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To take account of the electron spin in band theory, a method is outlined which allows us to construct
character tables for the double space groups of the simple, face-centered, and body-centered cubic, diamond,
and hexagonal close packed lattices. The effects of time reversal are also considered. Particular attention
is given to the splitting of otherwise degenerate bands by the spin-orbit coupling.

HE symmetry of crystal lattices has important

effects on the band theory of electron energy
states. Bouckaert, Smoluchowski, and Wigner! have
considered the group theoretical properties of these
symmetries and constructed character tables of the
irreducible representations for some simple lattices
while Herring? has extended this to more complicated
lattices.

It has recently become evident from measurements
of magnetic properties like paramagnetic resonance,?*
that the coupling of the electron spin to the orbital
motion has important effects. Moreover this spin-orbit
coupling can introduce changes in energy of the order
of the atomic spin-orbit coupling constant (0.1 ev or
more in crystals of heavy atoms) and may therefore
greatly change the details of the band form. This
may be very important when we are considering
properties of electrons with a kinetic energy which is
only of the order of this spin-orbit coupling energy, such
as occurs for example in impurity semiconductors.?

It therefore seemed of some interest to consider the
effect of spin-orbit coupling on the symmetry properties
of the bands. In this paper we outline a method and
use it to construct character tables for a number of
interesting space groups which are applicable when the
spin is included. Bethe® and Opechowski” have shown
in the case of point groups that this may be achieved
by constructing the “double’ group and their methods
may be readily extended to space groups. Extra de-
generacies are also caused by time-reversal symmetry
and it is found that the general considerations of
Wigner,® which were used for ordinary space groups by
Herring,® can be readily applied to the dosuble group.
The most significant effects of spin-orbit coupling arise
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when it removes degeneracies in the bands, and this
effect can be readily seen by inspection of the character
tables.

GENERAL THEORY

The Schrodinger equation of an electron in a crystal
when spin-orbit coupling is included is

nv? /2
[———+ V4+—(VVXp- 0)]1,&: e,
Am?c?

2m

The Hamiltonian operator and therefore the state
function still have the translation and point symmetry
of the lattice. We can therefore still obtain the sym-
metry properties of ¥ by considering the space group of
the crystal. This consists of an invariant subgroup of
translations and a set of operations which leave the
unit cell invariant. In simple lattices like simple cubic
(s.c.), face-centered cubic (f.c.c.), and body-centered
cubic (b.c.c.), this latter set is an invariant subgroup of
the space group and is a point group (a subgroup of
the full rotation group) but in more complicated
lattices like diamond and hexagonal close packed
(h.c.p.), it contains elements which consist of a rotation
about a point together with a translation. We shall
therefore employ in these cases the notation introduced
by Seitz and used by Herring.2 The operation [«|a]
represents a rotation a about the origin followed by a
vector translation a. The product of two such elements

is given by
[a]a](8|0]=[eB|a+ab].

Seitz showed that any irreducible representation can
be based on a set of functions of the type uxe?™* (i.e.,
on the usual Bloch electron wave functions) each of
which represents an element [¢[/] of the translation
group by exp(—ik-t) (e is used for the unit element of
the rotation group throughout the paper). Operating
on this basis function with some elements of the unit
cell group we shall transform it into a function with
wave vector different from k. All wave vectors which
can be reached from k in this way are called the “star”
of k.! We are interested in energy degeneracies for
wave functions with a fixed k. We therefore con-
sider that subgroup G* of the space group which

10 F, Seitz, Ann. Math, 37, 17 (1936).
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contains only those elements which transform a basis
into one with the same k. At a general point in the
Brillouin zone this will consist only of the translation
group, but at a place of high symmetry a subgroup of
the unit cell group will also be included. That subgroup
T* of the translation group (e|Z) such that exp(tk-t)=1
can also be removed since each element is equivalent
to the unit element. We are left with a factor group
G*/T* which can be greatly simplified because it is
usually a direct product of an abelian subgroup which
consists of most of the translations together with the
subgroup which consists of the unit cell element in G*
with possibly a few translations. In simple lattices,
s.c., f.c.c., b.c.c., the unit cell elements are rotations
and this product is simply that of a subgroup of
translations 7/T* and one of rotations G*/T, but the
more complicated conditions apply if there are screw
axes or glide planes in the group.

