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In order to determine the measurements necessary to characterize the anisotropic energy and the satura-
tion magnetostriction in hexagonal cobalt, a phenomenological derivation has been given for the equations
which characterize the effects. Out to fourth rank tensors, the results are the same as those for circular
symmetry and it requires two constants to specify the anisotropic energy and four to specify the magneto-
striction. When sixth rank tensors are evaluated, a characteristic hexagonal symmetry appears. It requires
four constants to characterize the anisotropic energy and nine to characterize the magnetostriction. These
constants can be measured by using two oriented slabs. Four of the constants can be determined by measure-
ments parallel to the saturation magnetization, four when the magnetostriction is perpendicular to the

magnetization and one when they are 45° apart.

In the Appendix the first approximations for the magnetostrictive and anisotropy energies are derived

for tetragonal and orthorhombic crystals.

I. INTRODUCTION

N order to determine what measurements have to
be taken to characterize the saturation magneto-
striction and the magnetic anisotropic energy of a
hexagonal cobalt crystal (class 6/m, 2/m, 2/m), which
are discussed in an accompanying paper by R. M.
Bozorth, a phenomenological derivation has been given
for the equations which describe these effects. These
equations can be derived from a general thermodynamic
function of which there are several depending on which
variables are considered the fundamental ones. In
order to give directly the measured magnetostriction
constants and the magnetic anisotropic energy at con-
stant stress (the ordinarily measured values), it is
better to use the stresses, intensities of magnetization,
and entropy as the fundamental variables. Furthermore,
since we are not interested in temperature effects, we
can assume the entropy constant and introduce only
the stresses and intensity of magnetization as the
fundamental variables.
A general expression has been derived in a previous
paper! for a crystal with a center of symmetry. Since
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Fr1c. 1. Relation between z, y, and z rectangular axes
and the crystallographic axes.

! W. P. Mason, Phys. Rev. 82, 715 (1951).

cobalt belongs to the crystal class 6/m, 2/m, 2/m
(Herman-Mauguin) or Ds, (Schonflies), it has a center
of symmetry and hence the expression derived previ-
ously is valid. In tensor notation, this expression can be
written in the form

2H,= —[sijit’ Ti;T 1t Rijrinol i ;T1iT not+M sjmnd I T,
FNiittmnd LD T mn 1 Ko I 04 Knop T ImL I ol
+KmnopquImInIoIpIq]r. (1)

In this equation 7';; are the stresses expressed as a
second rank tensor with ¢ interchangeable with 7, I;
are the three magnetic intensities along the three
rectangular coordinates, s;x;! are the elastic compli-
ances, Rijrino are the terms added to the elastic com-
pliances when the crystal is magnetized in various
directions (neglected in the present paper), M m, are
the first-order magnetostriction terms, Nrmmn the
second-order magnetostriction terms, and the three K
terms are the first-; second-, and third-order anisotropic
energy terms, all measured for constant stress.

All that is required to evaluate these terms is a
knowledge of the components of the tensors in the sym-
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F1G. 2. Relation between spherical coordinate angles
and rectangular x, y, and z axes.
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MAGNETOSTRICTION AND ANISOTROPIC ENERGIES

metry system 6/m, 2/m, 2/m. Up to fourth rank ten-
sors, the number and kinds of terms are well known and
are given in Sec. II.

The components of sixth rank tensors for this sym-
metry have been derived only recently.? As discussed
in Sec. III, these components can be used to evaluate
the morphic R constants, the second-order () mag-
netostriction terms and the third-order anisotropic
energy terms. In all the sixth rank tensors, the char-
acteristic hexagonal symmetry appears and the results

303

are different from those derived on the basis of circular
symmetry.

II. ELASTIC COMPLIANCES, FIRST-ORDER
MAGNETOSTRICTION, AND FIRST- AND
SECOND-ORDER ANISOTROPIC
ENERGY TERMS IN COBALT

The matrices of the second and fourth rank tensors
using the engineering shearing strains, i.e., (S;;=9u,/9x;
+0u/9x,) rather than the tensor strains, can be written
in the form?

