(1 —ns')+8N344Is'ns'ps(nlpl+nsps)

+N888I, '(ns' —1)P32. (38)

Sy combining these terms with the first-order terms
of Eq. (19), and combining and reducing terms, the

ll() =A [3nl'ns —ns')'+Bns'(1 —ns')'

+(C+D) ( —ns')'+(E+ )ns'( —ns')

+ (F+G+H)nss(1 —nss). (41)

Introducing spherical coordinates as shown by Fig. 2,
we find that

nl ——Sin8 COSp; ns ——Sin8 Sin 62; ns ——COS8. (42)
If these values are introduced in (41) and all the values
are expressed in even powers of sin8, Eq. (41) reduces to

lI, i&
=A' sin'8+B' sin 8+C' sin'8+D' sin'8 cos6p, (43)

where

A'=E+F+G+H+I;
B'=B+C+D 2E 2I F G H-;—— — —

C'= —,'A —B+E+I; D'= —2A.
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The first three constants can be determined by measur-
ing the magnetostriction when the values are measured
in the x-s plane with P j 90' from s, X2 60' from s and
X3 30' from s, while the fourth value is determined by
measuring the saturation magnetostriction when 0=90',
p=90', i.e., for measurements in the y-s plane with the
direction of measurement 90' from the z axis as shown

by Fig. 4(a). These four values are determined from the
equations

X1 A'+ B——'+C'+D',

X2= —,'A '+ (9/16)B'+ (27/64) (C'+D');
(44)

X3——-',A'+ (1/16)B'+ (1/64) (C'+D');

X4 A'+ B——'+C' D'. —

Solving for these values, we get

A ' = 8X3—(8/3) X2+X1,

B'=—(56/3) X3+ (40/3) 4—(16/3) Xl,'

(45)
(C'+D') = (32/3)X3 —(32/3)X2+ (16/3)X1)

D'= —',(Xl—X4).

Z=c

(a)
6N ETO STRICT ION

Z=c
il

?4sA4

Z=c

Hence 4 of the 9 constants can be evaluated by meas-
urements for which the magnetostriction is in the same
direction as the saturation magnetization.

These constants also determine the value of the
saturation magnetostriction for a polycrystalline ma-
terial, since as shown by Eq. (17), all the contributions
to the polycrystalline material are in the direction of
the saturation magnetization. Since the average values
of sin'8, sin'8, and sin'0 over the sphere are given by the
integrals

X=a 4

Ig
(b)

J. MAG NETOSTRICTION

gx=.
(c)

OBLIQUE
IVIAG NETOSTRICTION

~ m/2 8
sin'edg = &

~

l sin'ede= —,
0 15

~
~/2

sin~8d8=

FIG. 4. Crystal cuts for measuring nine independent constants in
magnetostriction equations for hexagonal crystal.

nlpl+n2p2+n3p3

When the field is perpendicular to the direction of
48 measurement,

105 (48)

2 8 48 2 t' 8'= —
~

8l%.3
—-)12+X,

~

3 15 105 3 E 3 )
8 ( 56 40 16

15K 3 3 3 ) If we introduce spherical coordinates as shown by Fig. 3,
with the magnetization directed along the s' axis and
the magnetostriction measured along x', the direction
cosines become

48 /'32 32 16 y 48
+ I

—~3——&2+—ill I
— (~1—&4)

105 43 3 3 ) 105 nl= sine cosy; n2 ——sin8 siny; n3= cosa; (50)

With this simplification,
the average value for a magnetostrictive cobalt rod is

Bn3 (nlp2 n2pl) + (C If)n3 p3 C(nlp2 n2pl)

+D(1—n3') (1—p3')+En3 p3 (1 n3 )
+Fn (1 n3 )+GP3 (1—n ') (49)

16 16 2 8=—X3+—X2+—Xl+—X4. (4/)
63 35 63 35

pl ——cos9 cosy cosp sin y sing—; p2 ——cos8 siny cosp

+cosy sing; p3= —sine cosf.
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By inserting these in Eq. (49) and reducing and col-
lecting terms, the perpendicular magnetization can be
written in the form

X~=A sin'0[cos0 singg cosg(3 cosggg —singgg)

+sin'1t cosgg(cos'gg —3 sin'gg)]'+sing0

X[(B+C+D+F H I—) co—s'f j(D+F B —C)—
)& sing/]+ sin40[(2I+ H+ E+G—2B—C—D—F)
&&cosQ+ (B F) sin—gP]+sins0[B —E—I] cosset. (51)