All these considerations hold in exactly the same
way when we consider spin except that we now consider
double groups. Opechowski shows how to construct
these for any group of rotations. He points out that
the rotation group 83 is isomorphous with the group of
2X2 unitary matrices with determinant 4-1. For any
rotation a matrix can be written

a —fB*
( ) > ]8]2=1,
B8 o*

and if we specify the rotation by Euler angles (6,¢,%),
B=sin}fe’@¥ 72 and a=cosife ¢+¥) /211 This repre-
sentation of the rotation group is however two valued
since the matrix with all the elements changed in sign
is also isomorphous with the rotation. This two valued-
ness is just what is required to include spin, and we
therefore work with a group in which each rotation
corresponds to two elements which can be represented
by these two matrices. The improper rotations ¢Xé
where 7 is the inversion cannot be so represented but
we may simply treat & in the way outlined above and
consider the products X6 using the facts that ¢ com-
mutes with all rotations and that i>= e even when spin
is included.” Each of the two forms of the rotation #,
which we can conveniently call # and 4, correspond to
an ordinary rotation in Cartesian space and therefore
have the same effect when operating on a vector; i.e.,

ut=17ut.

By using these facts the classes and the characters
of the irreducible representations can be readily ob-
tained from the well-known product, orthogonality,
and normalization conditions.!? Opechowski’ obtained

1 See for example B. L. van der Waerden, Die Gruppen-
theoretische Methode in der Quantenmechanik (Verlag Julius
Springer, Berlin, 1932).

12 These are outlined in references 2 and 7. See also A. Speiser,
Theorie der Gruppen von endlicher Ordnung (Verlag Julius Springer,
Berlin, 1927).
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a number of simple rules which help considerably in
constructing a double group from a known single point
group. The most important are:

(1). If 8, form a class of rotations through 27/# in
the single group 8,, &, form two separate classes in the
double group.

(2). There is one exception to (1). If the rotations
are through = (n=2), then &,, &, form one class in the
double group if, and only if, there is also in the group
another rotation through = about an axis perpendicular
to the axis of 8.

(3). For the extra irreducible representations in the
double group )

Xd(an) = —xd(ﬁn),

and in the exceptional case (2), x(82)=0.

Similar rules can be constructed when the group
elements are of the more general form (| a).

(1). The condition above is a negative one: 8,, 6,
form separate classes because there is no rotation £ in
the group such that 8,£=£5,. With the addition of
translations therefore rule (1) above still holds.

(2). In the exceptional case the translations impose
a further condition. If there is another rotation (8;'|+’)
about a perpendicular axis (8:|7), (§:]7) are only in
the same class if

(62] 1) (3] )= (3| ) (82| ),
ie., if
(e—8 )= (e—082)7".

In fact it is (8:|¢) which is in the same class as (52| 7)
where = (e—8,)7'—82'7. Each class of §; elements must
therefore be tested carefully in this way when the
double group is formed.

(3). As before when two classes are formed from one,
whether in (1) or (2) the extra irreducible represen-
tations have characters which are of opposite sign. If
there is only one class, the character is zero.

TIME REVERSAL

Wigner? has demonstrated that extra degeneracies
often occur because of time-reversal symmetry. The
effects of time reversal can be seen for three different
cases, depending on the nature of the complex matrices
D which form an irreducible representation of the
group. They are:

(a) D is real.

(b) D, D* belong to inequivalent irreducible repre-
sentations.

(c) D, D* belong to equivalent representations but
are distinct.