S1111 S1122 S1133 0 0 0
Ku 0 0 S1122 S1111 S1133 0 0 0
Kpn=|0 Ku 0 |; siju= S1133  Suss Szzsz O 0 0 .
0 0 K33 0 0 0 S92323 0 0 ’
0 0 0 0 S2323 0
0 0 0 0 0 2(S1111-S1122)
K Kiee Kuss 0 -0 0
K2 Kun Kuss 0 0 0
_ | Kuss Kuss Kasss 0 0 0
Knnoy= 0 0 0 K133 0 0 i @)
0 0 0 0 K133 0
0 0 0 0 0 Ki11-Ki19e
My Miea Miss 0 0 0
Mize M Mg 0 0 0
Mijmn= My Mz Msss 0 0 0
0 0 0 M 1303 0 0
0 0 0 0 M o3s, 0
0 0 0 0 0 MM

Since the first two and last two numbers of the sub-
scripts can be interchanged with each other, it has be-
come customary to replace two interchangeable indices
by single indices according to the convention

1=11; 2=22; 3=33; 4=23; 5=13; 6=12.
With this substitution we can write the expression for
H, as
2H,=— [311I(T12+ Tzz) +23121T1T2+2513’(T1+ T2) Ts

+8331T32+S44I(T42+ T52)+2 (Sul— 8121) s

+2M11(112T1+122T2)+2M12(II2T2+I22T1)

F2M13(I 2T s+ 12T 5)+2M 5[ 12 (T4 T) ]

A 2M 53 I 2T 5+ 4M 44 (1oL T4+ 1,05 T5)

F4(Mu— M) Te ]+ K T (I2+12)+ K712

F+ KT 421 2415+ 6K 157 (12414 [ 52

+ K374 (3)

where the z or 3 axis coincides with the ¢ hexagonal axis
as shown by Fig. 1, and the x axis coincides with one of
the 6 hexagonal a axes.

These equations hold for a crystal with a large num-
ber of domains when the directions of the domains are
uncorrelated, for then the components of magnetization

are independent. For a single domain or for a saturated
crystal, the intensity of magnetization has a fixed
2 R. Fieschi and F. G. Fumi, Nuovo cimento 10, 865 (1953).

Hexagonal and trigonal systems were also considered by Dr.
H. Wondratschek and are in course of publication.

value 7,, and only the direction of magnetism can be
changed. If a;, as, a3 are the direction cosines of the
intensity of magnetization with respect to the crystal
axes, one has
I 1=C¥1[ 55 (4)
where a12+a22+a3 =1.
Furthermore, the energy H, is usually expressed as
a change from the energy of the demagnetized crystal.
For cobalt the direction of easy magnetization is along
the hexagonal axis with a;===1. Hence, on the average,

12=C¥2Is; I3=a3]s,

n 1 n
Za3=0; —Za32=1.
1 n 1

With these substitutions the expression for 2H; becomes
2H,=— [5111 (T12+ T22) +25121T1T2+28131 (T1+ Tz) T
+333IT32+5441(T42+ T52)+2 (8111—3121) T62]
- [2 (Mn"“ M12)Is2 (0112T1+0122T2+20110£2T6)
+2(Mys— M 13)I (as*— 1) T3+2(M 51— M 12)
XTI (e — 1) (14 To) +4M sul (o203 T s+ 010:5T5) ]
H[(K1—K)I (2K 11— 6K 15) I ][ 1— o]
+[4K13*K11—K33:1134[1—a34]- (5)

3The Kmn tensor is similar to the dielectric tensor and the
siixe tensor is given in W. P. Mason, Piezoclectric Crystals and
Their A pplication to Ultrasonics (D. Van Nostrand Company, Inc.,
New York, 1950). The Kpuzop tensor can be obtained from the
siji tensor by interchanging all the subscripts. The M ;1. tensor is
similar to the photoelastic tensor of Pockels as corrected by
Bhagavantum.



304 W. P.

Since
(1—a®)=1—cos®=sin%, (1—a3z*)= (1—cos'd)
=2 sinf—sin%d, (6)
where 6 is the angle of the saturation magnetization
from the hexagonal axis, as shown by Fig. 2, the aniso-
tropic energy can be written in the form

A sin?6+ B sin‘d, O

where

A :%(K _K3)[s2+ (K13_K33)Is4,

=5(Ku+Ky—4K)I 8

This is a well-known result for cobalt.

The form of the saturation magnetostriction, which
has not previously been derived, can be obtained from
the equation for the magnetostrictive strain in any
direction which is given by the formula

GH} 6H} aH&
A= —B ——— B ——— B ——
0T, 0T, aTs
GHj H Hl
—32/33——5153——,31)32—, (8)
o7, 0T 0T

where B, 82, B3 are the direction cosines of the direction
for magnetostrictive strain with respect to the x, y,
and z axes defined above and X is the saturation mag-
netostriction. Performing the above differentiation and
collecting terms,

A= (M 11— M )] >(asf1+Be)>+ (M 1o— M 1)
Xlsz(l—a;;z) (1— 32)+ (M13~M33)Is2(1_a32)i632
+2M sl 2 (0161+a2ﬁ2)0‘363- (9)

Z=c

7'=1,

S
X=a

F1c. 3. Relation between rotated coordinate system «, 9/, and 5’
and original rectangular coordinate system x, y, and z.

