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Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance
in Some Semiconductors*
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(Received May 26, 1954)

The effect of spin-orbit coupling on the usual band theory of electrons in a lattice is considered. Par-
ticular attention is given to the bands in impurity semiconductors with diamond-type structure. g-values
are calculated for electron states typical of various possible cases and it is found that different values are
obtained according as to whether the Fermi level is near or distant from a band degeneracy. The spin-
lattice relaxation time is calculated so that the effect of spin-orbit coupling on the wave functions is included,
and times in fair agreement with those observed in silicon and alkali metals are obtained.

I. INTRODUCTION

HERE have recently been reported a number of
observations of magnetic resonance in impurity

semiconductors, ' and it is found that the g-values and
line-width vary with the material and the impurity
concentration. In order to understand these effects a
theory is developed here which takes particular account
of the eGects of spin-orbit coupling. We treat the case
in which the electrons can be considered to move
through the crystal (and are not trapped at the im-

purities), and make the usual assumptions of band
theory. In another paper (to be referred to as A)' we
have treated the e8ect of including spin in band theory
from the group theoretical aspect and have shown that
one of its main sects is the splitting of otherwise
degenerate bands. In this paper it is shown that the
properties of the resonance are rather difFerent if the
Fermi level is near or far away from a band degeneracy
and in this way useful information can be obtained
about the bands from the resonances.

The eGect of the orbital angular momentum, as
measured by the difference of g from the free electron
value of 2.0023, is much larger for electrons in states
near a degeneracy. This is calculated for particular
kinds of states which are of interest in semiconductors
but the resulting expressions should give the correct
order of magnitude for all similar cases. Other calcu-
lations of such a spin-orbit effect have been carried out
by Vafet' for sodium metal where resonance has also
been observed from the conduction electrons. ' The
observed line-width in semiconductors appears to arise
from a spin-lattice relaxation time in most cases, and it
is the shortness of this time which may account for the
absence of resonance in germanium. Because this time

II. SPIN-ORBIT COUPLING AND BAND THEORY

The problem of an electron in a solid is usually
treated as if it is moving in a perfect rigid lattice under
a periodic potential. The Schroedinger equation is

L(y'/2nt)+ V]+=&I, (1)

where V has both the point and translational symmetry
of the lattice. The resulting wave functions are of
course the well-known Bloch functions

I ~ikr

where NI, has the translational symmetry of the lattice.
In order to introduce the appropriate spin-orbit inter-
action into (1) we start with the four-component Dirac
equation and reduce it to two components in the usual
way. ' The resulting power series in (nzc) ' is to first
order

p2 p'
+V- + (~V p)

Sm'c' 4sm'c'2m

is the measure of the interaction between the spins and
the lattice, and because the interaction between the
lattice and the orbital motion of the electron will be
large we expect this e6cct to be greatly influenced by
the spin-orbit interaction. The relaxation times due to
the interaction with lattice vibrations and impurity
centers will be discussed and it is found that the line
widths predicted are usually within an order of magni-
tude of those observed. Calculations are also made for
alkali metals and it is found that the mechanism
involving spin-orbit coupling produces shorter times
than those calculated by Overhauser' on a free-electron
model.

*This work has been supported in part by the U. S. Office of
Naval Research and the U. S. Signal Corps.

t Now at Atomic Energy Research Establishment, Harwell, + (vVXp) ~ +=M. (3)England. 4m'c'
'Honig, Porus, Kip, Kittel, and Morin (to be published).

Portis, Kip, Kittel, and Brattain, Phys. Rev. 90, 988 (1953).
N. Bloembergen and F. K. 'lA'illenbrock, Phys. Rev. 91, 1281 The third term gives the 6rst-order relativistic cor-
(1953) rection, and will be neglected. The fourth term gives a' R. J. Elliott, following paper, Phys. Rev. 95, 280 (1954).

s Y. Yafet, Phys. Rev. 85, 478 (1952). e A. W. Overhauser, Phys. Rev. 89, 689 (1953).' G. Feher (to be published); Griswold, Kip, and Kittel, Phys. e E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
Rev. 88, 951 (1951). (Cambridge University Press, Cambridge, 1935), p. 129.
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t ~k I+&+f 'I —&]e'"', (4)

where
~ +), ~

—) are the two spin states with component
of angular momentum &—', along some chosen direction.
Considering the components of the matrix equation (3),
it is clear that aI, and bl, have the symmetry of the
lattice, like tek in (2).