For electrons with spin Wigner shows that for the
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Fi1c. 1. First Brillouin zone for a s.c. lattice.

various cases,

(a) There is an extra degeneracy and the represen-
tation D always occurs doubled.

(b) There is extra degeneracy and the two represen-
tations D and D* always occur together.

(c) There is no extra degeneracy.

This is different from the case when there is no spin—
then the roles (a) and (c) are reversed. Herring? has con-
sidered the effects of this in space groups, by modifi-
cation of a general theorem of Frobenius and Schur.t
They show that in a group of N elements 7" for th
three cases listed, :

(a) ZTlx(T2)=N ,
(b) =0,
(¢) =—N.

F16. 2. First Brillouin zone for a b.c.c. lattice.

18 G. Frobenius and I. Schur, S. B. Pruss. Akad. Wiss. 186
(1906).
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For space groups this test reduces to

Z X(Q‘)?):n; 07 or —n,
Qo

where Qo are those elements of G which turn k into —k.

For ks where the inversion operation I is not in G*
the Qo are IXG*. If I is in G* the Qo are just the elements
of G* Q¢ is an element of G* so the above x can be
taken in an irreducible representation of the group of k
which has 7 elements.

At a general point in the Brillouin zone G*/T*
contains the translation group and the identity which
now corresponds to two elements e and & The only
Qo which take k into —k are the inversions (i|7) and
(¢ 7) and therefore if the group G contains the inversion,

%: X(Q02) = 2)((6) = 2;

F16. 3 First Brillouin zone for f.c.c. and diamond lattices.

which means case (a) holds and there is always a double
degeneracy at the general point because of time re-
versal. There must always be at least a double degen-
eracy therefore at all points of the zone if the crystal
has inversion symmetry. Any singly degenerate repre-
sentations occurring at points of higher symmetry must
therefore belong to cases (a) or (b). Such represen-
tations have been tested and the extra degeneracies
are listed in the Tables.

When case (b) applies it is often useful to discover
which are the representations of the group of k which
correspond to the conjugate representations D, D* of
the whole group G. Let ¥1%, ¢¥w7 form a basis for a
representation of G. Then the set k’ will include all
wave vectors in the star of k, and if as in the crystals
we are discussing the group contains the inversion I, it
will include —k. The appropriate ¢_,* can be obtained
from ¢¥y* by operating with 7. The basis representing
the time-reversed wave functions can be obtained by
operating with Wigner’s K, which consists of a unitary



SPIN-ORBIT COUPLING IN BAND THEORY

TasiLE I. Character table of the extra representations
in the “double” group of T'.
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TaBLE V. Character table of the extra representations
in the “double” group of L.

96 Te* T* Ig
1 E 2 2 4 T; TyXDy
1 E -2 -2 —4 It
6 Ce, C¢ 0 0 0 r, I/
6 Cs Vi =2 0 e Ts
6 C4 - —V2 V2 0 I‘}s, I'5++I‘g+
12 Cy, 0, 0 0 0 Tay Tyt+Tgt
8 C3 1 1 —1 Pl’ I's™
8 Cs —1 —1 1 ry T
48 IXZ +x(Z) xx(2) £x(2) etc. etc.
Taste II. Character table of the extra representations
in the “double” group of A.
16 As Ar
1 E 2 2
1 E -2 -2 A; A;X Dy
2 C42, qu 0 0 A Ag
2 Ca V2 =2 Az A7
2 Cy _ —V2 V2 Ay A7
4 IXCE IXCe 0 0 AY As
4 IXCo IXC, 0 0 As  AgtAq
TaBLE III. Character table of the extra representations
in the “double” group of P.
48 Ps Py P3
1 E 2 2 4 P, P;XD}
1 E _ -2 -2 —4 P, P
6 CeC2 0 0 0 Py, Py
8 Cs 1 1 -1 P; Ps
8 C; -1 -1 1 P, Pr;+Ps
6  IXC: VI —vZ 0 Py PytPs
6 IXCy _ —V2 V2 0
12 IXCy, IXC, 0 0 0
TABLE IV. Character table of the extra representation
in the *‘double” group of M.
32 Me* M*
1 E 2 2 M;  M:XDy
1 E _ -2 -2 M, Mg
4 Ce Cge 0 0 M, M+
2 Ce 02 L 0 0 M; M.+
2 Cy, L Vi —VZ M, Mg
2 4 L —VZ V2 Ms Met++M*
4 Cs, C» 0 0 MY Mg
16 IXZ +x(Z) *x(2) etc. etc.