*R. M. Bozorth, Ferromagnetism (D. Van Nostrand Company,
Inc., New York, 1951),[) 564.
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To evaluate the M constants in terms of the measured
values of magnetostriction, we first put the field in the
same direction as the magnetostriction. Then a;=4;,
=9, az=p%s, and

A= (M11—‘M31)Ia2(1_i832)2

+ (= Mo+ Myu+2M )12 (1852 (10)
Hence, only two constants can be obtained under these
conditions. These are obtained by setting a;=g:=1,
giving A4 and e1=1=1/V2, ay=8;=1/V2, giving )\D
From Eq. (10),

A= (M11—M31)I52; Ap= [i(Mu—Mm)

+%(—M33+M13+2M44):|]5-2. (11)

To determine the other two constants, we have to
determine the expansion in a different direction from
the field. The two simplest directions are when the
field is perpendicular to the hexagonal axis and the
saturation magnetostriction is measured at right angles
to the field in the basal plane, and perpendicular to the
basal plane. Calling Ag(en=1,B8:=1) and A¢(ai=1,
B3=1) the two values, we find for these

A= (Mu—M)I32; Ao=Mu—Myu)I2  (12)
With these values, the four constants become
(M 13— M19)I 2=Xs—N\p,
(M= Ms)I2=N\p, (M1z—Mz)I*=N\e,
2M I 2= (—Aa+4Ap—A¢). (13)

Inserting these values in the magnetostrictive equation,

we find

N=Aa[ (@1B1FasB82)2— (caBitasBs)asBs ]

sl (1—as?) (1—B5%) — (B1+asB2)?]
HAc[ (1 —as)Bs2— (1B1tasB)asBs ]
+ANp(aiBitasBa)asBs.  (14)

These four constants have been evaluated for cobalt
in the following paper by Bozorth, who finds the fol-
lowing values:

>\A= ——45)(10_6, )\B= *95)(10_6,

Ae=-+110X10"%, Ap=—100X10"5, (15)

The properties of polycrystalline materials can be
calculated to this order of approximation by assuming
that all orientations of the crystal grains are equally
probable. The two quantities of interest are the mag-
netostriction A, along a rod in the direction of the
applied field and the change in dimension, A,, per-
pendicular to the applied field. The volume magneto-
striction w is then equal to

w=An+2\. (16)
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If we saturate along a given direction, the increase
in length along this direction for any orientation in the
crystal is given by

)\——-XA[(l —a32)2— (1 —a;;z)a32:]+4)\1) (1 _a32)a32: (17)

where a3 is the direction cosine between the direction
of the magnetic field and the Z axis of the crystal. If
we call this angle 6, the expression for A is

A=A4[sin*0—sin? cos®d |+4Ap sinf cos?.  (18)

To obtain A, we have to average this expression over
all possible orientations. The average values of sind
and sin®f cos® over a unit sphere are given by the
integrals

/2 8 w2 2
f sin®9df=—, f sin®0 cosdf=—.
0 15 0 15

Hence

(19)

A= 2N+ (8/15)Ap.

The volume magnetostriction of a single crystal ma-
terial can be calculated by taking a three-axis system
«/,9', % located in any orientation and adding the
magnetostrictive strains in all three systems. If we take
the axes of the three-axis system with respect to the
axes for which the direction of magnetization has the
direction cosines a1, as, a3 as shown by Fig. 3, the direc-
tion cosines for the 2/, 9" and 2’ axes are given by

(20)

2’1 Bi=cosf cosp; Ba=cosh sing; B3= —sinf;

(21)

y': B1=—sing; Bs=cose; B3=0;
z’: B1=sinf cose; B2=sinf sing; B3=cosf.

Using these values in Eq. (14), leaving i, as, a3 arbi-
trary, and adding all these values of \, we find

oAy HA) == (aFAs+Ae) (1—az)
= ()\A+>\B+)\(j) sin20,

where 6 is the angle of magnetization with respect to
the hexagonal axis. Hence, irrespective of the orienta-
tion of the crystallite considered, the volume magneto-
striction depends only on the direction of the intensity
of magnetization with respect to the hexagonal axis.

For a polycrystalline material, this angle is averaged
over all directions and hence, since

/2
f sin®0df =%,

0

(22)

(23)

we find that the volume magnetostriction for a poly-
crystalline material is

@=%Ma+Ns+Nc). (24)
From Egs. (16) and (20) we find
M= (2/15)Aa+30s+Ac)— (4/15)Np. (25)

AND ANISOTROPIC ENERGIES

305

III. ANISOTROPIC ENERGY AND SATURATION
MAGNETOSTRICTION TAKING ACCOUNT
OF SIXTH RANK TENSORS
When one takes account of the sixth rank tensors of
Eq. (1), additional terms are added to the anisotropic
energy terms and the saturation magnetostriction, and
these reveal the hexagonal properties of the crystal.
The simplest term to consider is the anisotropy energy
term
KonopgrImI nl ol p1 I 1.