A has previously been derived from parallel measure-
ments, and since the last, term is —(C'+D') this equa-
tion determines four more constants. By designating

B+C+D+F H I=—E',—

2I+H+E+G 2B C —D —F=—F', —

D+F B C=G—', —B F=H', —(52)

these four constants can be related to four new magneto-
strictive measurements. As shown by Fig. 4(b) and (c),
all of these measurements can be made on a single slab
in the x-s plane. The constants A, 5 and ) 6, measured
when P =0, are measured when the saturation mag-
netization is 90' and 45' from the s axis and the mag-
netostriction is measured in the plane perpendicular to
the magnetization. The other two constants, ) 7 and X8,

are measured along the plane thickness for the same
directions of magnetization. In all these measurements,
gg=O. For the erst set, /=0 and the equations become

To determine the other constant requires a measure-
ment for which the magnetization and magnetostriction
are not parallel or perpendicular. The simplest method
for determining the measurement to make is to intro-
duce a vector for the saturation magnetization having
the direction cosines

sg —sln0y cosggy, ' ng = sln0y sin ggy,
' ns =cos0i, (5&)

and another vector for the magnetostriction having the
direction cosines

Py= sln0g cossgg, Pg = sin0g cosggg; Ps = cos0g. (58)

If these values are introduced into the general ex-

pression, Eq. (39), the equation becomes

X=A sin 0q sin'0g sin'(2gg&+ggg)

+sB sin'20~ sin'0g[cos(pg —p~)+sin(ggs ggg)]

+C sin'0q sin'0g[cos(pg —pq)+sin(pg 'pl)]'

+D sin'0~ sin'0g+ 4E sin'20~ cos'0g+ sF sin'20q

+G sin'0~ cos'0g+sH sin20~ sin20g cos(egg —sg&)

+~sI cosg0~ sin20~ sin20g cos(ggs —gg&). (59)

An examination of this equation shows that if

0,=45'; 0,=0'; gg, = ggg=0; i.e., n~ ——ns ——1/K2;

ng ——0; Pg ——Ps=0; Ps= 1, (60)

the measured magnetostriction P 9 will equal
Xs——E'+F' (C'+D'); Xs——,'—E'+ ,'F' —',(C'—+D—'). (5-3)

The second set are obtained when /=90', so that

&a= G'+H'+A; Xs= piG'+s'(H'+A). (54)

Since A=X4—P~, we can solve these equations simul-
taneously for E', F', G', and II', obtaining

E'=4Xs —Xs—g (C'+D'); F'=2Xs—4Xs+ —', (C'+D');

G'=4&s —X7,' H'= 2Xr —4&s —A (55)

Since C'+ D' = (32/3Xs —(32/3) Xg+ (16/3) X, and A
=A. 4

—Xy, these values are related to the measured
magnetostriction values by the equations

E'= 4X s
—Xs—(16/3)Xs+ (16/3) Xg—(8/3) X, ;

F'= 2xs —4zs+ (48/3) Xs—(48/3) 4+ (24/3) &i;

If we introduce the 3 to I values in the expression for
A' to H' of Eqs. (43) and (56) and solve simultaneously
for the unprimed values, we determine A, C, D, and G
uniquely and have four more relations between the other
five constants.

Xg = ,' (E+F)+-,'G,-or E+F= 4Xg —2Xs. (61)

This orientation is shown by Fig. 4(c).This gives enough
relations to solve for all the constants in terms of the
measured values, and we find

A = 4—Xg., B=—24—24+Xg+2Xs ——g,X4

+(4/3) X,+ (4/3) X,—(5/6) X„C=—',(X,—X,);
D X$+ g A(7 X4) q

E=6Xg—2Xs+X7—2Xs—24
—-', X —(4/3) X —(4/3) X + (11/6)X;

F= —2Ãg+2hs —Xg+2Xs+-,'Xs+ (4/3)Xs

+ (4/3) Xs—(11/6)X, ; G=hs,

H=4&g —4Xs—Xs—(16/3)Xs+(16/3)Xg —(5/3)X], j

I= —8Xg+4Xs+ 2Xs+ (40/3) Xs

—(24/3)'As+ (8/3) &i. (62)