operation U, and the operation of taking complex
conjugates, i.e., it becomes Uyi™, Uy ™, etc. Since
we are considering character properties we may omit
the U. The time-reversed functions which form a basis
for the irreducible representation of the group of k are
therefore ¥_* or (Iyx)*.

Now if R is any element of the group of &,

R‘ll/ki= 1’¢J¢kj.

Operating with I and defining a translation t by the

24 Ls* Ls* Ls
1 E 1 1 2 L LXDy
Ll L5
1 E -1 -1 -2 oI
2 g 1T i L LotLeLet
3 . . - Ll’ LG—
3 G ? - 0 etc. etc
3 C. —i i 0 - et
12 IXZ +x(Z) £x(Z) +x(2)

Lit, Lyt and L, Ly~ are degenerate by time reversal.

expression IR= (e|#)RI, we find
Ry_i=exp(—ik- t)rip—_i’
since R is real
Ry_ *=exp (k- t)r; a7,

So the character of the representation corresponding to
D* is given in terms of that corresponding to D by

x(D*)=exp (ik- t)x* (D).

TaBLE VI. Character table of the extra representations
in the “double” group of W.

16 Ws Wa
W; WiX Dy

1 E 2 2 We W,
1 E _ -2 -2

2 (.2 Ws Ws
2 ca, 0 0 0 We, W
4 2, C2 0\/7 ?F W;' W;
2 IXCy -2
2 IX 0, oy, B Wi WetWs
4 IXCe 0 0

THE SPLITTING OF DEGENERACIES BY
SPIN-ORBIT COUPLING

At a general point of the zone the representation is
singly degenerate in the absence of spin, but because of
time reversal, becomes doubly degenerate when we
introduce the two possible spin components. The only
effect then will be an energy change in the band, but
this will in general be small because the spin-orbit
coupling energy is small compared to the band sepa-
rations. At points of high symmetry in the zone the
addition of spin may cause some splitting. To find out
when this occurs we consider a state which transforms
like a representation I'; of the group of k. The spin

TasrLE VIIL. Character table of the extra representations
in the “double” group of X.

64 . X5
1 (e|0) 4 For all the single group representations
1 (el0) —4 X; (i=1,2,3,4), X;XDy=Xs.
1 (e|tzy) —4
1 (€ltsy) 4
60 (ala)

0
(for all other classes of the group)
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TasLE VIII. Character table of the representations of W.»

64 Wh W2 Ws W4 Ws We Wa
1 (¢]0) 2 2 1 : 1 1 1 2
1 (€]0) 2 —1 -1 —~1 —1 -2
2 (622]0), (Bosltey) 0 0 —i —i —i —i +2
R AP SR ! Lot
2 (04210), (04571 1y2) (1—=4) —(1-19) —(1—1) —L(I—i) i(1—i) —ia—i) 0

vz vz vz
2 (G4:10). (G4 202) (1=2) —(@1-19) ——(1—1) E—(l—i) ——(1-1) —(1—1) 0
vz vz )
(0a| 7, (Be| T41es) v v ro Lo

4 {(py[‘f‘i‘tu), (ﬁulf+m)} S 0 SUH) —Sd) - ()0

16 (el @)X (e]ty2) —ix[(«|a)]

16 (] @)X (€| tay) —x[(ala)]

16 (al@)X (el tez) ix[(a]a)]

Wi XDy=W;3+Ws+Wq;

WoXDy=W+We+Wi.