According to Fieschi and Fumi,?> the energy product
has the form

K I 315K 1101 M 215K 100l 214 15K 1131141 32
+ 15K223I24132+90K123112]22[32+ 15K133112134
+15K 035l 21 5+ K 535158, (27)

In the hexagonal system 6/m, 2/m, 2/m(Dsy), there
are a number of relations between the constants. For
the case where all six indices can be interchanged, in
three-index symbols, these relations take the form

5K112=—2K111+3K222; 5K122=3K111‘"2K222;
K113=3K123; Ki13=Koas; K133=Kogs.

(26)

(28)

Introducing these values, the expression for the aniso-
tropic energy becomes

Kina[118— 6141 >+91:2T 4]
+ Koo 158 — 6141 29I M1y [+ 15K ug[ T2+ T2 P

F15K 135(I 2+ 1) '+ Kassl 38, (29)
Introducing the values
Il=oe1]'s, 12=d2[s, I3=(¥3[s, (30)

and subtracting out the demagnetization energy, the
sixth rank term becomes

K11l 8(ar®— 6ar'ars®+9arars)
+ Kool S(asb— basta®+9ar’ar)
15K 1151 S (r?+09?) s’ + 15K 1331 8 (@ +aa’) s
+Kasal S(asb—1).  (31)
If we go to spherical coordinates as shown by Fig. 2,
(32)

Introducing these values and combining and reducing
terms, and adding the lower order terms of (7), the
total anisotropic energy can be written in the form

A sin?6+ B sin®+sin®9(C+D cos6e),

a1=sinf cosp; ax=sind sing; a3=cosf.

(33)
where

A=3(K1— K3)I 24 (K13— K33) I *— 3K 315
B=31(Ku+Ks—4K)I

45 (15K 11— 30K 135+3 K 333) [,
C=[3(— 15K 115+ 15K 155— K3) +2 (K 111+ Ko22) I1.5;
D=%(Kin—Ks)I." (34)
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The sixth rank magnetostriction tensor containing
the second-order magnetostrictive terms can be evalu-
ated in a similar manner. The energy products become
N T 1+ (N 112l *T 546N 1010 T2 T1+8N 1661 *1 2 T6)

+ (Noad T 1+6N 1001 12 T'5+8N 966111 5*T's)

+ (V11T *T 3+ 6N 1310 *T5*T1+8N 1551 *I3T's)

+ (N331[34T1+6N133[12[32T3+8N355[1[33T5)

+ (Noasl A T5+06N 030l 212 To+8N 04al 15T 4)

+ (Vss2l T2+ 6N 2331 21 T3+ 8N 344l 12T

+ (6N 193] T2 T 546N 139l *I 2 To+6N 2311 212 T

+ 24N 14al 21T 5T 424N o551 1121 5T s

+24N355[1[2[32T6) +/V222124T2+N333134T3- (35)

For a hexagonal symmetry 6/m, 2/m, 2/m there are
a number of relations between these constants. On
account of the form of Eq. (1), we can interchange the
first four indices or, in terms of three-index terms,

N ape=Npae. (36)

From this relationship, the equivalences given by
Fieschi and Fumi? take the form

N11o=—2N111+3N 20— 4N 166 ;
3N191=— 2N111+3N222“2N166;

Nise=—N111+2N 90— 2N166—2N121;
N266=N111"‘N222+N166;

N221=2N222'_'N111—'4N166;
Nus=3N125=Ns23; Nisn=DN132F2N366=Naz2;
Nigz=DNgs; Noaz=DN1s;
Nize=N2z;
Nigs=3N144=Nou.

N331=N332; !\7355=.N344;

(37)
These 16 relations reduce the number of constants
appearing in the equation to 11. Introducing these
values, the sixth rank tensor, after subtracting the de-
magnetized value N3l (1—B5%)~+ N33l 852, becomes
N1l Her*B2 4201852 — 8ar’esfB182+ 3054812+ 6rr’cr 857 ]

+N2221s4|:0124ﬁ22— 3a14ﬁ22+ 12(!13112,31,32—4&24512

— 6a2as?B22+ 410538182 ]+ 6N 1917 H(csBa— atsB1)2(1 — )

+ 3N 1231 4852 (1 — s®) 246N 1511 Lt (1B1+asB2)?

+6N132[s40132 (011}32'—d2ﬁl)2+8N155]s40’»333(1—0132)

X (a1B1tasB2) +N sl * (st —1) (1—Bs?)