These values can be checked by direct substitution. As

shown by Fig. 4(a), (b), (c), all of these nine constants
can be measured from two oriented slabs, one in the
x-s plane and the other in the basal x-y plane.
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Another relation of interest is the value of the
volume magnetostriction in terms of these constants
and the direction of the saturation magnetization. This
can be calculated by introducing the direction cosines
of Eq. (21) into the more general expression, Eq. (39),
and carrying out the summation. This results in the
equation

46= (2D+E+3F+G) sin'0+ (A E —3F)—sin40. (63)

Introducing the value of these constants in terms of the
X's, we find

are given by the equations

S1=$11 Tl+$12 T2+$13 Ts+~Anl +llBns

S2 $12 Tl+$11 T2+S18 Ts+XAn2 +XBnl q

S3 S13 (Tl+ T2) +S33 Ts+XC (1—ns'),

S4= $44 T4+ ( X—A X—C+4X11)nsnsi

S5 $44 T5+ ( XA XQ+4Xrl)nlns&

S6 2 (Sll $12 )Ts+2 (~A llB)nln2.

(68)

(4[lls+lls+ 3 (As+As) s'il] —[Xl+Xs+)7]}sin'0

+(—4[X,+~,+-', (7,+X,)——;~,]
+2(X1+Xs+Xl)}sin48. (64)

Since 8(X2+) 8)
—6) 1=All of Sec. II, this equation re-

duces to

46= [4(X3+),6+AD) —(Xl+Xs+X2)] sins'

+[—4(X3+Xs+XB)+2(X1+Xs+X2)]sin'8. (65)

The average value for a polycrystalline material is

', (2D+E+3F-+G)+ (8/15) (A —E—3F)
= (8/15) (As+As+A&)+23 (X,+As+A&). (66)

The perpendicular component then is

X3.= 2 (46—Xii) = (4/15) (As+As)+ (1/5) (Xs+X7)

+ (16/315)Xs—(16/315)X2

+ (51/315)X1
—(4/35) X4. (67)

The morphic E constants, which determine the change
in elastic constants due to the change in symmetry re-
sulting from magnetization can be determined in a
similar manner, but since no measurements have been
made for cobalt, they will not be derived here.

IV. ANISOTROPY ENERGY DUE TO
MAGNETO STRICTION

The measurements of the anisotropic energy are
carried out at constant stress so that the lattice is
allowed to deform under the action of the magneto-
striction forces. Hence, part of the anisotropic energy
is due to magnetostrictive strains. Since it is desirable
to determine how much anisotropic energy is inherent
in the lattice and how much occurs due to magneto-
striction, a calculation is given for the first-order
magnetostrictive terms of Sec. II.

This value can be determined by evaluating the mag-
netostrictive energy that is required to go from a con-
dition of constant stress to constant strain and subtract
this from the anisotropic energy at constant stress.
From Eq. (5), we find that the six components of strain

Hence, in the absence of any applied stresses T1 to
'16, the crystal will be strained by the values on the
right-hand side of each equation. To determine the
anisotropic energy due to magnetostriction, we have
to calculate the energy required to distort the crystal
so that the resultant strains are all zero. To perform
this calculation, it is desirable to express the stresses
in terms of the strains, which can be done by solving
Eq. (68) for the T's when all the magnetostrictive
strains are zero. This results in the equations

Tl = Cll Sl+C12 S2+Cls S3 j T2= C12 Sl+Cll S2+C18 S8 j

Ts Cls (Sl+S——2)+C33 Ss) T4 C44'S4)——

Ts c44'Ss, T——s ———', (c„.'—c,2')Ss, (69)
where

$33 1
2C1 = +

O' $11 $12

$33
2C12 =——

A $11 $12

$13 $11 +S12
c I=

44

$44

C11 —C12
n= $33 (Sll +$12 ) —2$lsI .

2 ($11 —$12 )

The total energy required is calculated from the formula

EA EA 2 [T1S1+T2S2+ T8S8

+T4S4+ T5S5+ T6S6], (70)

since the strain changes from the value given in Eq.
(68) to zero during the motion. Introducing the nega-
tive of the values of Sl to Ss of Eq. (68), when the T's
are zero, into Eq. (69) to determine the values of T
and inserting both the S and T values in Eq. (70), the
energy required to erase the magnetostrictive strains is

EAT EAB —12( (1 n 2)2[el I( lI As+le)B2

+2C129,AXB+2C18 P,A+KB)XC+Css XC']

+c44'(1 —n32)n82( —XA —Ac+4K&)2}. (71)