W3, W5 and W4, We are degenerate by time reversal.

a Dr. Herring has pointed out that there is an error in his single group W. In order to define its representations properly, we give the characters for

the single group as well.

functions transform like D; of the rotation group and
since the spin and coordinate spaces are quite distinct
we form the direct product,

I':XDy=3" ail;.

I'; is a representation which occurred in the single
group and so it occurs in the double group also with
x(E)=x(E). On the other hand in Dy, x(E)= —x ()
=2. Therefore only those representations with x(E)
= —x(F) occur in the sum on the right of expression,
i.e., only the new representations introduced by forming
the double group. The constants a;; can be readily
obtained by finding the product of the characters. The
character of a rotation through an angle 27/% in Dy is
2 cos(w/n).

It is also of interest to find out how the representation
changes as we move from one point in the zone to
another with different symmetry properties. To do this

Tasire IX. Character table of the extra representations
in the “double” group of A(X).

32 As(X) Ar(X)
1 (]0) 2 2 A; A; X Dy
1 (EIOP_ -2 -2 A Ag
2 (822,022|0) . 0 0 A Ag
2 ((5_41,5:;;_1' T) —V2i \/Zz Ag A7
2 (64:,541—1 | T) V2i —V2i Az, A7
4 (p2P2spysPy | T) 0 0 As AstAq
4 (Puz;ﬁyz;piz,piz | 0) 0 0
16 (a]a)X (e| tay) —x[(«]a)]

we construct compatability relations as defined by
Bouckaert, Smoluchowski, and Wigner.! Various inter-
esting sequences of these are given in the Tables. These
are much fewer in number than in the single group,
because most of the symmetry lines do not now have
more than one available irreducible representation, and
the effect of moving away from a symmetry point can
be seen simply by examining the dimensions of the
representation.

TABLES OF CHARACTERS

Only the extra representations which arise in the
double group are given in these Tables. To avoid
confusion the same notation is used as in the papers
where the single group character Tables are given.
When the group is a direct product, the Tables have
been shortened by writing the products (a]a)X (v|c)
where (a|e) are all the elements already listed. To

TaBLE X. Character table of the extra representations
in the “double” group of Z(X).

16 Z2 Zs3 Zs Zs
1 (¢]0) 1 1 1 1
1 (eltw) -1 -1 -1 -1
2 (82210), (02:|tsy) 7 7 —1 —1
2 (PIIT)) (ﬁxlf"*‘tﬂl) i —1 i —i
2 (oy|7), Pyl TH12y) -1 1 1 -1
8 (ala)X (¢]0) —x[(ala)]

ZiXDy=21+2Z3+Zs+Z;
Zy, Z3 and Z,, Zs are degenerate by time reversal.
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H

L H

F16. 4. First Brillouin zone for h.c.p. lattice.

every class listed there will be a further class in this
product. The character of the product is given in terms
of the character of (a|a) already listed.

Simple, Face-Centered, and Body-Centered
Cubic Lattices

For the s.c., f.c.c.,, and b.c.c. lattices! we need only
consider point groups and we give Tables I-VI for the
positions T'; A, P, M, L, and W and others which are
isomorphous with them. The double groups of A, F, Z,
S, Z, G, K, U, D, Q, are trivial since the only extra
representation is one where x(E)=2, x(F)=—2, x(C)
=0, where C is any rotation, and the wave functions
of all bands transform in the same way. This represen-
tation is the same as the one for the general k which we
have seen is double by time reversal. For IV there are
two extra representations one of which is even and the
other odd with respect to the inversion, so the results
are again trivial. The positions of the symmetry points
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TasLE XI. Character table of the extra representations
in the “double” group of 4 and I