+6N 1337 23?85 (1 — a3®) +8N 344l *as®B3 (181 sB2)

+N333I84 (a34—' 1)632' (38)

By combining these terms with the first-order terms
of Eq. (19), and combining and reducing terms, the

W. P. MASON

sum can be written in the form of a nine-constant
equation:

A=A 2010581+ (i?—2?) B2 P+ B[ (181+asB2)?
— (e1B2—381)* 14-C[ (0181+sB2)?— (@1B2—@281)* ]
+D(1—as?) (1—B5%)+ Eas?8:2 (1 —as?) + Fas? (1 —as?)
+GB:*(1—as?) + HasB3(crB1+sBz)

+Ia3333 (a1.31+0!2ﬁ2); (39)

where
A= (N222'—N111)I‘5‘4;
B=[3(N151— N1s2+N121) +N111— 2N 555 |1 4,
C=[(2Ns92—N111—3N1s1)] 45 (M 11— M 15)[ 7]
D=[(2N111— 2N 220+3N 121— N331) I ;*

+%(M11+M12— 2M31)Is2:| 5
E=[2(N111—Na22)+3(N121— N151— N130— N 125)

+6N 155+ Nss1— Nass )1

F=[2(No22—N111)—Nss1+3(Vis1+Nizo— N12a) 115
G=[(3N123— Nass)[ 4 (M 13— M 33)I *];
H= [8N156ls4+2M44132:| N
I=8(NV 34— N1s5)] 4.

To evaluate the 9 constants requires the measurement
of 9 independent orientations. The simplest measure-
ments are those for which the magnetization is parallel
or perpendicular to the saturation magnetostriction.
Eight independent constants can be determined from
these measurements. The remaining constant has to be
determined when the magnetization and magneto-
striction are in directions not 0° or 90° with respect to
each other. For the parallel case,

ar=01; ar=P; az=F;, (40)
and the equation becomes
M= A[3a2as—a* P+ Bag?(1—as?)?
+ (C+D)(1—a?)?+ (E+1Dast(1—a3?)
+ (F+G+H)a(1—as?). (41)

Introducing spherical coordinates as shown by Fig. 2,
we find that

ay=sinf cosp; ar=sinf sing; az=cosf. (42)
If these values are introduced in (41) and all the values
are expressed in even powers of sinf, Eq. (41) reduces to

A=A’ sin’0+ B’ sin®+C’ sin®0+D’ sin® cosbe, (43)
where
A'=E+F+GH+HAT;
B'=B+C+D—2E—2[—-F—G—H;
C'=3A—B+E+I; D'=—3A.
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The first three constants can be determined by measur-
ing the magnetostriction when the values are measured
in the x-z plane with A\; 90° from z, A, 60° from z and
A3 30° from 2z, while the fourth value is determined by
measuring the saturation magnetostriction when 8=90°,
0=90° i.e., for measurements in the y-z plane with the
direction of measurement 90° from the z axis as shown
by Fig. 4(a). These four values are determined from the
equations

M=A'4+B'4+C'+D';
Ae=34A4"+(9/16)B'+(27/64)(C'+D");
Ns=31A4"+(1/16)B'+(1/64)(C'+D");
M=A'"+B'4+C'-D'.
Solving for these values, we get
A" =8N\s— (8/3)Na+Ay;
B'=—(56/3)A\s-+ (40/3)Ao— (16/3)A1;
(C'+D")= (32/3)Ns— (32/3)\a+ (16/3)s;
D'=F(\i—\y).

Hence 4 of the 9 constants can be evaluated by meas-
urements for which the magnetostriction is in the same
direction as the saturation magnetization.

These constants also determine the value of the
saturation magnetostriction for a polycrystalline ma-
terial, since as shown by Eq. (17), all the contributions
to the polycrystalline material are in the direction of
the saturation magnetization. Since the average values
of sin, sin’f, and sin® over the sphere are given by the
integrals

/2 w2 8
f sin®0df=2%; f sin®0df=—;
0 0 15

/2 48
f sin"df=—, (46)
0 105

the average value for a magnetostrictive cobalt rod is

2 8 48 2 8
x,.=—A'+—B’+—C'=—(8>\3——>\2+x1)
3 15 105 3 3
8 56 40 16
+—(—~x3+—«>\2——x1)
15 3 3
48 ¢32 32 16 48
+— —x3—~x2+—>\1) ——(\1—\s)
105\ 3 3 3 105
16 16 2 8
=—)\3+—)\2+'—)\1+—)\4. (47)
63 35 63 35
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Id: A-d

(Q)

I MAGNETOSTRICTION

7
(b (c)
1 MAGNETOSTRICTION OBLIQUE
MAGNETOSTRICTION

Fic. 4. Crystal cuts for measuring nine independent constants in
magnetostriction equations for hexagonal crystal.