Hence, since (1—nss)2= sin48, (1 n32)n82= sins'—cosset
= sin28 —sin40, the anisotropic energy at constant strain
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can be written in the form

EAB= P, (KP K—8r)+K,8r K—88r

2—C44r ( 7—1A X—C+4KB)2] sin'8

+(2 (Kll +E33 —4E13 ) 2LC11 (XA +KB )
+2C129 AXB+2C18 (llA+~B)XC+C38 ~C

—C441(—XA —71c+4XB)']) sin'8. (72)
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where

ill ——X (421 ——1, pl ——1); 4=X (451——p, = 428
——p8 = 1/v2);

X3=X(n1=422=pl ——pg ——1/v2);

X4——X(421=1,P3 ——1); A5'=X(nl 1——, P2=1);

EA EA —(-2'c—4—4(4A2 —Xl—X4)' sin'8+ Le»(hl'+PL5 )
+C33X4 +2clghlX5+2C13 (Xj+X5)PE4

—C44(4X2 $1 l54)') sin'0+$ —2(cll C12) (Xl X5)

+C66(4X8—2 (Xl+X5))'] sin'8 sin'62 cos'q ). (75)

For orthorhombic crystals,

EAr = sin20LK1 cos262+Kg singgg)

+sin48LK3 cos462+K4 sin252 cos262+K5 sin4y]

+sin'8 cos28$K5 cos268+Kg sin262], (76)

The erst-order approximations discussed in Sec. II
have been extended to tetragonal and orthorhombic
crystals, since cobalt ferrite, heat-treated in a magnetic
field, probably crystallizes in one of these two systems.
Since the procedures necessary to calculate these con-
stants have already been discussed in Sec. II, only the
6nal results are given. In agreement with experiment,
it is assumed that the easy direction of magnetization
lies along the s axis, and all the formulas given are for
the diGerence between the saturated conditions for any
direction and the demagnetized condition with equal
numbers of domains directed along &s.

For tetragonal crystals, ' the anisotropy energy E&,
magnetostriction Xz, and difference between anisotropy
energy at constant stress and constant strain, E~
—Eg ale:

where

Xl=h(nl ——1, Pl ——1); X2=X(n2 ——1, Pl ——1);

)L3 X(451 1 P2 ——1); l14——X(ng ——1, P2 ——1);

X5——X(481——1, P8 ——1); Xg
——X(452——1) P3 ——1);

X,=X(n, =P,=ng=P, = 1/V2);

X8 =X (421=n8 =P1——P3 ——1/V2);

Xg
——X(422

——n8 ——P2
——P3= 1/V2);

(73) E —E =-', (sin'0 —sin48)LC55(4X8 —(Xl+X5))2 cos262

+C44(kg —(X4+X6))2 sin262]+-2'sin48{ (c»X12

+2clghl'A3+2C13X1X5+c22'A3'+2C23X8'A5+c33X5') cos'p

+2LCllh

ling+

C12 (X1X4+X2X3)+C13(~ll16+~2~5)

+c22X8X4+c23 (X3X6+F 4A5) +c88X5X6

+-2,C66(4X2—(Xl+X2+X3+X4))2] singrp cosg 62

+ (C11712 +2cl2l12X4+2C13~2X6+C22X4

+2C23X4X6+C33'Ag') sin 62). (78)

EA =Kl sin'0+Kg sin 8+E8 sin'0 sin'62 cos'62,

2~1L (451P1 452P2) (&1P2+452Pl) + (1 P3 ) (1 483 )
—2483p3(121pl+422pg))+44a8p8(421pl+422pg)

++3481422P1P2+l14[P8 (1 428 ) c58P3(451P1+452P2))

+2~5C (421P2 422Pl) (451P1+522P2)

+(1-P3')(1-~3')], (74)
~For tetragonal crystals the magnetostriction formula was

Grst calculated by P. W. Anderson with results similar to those
given here.

APPENDIX A. CALCULATIONS FOR TEGRAGONAL AND
ORTHORHOMBIC CRYSTALS ~1L421 Pl 481452P1P2 551558P1P3)

+~2t 452 Pl 121452P1P2]+~3L451 P3 481452PlP2)

+~4L422 P2 451522P1P2 422428P2P3)+~5L421 P8

451423PlP3]+~6L422 P3 452453P2P3)+4l57(451452P1P2)

+4X8(51Q8P1P31'4X9422423P2P8 (77)