96 Ay As As I'7* Ts* T'o®
1 (€|0) 2 2 4 2 2 2
1 (€|o) -2 -2 -4 =2 =2 =2
U (eltzy) -2 =2 -4
L (&ltz) 2 2 4
4 (6,867 T, r40) 0 0 0 3 —V3 0
4 (66,56—1 | T,74+14) 0 0 0 —V3 V3 0
2 ((23,6_3_1|0) -2 =2 2 1 1 =2
2 (8;,05710) 2 2 =2 -1 -1 2
2 (5_:;,3_3_‘ | tl) 2 2 -2
2 (05,057t t) -2 =2 2
4 (82,00 7,7+t) 0 0 0 0 0 0
6 (84 [7), (02| 7+11) 2% =2 0 } 0 0 0
6 (62{'|1’), (Bzill 1’+ll) —2 2 0

12 (52{”,62;‘”‘ T,T—f—h) 0 0 0 0 0 0
2 (@|rr+t) 0 0 0 £2 42 +£2
2 (g|7,7+1h) 0 0 0 F2 F2 F2
4 (03,0571 0,0) 0 0 0 +£V3 FV3 0
4 (6‘3,6’3*1 1 O,tl) 0 0 0 FV3 +V3
4 (os067| T, 7+11) 0 0 0 +1 41 =F2
4 (Gs,067 T, 7+1) 0 0 0 F1 F1 42
4 (p,p]0,t1) 0 0 0 0 0 0
6 (o/,5:'10) 0 0 0 0 0 0
6 (0,0 |t) 0 0 0

12 (/0" | 7,7 +1) 0 0 0 0 0 0

Ay, A5 are degenerate by time reversal.
[T P VS UE VS VS Tet Ay A, As

XDy Tyt TiF Tyt Dt Ty 4Tot THE4Tot Ag A At-A45+A45

can be seen by reference to the Figs. 1-3 which are the
first Brillouin zones of the s.c., b.c.c,, and f.c.c. lattices,
respectively.

A is the only symmetry line where the representa-
tions are nontrivial, and we need therefore only consider

TaBLE XII. Character table of the extra representations in the “double” group of L and M.

64 Ls Ly Ms*
1 (e|0) 2 2 2
1 (&]0) -2 -2 -2 LyXDy= Ly X Dy
1 (eltr) —2 -2 =Ly+L,
1 (&lt) 2 2 For all M;* (i=1, 2,3, 4)
2 @2 | 72), (3o | 7at-10) 2% -2 } . MEXDy= M
2 (022" 72), (822" | Ta+t1) —2i 2
4 (52" 82" |00 0 0 0 T e reenear.
4 (83, 82| T2, T2+i1) 0 0 0
2 (8] 72, T2+1) 0 0 +2
2 (il 7a, T2t11) 0 0 F2
2 (o',p2'10) 0 0 0
2 (p2',p' | 1) 0 0
4 (oo, P’ | T2, T2+-11) 0 0 1]
4 (0,00,1) 0 0 0
32 (| @)X (e|ta) . —x[(«]a)] —x[(ala)]
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TasLE XIII. Character table of the extra representations in the “double” group of H and K.

144 Hy Hsp Hs Hq Hs Hy K Ks K,
1 (¢|0) 1 1 1 1 2 2 2 2 2
1 (e]t1) —1 -1 -1 -1 -2 -2
2 (53“2), (53_1|—i2) —1 —1 -1 —1 1 1 1 1 -2
2 @s|titta), (8571 —t1—1s) 1 1 1 1 -1 -1
6 (521;I|T1;), (62i’|T1+t1) ’L 1, —Z "-"L O 0 0 0 0
2 (0'32 —tg), (Gs_lltl—f-tz) 7 —1 7 —1 7 —1 V3 —V3 0
2 (0’3 | *tl—fg), (0'3‘1 l tz) —1 7 —1 7 —1 7
2 (0]0), (|1 —i i —i i 2 -2 0 0 0
6 (0" 73), (ps" | Te+11) 1 -1 —1 1 0 0 0 0 0

24 (a]a)X (€]0) —x[(ala)] —xL(ala)]