When the field is perpendicular to the direction of
measurement,

a1B1tasBatasB;=0.

With this simplification,

M= A[ (a2—302%) 82— 2asa38;3 2+ (B—1I)as*B5?
— Bas* (1B —a9B1)*+ (C— H) a8 — C (1fa—a9B1)*
+D(1—as®) (1— B+ Ea’8s*(1—as’)

+Fa2(1—as®) +GB:*(1—as?).

If we introduce spherical coordinates as shown by Fig. 3,

with the magnetization directed along the 2’ axis and

the magnetostriction measured along «', the direction
cosines become

(48)

(49)

a1=sinfd cosp; as=sind sing; az=cosf; (50)

B1=cosf cos¢ cosy—sing siny; Bs=cosf sing cosy

+cose sing; B3= —sinf cosy.
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By inserting these in Eq. (49) and reducing and col-
lecting terms, the perpendicular magnetization can be
written in the form

A=A sin[ cosh sing cosy (3 cos?p— sin?p)
~+sin%) cosg(cos’o—3 sin?p) J*+sin’0
X[(B+C+D+F—H—I) cos®y+ (D+F—B—C)
Xsin?y |4-sin¥9[ 21 +H+E+G—2B—C—D—F)
Xcosy+ (B—F) sin% |+sin®9 B— E—1I | cosy. (51)

A has previously been derived from parallel measure-
ments, and since the last term is — (C’4D’) this equa-
tion determines four more constants. By designating

B+C+D+F—H—I=F,
2+ H+E+G—2B—C—D—F=F,

D+F—B—C=G', B—F=H', (52)
these four constants can be related to four new magneto-
strictive measurements. As shown by Fig. 4(b) and (c),
all of these measurements can be made on a single slab
in the x-z plane. The constants A\ and As, measured
when ¢=0, are measured when the saturation mag-
netization is 90° and 45° from the z axis and the mag-
netostriction is measured in the plane perpendicular to
the magnetization. The other two constants, A7 and As,
are measured along the plane thickness for the same
directions of magnetization. In all these measurements,
¢=0. For the first set, =0 and the equations become

Ne=E'+F'— (C'+D'); Ne=3E'+3F' —§(C'+D’). (53)
The second set are obtained when ¥=90° so that
M=G+H+A4; N=3G+1(H'+4). (54)

Since 4=N4—\1, we can solve these equations simul-
taneously for E', F’, G’, and H’, obtaining
E'=4\¢—N\s—3(C'+D’); F'=2—4N+3(C'+D');
G'=aN\g—N\7; H'=2N\—4Ns—A. (55)
Since C'+D'=(32/3\3— (32/3)Aa+(16/3)\1 and A4
=N\;—\;, these values are related to the measured
magnetostriction values by the equations
E'=4Ns—Ns— (16/3)A54- (16/3)Na— (8/3)A1;
F'=2\s— 4Ng+ (48/3)As— (48/3)Na+ (24/3)1;

G’=4)\g—‘)\7; HI=2A7—4)\3+>\1—>\4. (56)
If we introduce the A to I values in the expression for
A’ to H' of Egs. (43) and (56) and solve simultaneously
for the unprimed values, we determine 4, C, D, and G
uniquely and have four more relations between the other
five constants.
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To determine the other constant requires a measure-
ment for which the magnetization and magnetostriction
are not parallel or perpendicular. The simplest method
for determining the measurement to make is to intro-
duce a vector for the saturation magnetization having
the direction cosines

a;=sinf; cos¢;; ay=sind, sing;; az=cosf, (57)

and another vector for the magnetostriction having the
direction cosines

1=sinf; cosps; B2=sinfy coses; Bz=cosfz. (58)

If these values are introduced into the general ex-
pression, Eq. (39), the equation becomes
A=A sin%f, sin%f, sin*(2 1+ )

~+1B sin?20, sin®0y[ cos(gs— ¢1)+sin(pe— @1) 1?

~+C sin%); sin?fy[ cos(ps— ¢1)+sin(pe— ¢1) I?

+ D sin%); sin?f,+1E sin®26; cos®0y+1F sin?26;

~+G sin%), cos%—l—iH sin26; sin26, cos(ps— ¢1)

+17 cos?; sin26, sin20, cos(w2— ¢1).  (59)
An examination of this equation shows that if
0,=45°; 0,=0% o¢1=¢:=0; ie., oa1=az=1/V2;
ax=0; Bi=p:=0; B:=1, (60)
the measured magnetostriction Ag will equal
N=2(E+F)+3G, or E+F=4N—2\;. (61)

This orientation is shown by Fig. 4(c). This gives enough
relations to solve for all the constants in terms of the
measured values, and we find

A=N—N1; B=—2N—2Ns+N+2Ns— 5\
+(4/3)Ns+ 4/~ (5/6)N1; C=3(M—N);
D=MF3a—No); E=6ho—2AstAi—2he— 2N
—3ha— (4/3)As— (4/3)Nat (11/6)Ns;
F=—2\gF 20— N1+ 206+ 3N s+ (4/3)\5
+ (4/3)N— (11/6)As;
H= g — he—hs— (16/3) s (16/3)Na— (5/3)\s;
T = —8\g+4Ns+ 25+ (40/3)A;

— (24/3)\+ (8/3)\.

GZ)\E,;

(62)

These values can be checked by direct substitution. As
shown by Fig. 4(a), (b), (c), all of these nine constants
can be measured from two oriented slabs, one in the
x-z plane and the other in the basal x-y plane.
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Another relation of interest is the value of the
volume magnetostriction in terms of these constants
and the direction of the saturation magnetization. This
can be calculated by introducing the direction cosines
of Eq. (21) into the more general expression, Eq. (39),
and carrying out the summation. This results in the
equation

@= (2D+E+3F+G) sin’0+ (4 — E—3F) sin%. (63)

Introducing the value of these constants in terms of the

N’s, we find

W= {4[>\8+>\6+%()\2+>\3)“%>\1]— [)\1+7\5+)\7]} sin20

F{— 4D+ N6+F Na+Ns) — N1 ]

+2(\1F+Ns+N7)} sin®h.  (64)

Since 2(N\2+A3) —§A1=MAp of Sec. II, this equation re-

duces to

W= [4<)\8+)\6+>\D)_ <A1+)\5+)\7):| sin20

+[“4()\8+)\6+}\D)+2(>\1+)\5+)\7):| SiIl40. (65)

The average value for a polycrystalline material is

&=2(2D+E+3F+G)+ (8/15) (4 — E—3F)

= (8/15) (\s+Ne+Ap)+3 (A\1+HNs+N7).  (66)
The perpendicular component then is
Ar=%(a—Nu)= (4/15) Ae+Ns)+ (1/5) As+N7)
4+ (16/315)A;— (16/315)\2
4+ (51/315)\1— (4/35)As.  (67)

The morphic R constants, which determine the change
in elastic constants due to the change in symmetry re-
sulting from magnetization can be determined in a
similar manner, but since no measurements have been
made for cobalt, they will not be derived here.

IV. ANISOTROPY ENERGY DUE TO
MAGNETOSTRICTION

The measurements of the anisotropic energy are
carried out at constant stress so that the lattice is
allowed to deform under the action of the magneto-
striction forces. Hence, part of the anisotropic energy
is due to magnetostrictive strains. Since it is desirable
to determine how much anisotropic energy is inherent
in the lattice and how much occurs due to magneto-
striction, a calculation is given for the first-order
magnetostrictive terms of Sec. II.

This value can be determined by evaluating the mag-
netostrictive energy that is required to go from a con-
dition of constant stress to constant strain and subtract
this from the anisotropic energy at constant stress.
From Eq. (5), we find that the six components of strain
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are given by the equations

S1=s1u!T14s12" T o513 T 5N s>+ Npas?,
So=s12TT14 5117 ToF 513 T3+ acs®> +Npai?,
Ss=s5131(T1+T2)+ 533 T3+ (1—as?),
S1= 5447 T4+ (—Na—Ac+4Ap)asas,

S5= 844! Ts+ (—Na—Ae+4\p)aas,
Se=2(s11!—s512) T6+2(Aa—Ap)rca.

(68)

Hence, in the absence of any applied stresses 71 to
T, the crystal will be strained by the values on the
right-hand side of each equation. To determine the
anisotropic energy due to magnetostriction, we have
to calculate the energy required to distort the crystal
so that the resultant strains are all zero. To perform
this calculation, it is desirable to express the stresses
in terms of the strains, which can be done by solving
Eq. (68) for the 7”s when all the magnetostrictive
strains are zero. This results in the equations

7‘12611151+612IS2+C13153; T,= 612151+C11IS2+C13153;

T3=6131(51+52)+633153; T4=C44IS4;
. _1 .
Ts=cu’Ss; To=3(cu’—c12")Ss; (69)
where
5331 1 ! 333 1
Zenf=—t——y dopl=—
« sul—s1o! a suf—sw
—s137 sul4s12? , 1
cif= ;= cul=—;
o a Sas!
on'—on 1 I(¢, I I 2
= ; a=3833 (811 + 512 )—2813] .
2 2(suf—s12h)

The total energy required is calculated from the formula

EAT—EAS=%[T151+T2SZ+T3'SS

+T4S4+ T555+ TGSG], (70)

since the strain changes from the value given in Eq.
(68) to zero during the motion. Introducing the nega-
tive of the values of S; to S of Eq. (68), when the 77s
are zero, into Eq. (69) to determine the values of T
and inserting both the S and 7T values in Eq. (70), the
energy required to erase the magnetostrictive strains is