48 (v]6)X (e]t2) wxL(v|e)] wx[(v[e)]

48 (vle)X (e| —12) wx[(v]e)] wix[(v]e)]

H; H, H, H; K, Ky K; K, K; K
HiXDy Hs+Hy HitHetHs Hst+Hi+Hy K; Ky Ki; Ks Ks+Ky Ki+K,
Hy, Hg and Hs, H; are degenerate by time reversal.
TaBLE XIV. Character table of the extra representations in the “double” group of A.
48 A7(4) As(4) A9(4) ar(T) Ag(I) A9(T)
1 (€]0) 2 2 2 2 2 2 A A;X Dy
1 (€|0) -2 -2 -2 -2 -2 -2 Ay Aq
2 (86,067 7) —V3i +V3i 0 V3 —V3 0 A, As
2 (66,0671 7) +v3:¢ —V3i 0 —V3 V3 0 Az Aq
2 (123,5_3_1 [0) 1 1 -2 1 1 -2 Ay Ag
2 (05,057110) -1 -1 2 -1 -1 2 45 Art-4y
2 (82,0210) 0 0 0 0 0 0 Ag Ag+Ay
6 (os’,p:'|0) 0 0 0 0 0 0
6 ("0 | 7) 0 0 0 0 0 0
24 (@] a)X (e tr) —x[(a|a)]

its compatibility relations: T'g+—A; Ty=—A;, and
I‘gi—%As+A7; Mﬁ—>A6. M7—>A7.

Diamond Lattice

We shall use throughout the notation adopted by
Herring.? The lattice has the same translational sym-
metry as the face-centered cubic, but its unit cell is
more complicated since it contains two atoms and
therefore the cell group contains screw elements. Even
so some of the groups are isomorphous with those of

TaBLE XV. Character table of the extra representations
in the “double” group of P.

72 Pi(H) Ps(H) Po(H) Pi(K) Ps(K) Po(K)
1 (o) 1 1 2 1 1 2
2 (83]22), (8571 —22) -1 -1 1 -1 —1 1
3 (CED) 1 -1 0 —1 i 0
6 (a|la)X(€|0) —x[(a]a)] —x[(a]a)]

12 (vle)X (e|tz) wx[(v|e)] wx[(v|e)]

12 (v]e)X (] —12) wx[(v]e)] wix[(v]e)]

36 (B1B)X (e]t) —x[@80)]

P,, P; are degenerate by time reversal,
PiXDy=P:XDy=Ps P3XDy=Ps+Ps+Ps

the f.c.c. lattice, and we need not consider them again.
The exact correspondence of the elements is discussed
by Herring. The groups for the points X and W, and
the lines A and Z are however different. We evaluate
the double groups of these in the limit as they approach
X. The first Brillouin zone is equivalent to that for
f.c.c. (Fig. 2).

The lines of symmetry A and Z in this lattice have
nontrivial compatibility relations: T'gt—A4(T), I'yt—s
A7<F), ng—-)Aﬁ (P)+A7(P), and X5‘—>A6(X)+A7(X)
X5—>Z2+Zs+z4+25, W3+W5—>Z4+Z5, W4+W6‘—>Z4
+Zs, W7“)ZZ+Z3.

TaBLe XVI. Character table of the extra representations
in the “double” group of S.

16 Sa Ss S Ss
1 (e]0) 1 1 1 1
1 (e[ 20) _ - -1 -1 —1
2 (827" 72), (— 022" | 72 +11) i i =i =i
2 (010), (3l4) ‘ —i i io—i
2 (o2 | 72), (P2 | T2a+11) —1 1 -1
8 («]a)X (€]0) —xL(e]a)]

S1XDy=S5+S;4S+Ss
S3,,S4 and Sy, S; are degenerate by time reversal.
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We shall again follow exactly the notation of Herring.?
The first Brillouin zone and the various kinds of
symmetry point are shown in Fig. 4.

The double groups of U, 2, R, and T are trivial;
there being only one extra representation which has
zero character for everything except the identity
(x(e)=—x(&=2) and translations. This representation
of R, however, always occurs twice because of time
reversal so the states are all fourfold degenerate on R.
The only other symmetry position S has character
Table XVI.

Depending on the limiting position of the point .§
we should also consider primary translations in the
group of S. This would give the same results as in
Herring’s single tables and they are omitted here.
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The compatibility relations for the lines A, P and §
are nontrivial: T';F—>A;T) (=7, 8, 9). A;—A(4),
As—0o(4), Ae—A7(4)+As(A). Hy+He, Hs+Hr
P4(H)+P5(H), Hs, Hg‘_)PG(H) K7, Kg—)Ps(K); Kg—)
Py(K)+Ps(K). AstAs, Ag—S2(A)+S3(4)+S4(4)
+Ss(4). H—Sy(H), Hs—S3(H), Hs—>Ss(H). Hr—>
S4(H), Hs-—')S3(H)+S4(H), Hg"—)SQ(H)-f-Sr,(H)
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Measurements have been made of the steady-state magnetization of a tin cylinder in the presence of an
external magnetic field and with an externally supplied current at the transition to superconduction. In
accord with earlier work in Germany, a longitudinal flux in excess of that caused by the external field is
observed for certain combinations of external field and current. The dependence of the effect on the external
parameters is given and it is shown that the metal is not in the pure superconducting state. No satisfactory
theory for the effect has been found, but some numerical relationships have been computed.

INTRODUCTION

UPERCONDUCTION in metals is an electronic

state characterized by zero electrical field and by
zero magnetic induction. The independent variables
which may determine whether a metal is in the super-
conducting state, if it becomes one at all, are the
temperature 7', the magnetic field B, and finally
because a current in the specimen may produce its
own field, we must consider the current 7, as a variable.
At sufficiently low values of each of these variables,
the metal may be in the superconducting state; just
how low is a characteristic of each superconductor.!
In this research we dealt with very pure monocrystalline
tin made in the form of a cylinder and we were con-
cerned with some unusual properties just at the transi-
tion into and out of the superconducting state. At a
temperature just below the zero field transition tem-
perature for ordinary tin, 3.735°K, and in a small
externally created magnetic field of 1 to 4X10™*
weber/sq meter applied along the long axis of the

* Shell Company Fellow in Physics.

1 D. Shoenberg, Superconductivity (Cambridge University Press,
Cambridge, 1952); also F. London, Superfluids (John Wiley and
Sons, Inc., New York, 1950), Vol. I.

cylinder, a steady current of from 1 to 13 amperes was
allowed to flow along the cylinder and we measured
the magnetic flux content of the tin specimen. The
work of Steiner? and of Meissner, Schmeissner, and
Meissner® has shown that under these conditions the
longitudinal flux through a conductor, instead of
decreasing monotonically to zero at the transition to
superconduction, first shows an increase provided one
uses certain conditions of a large current, a small
external magnetic field, and a temperature such that
with the currents and fields used the super to normal
transition may be effected. The results which we now
report are in accord with the above authors and
represent a continuation of the preliminary studies by
Mendelssohn, Squire, and Teasdale! and by Teasdale
and Rorschach.? Dr. Mendelssohn suggested these
studies and indicated the method of measurement
which we have continued to use since his work with
us here in this laboratory. The present apparatus has

2 K. Steiner and H. Schoeneck, Physik. Z. 44, 346 (1943); also
K. Steiner, Z. Naturforsch. 4a, 271 (1949).

3 Meissner, Schmeissner, and Meissner, Z. Physik 130, 521,
529 (1951); 132, 529 (1952).

4 Mendelssohn, Squire, and Teasdale, Phys. Rev. 87, 589 (1952).

5T, Teasdale and H. E. Rorschach, Jr., Phys. Rev. 90, 709
(1953).