Es"—EaS=3{(1—a)Len’ N a*+25%)
F 212N g+ 2¢137 A a+AB)Ae+ca3Th %]

+caa! (1 —‘a32)a32(—)\A—7\c+4)\D)2} . (71)

Hence, since (1—a3?)?=sin%, (1—az?)as?=sin% cos’d
=sin%—sin’f, the anisotropic energy at constant strain
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can be written in the form

E, 8= E% (KlT_ K3T)+K13T"‘K33T
—2cu! (—Aa—Ac+4Np)%] sin%
F{3(Ku"+ KT —4K137) — 3L ena? A a®+25?)
+2c15MM AN g+ 2c13T N a-AB)A e+ a3 2
—cal (—Aa—Ac+4\p)?]} sin’.
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APPENDIX A. CALCULATIONS FOR TEGRAGONAL AND
ORTHORHOMBIC CRYSTALS

The first-order approximations discussed in Sec. IT
have been extended to tetragonal and orthorhombic
crystals, since cobalt ferrite, heat-treated in a magnetic
field, probably crystallizes in one of these two systems.
Since the procedures necessary to calculate these con-
stants have already been discussed in Sec. II, only the
final results are given. In agreement with experiment,
it is assumed that the easy direction of magnetization
lies along the z axis, and all the formulas given are for
the difference between the saturated conditions for any
direction and the demagnetized condition with equal
numbers of domains directed along =z.

For tetragonal crystals,® the anisotropy energy E,,
magnetostriction Ag, and difference between anisotropy
energy at constant stress and constant strain, E4T
—E 5, are:

E T=K, sin+ K sin0+ K ; sin®d sin?¢ cos?o, (73)

A=3M[ (@fr—a2)*— (@iBetasBn)®+ (1—85) (1—as?)
— 2a3Bs(@1BitasBs) 1+4hsasBs (@1B1+asBs)
A sisBiBa N[ B3 (1—as?) — asBs(1Bi+asB2) ]
+3Ns[ (@182—sB1)?— (auB1+asBs)?
+(1-8H(1—a)], (74)
5 For tetragonal crystals the magnetostriction formula was

first calculated by P. W. Anderson with results similar to those
given here.
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where
M=Mar=1,81=1); N=Ma=Bi=a;=B:=1/V2);
N=Mar=az=F1=8:=1/V2);
M=Nar=1, 8:=1); As=A(ar=1,8:=1);
EaT— Es5={Zcaa(dha—A1—o)? sin0+[c1 (A 24-Ned)
Fc3A 2+ 2c19A N5+ 213N+ As)Aa
— caa(ANa—A1—N)?] sin®0+[ — 2 (c11—€12) A1—N5)?
+ce6(AN3—2(A\14+Xs5))?] sin®f sin?e cos?e}. (75)

For orthorhombic crystals,

E T=sin%[ K; cos?p+ K, sin?p |
—+sin‘ K3 coste+ K4 sin?e cos?o+ K sinte |
+sin?0 cos?0[ K¢ cos’p+ K sine |,

A=A[ar®8:2—a1026182— 1036163 |
+)\2[Ot22,312—a1a2,3152]+)\3[0‘12332—01104231182]
L8 — a108182— caesBaBs I+ Ns[ B2
— 1038183 ]+ Ne[ B3’ — azrB285 47 (1crs8182)

+4Asa1030185+ 4N ocracrsB20B3,

(76)

(77)

where
M=Aai=1,81=1); Ae=A(a=1, 41=1);
M=Nai=1,8:=1); A=A =1, B2=1);
M=Aai=1, 8:=1); Ae=A(a2=1, B3=1);
M=Nar=pi=a=F:=1/V2);
Ns=Nar=a3=pB1=03=1/V2);
No=Nlae=0a3=B:=0;=1/V2);
ET— ES=1(sin?0—sin’0)[ cs5(4hs— (\1+As))? cos?e
+caa(@ho— (NaNe))? sin?p 43 sin®d{ (cus 2
+2012>\1)\3+2613>\1)\5+622>\32+2623)\3>\5+633)\52) costep
+2[611>\1)\2+C12 (7\1)\4+7\2)\3)+613 ()\1)\6+>\2)\5)
~+CooAshst-caz ()\3)\6+7\47\5)+633)\5)\e
+2ces(dh7— (A1F+-A2+A3+A4))?] sinZe cos?e
+ (c1he®+2c12M 0N s+ 2¢13M 2N 6 Cogh 2

+2cosA N+ 633)\62) 5in4$0} . (78)