The symmetry properties of these wave functions are
discussed in A, for some interesting lattices. In partic-
ular, it is shown that as a consequence of time-reversal
symmetry, there is always a twofold degeneracy pro-
vided there is inversion in the symmetry group (as
there is in the cases of interest here). By operating with
the inversion operation on (4) we get a function

[~-k~+&+f k~
—&]e '"',

where a k, b I„- are suitably defined. Inversion has no
e8ect on the spin functions. This has the same energy
as (4); and so has the function obtained by reversing
the time axis of (5) which is by Kramers' theorem'

small contribution to the energy of states whose
eigenfunctions are nonzero at singularities of U. It has
the same symmetry properties as U and does not
change the form of the Hamiltonian in (1) and can
therefore be neglected. The last term is the spin-orbit
coupling. (It reduces to the well-known form f'(r)l s
when V is spherically symmetric. ) For the moment we

simply note that this term has the same symmetry
properties as U. Because there is a term in the spin
operator in our Hamiltonian, the resulting eigen-
functions will now be linear combinations of diferent
spin functions and will in general be written

valid it can be shown that the spin-orbit coupling eGect
is rather similar to that in atomic theory.

Now Wannier" has shown that the wave function in
a periodic lattice can be written in terms of functions
centered about each lattice point —the so-called Wan-
nier functions, n. In terms of these the eigenfunctions
are

Q tok'(r —d) exp(ik d),
QAr s

where d denotes the vector coordinate of a lattice point.
The m centered about diferent points are orthogonal,
but they do overlap by a considerable amount. If we
reduce all k into the first zone, each band must be
designated by a number s.

If we draw polyhedra around each lattice point made
up of the planes perpendicularly bisecting the lines to
nearby lattice points, the potential U will be the same
in each cell and have a center of symmetry at the
lattice point. That is,

V=+ V(r —d),

where V(r —tl) is defined in the polyhedron about d and
is zero elsewhere. Then the spin-orbit coupling can be
written

P(VV(r —d)yp) e=C.
4m'c' a

Within the cell about d, the expression can be written
in the usual form,

I:~-k*
I

—
&
—b-I'* I+&]e'"" (6)

Thus we obtain two functions with the same k L(4)
and (6)] and the same energy. At some points of high
symmetry in the Brillouin zone we see in A that time
reversal does not give any extra degeneracy. In this
case there is still a function like (6) degenerate with

(4), but it can be obtained from (4) by an operation
with a symmetry group element.

III. APPROXIMATIONS

In order to be able to find the energy level splittings
and the actual admixtures of the wave functions caused
by the spin-orbit coupling we must find the matrix
elements of the term in (3). In general these can only be
obtained by complicated calculations of U and the wave
functions. Approximate forms can be obtained by using
a cellular method like that of Wigner-Seitz' (see Yafet's
calculation' ). If the tight-binding approximation' is

r H. A. Kramers, Proc. Acad. Sci. Amsterdam 33, 959 (1930).
s E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509

(1934).' See for example F. Seitz, 3foderre, Theory of 5nluts (McGraw-
Hill Book Company, Inc. , New York, 1940).

if d is the center of the coordinates and V has spherical
symmetry. Because of the surrounding atoms, however,
V will in fact have a symmetry lower than spherical
and this expression must be modified. " Nevertheless
since almost all the spin-orbit interaction arises when
the electron is close to the nucleus and since the
external field then has little e8ect, this expression
remains a reasonable approximation.

We approximate by putting

(e, (k)
i
C i+, (k')&

=—P expLi(k' —k) d](wk'(r —d) ~C~iok'(r —d)&
QT

=3kk &~k'(r) ll (r)I s
I
~"(r))

=3kk &(tok'(r) ~1 s
~
tok'(r)). (10)

I G. H. Wannier, Phys. Rev. 33, 671 (1938).
» K. W. H. Stevens (private communication). I am indebted

to Dr. Stevens for instructive discussions on the e8ect of symmetry
and the magnitude of X.
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Fio. 1. Energy bands of diamond (after Herman, see reference
12). Slope of energy contour is zero at points marked "0."

That is to say, we neglect that part of z which spills
over into other cells, and all overlap effects. Similarly
for the matrix elements of the orbital angular momen-
tum, —i(r)&p)=1, we make the same approximation
and write

(+.(k) III+ (k')&

j.
=—P exp[i(k' —k) d](wi, '(r —d)

l
1

l
wi'(r —d))

iV a

= 5i, k (wi'(r)
l
1

l
ws'(r)).

Various effects can now be calculated if it is further
assumed that the angular dependence of the m is just
that of the atomic functions used in the tight-binding
method. The radial integration over I will remain an
arbitrary parameter X in our theory although if the
tight-binding method gives a reasonable approximation
we expect it to be somewhat like the spin-orbit coupling
parameter for the appropriate atomic electrons.

IV. ENERGY BANDS IN DIAMOND TYPE CRYSTALS

A very extensive investigation of the energy bands
in these crystals is being conducted by Herman. The
calculated bands for diamond" are shown in Fig. 1, and
preliminary results show that germanium has a some-

FIG. 2, Schematic representation of the energy bands of diamond
including spin-orbit coupling effects. (Based on Herman's calcu-
lation, see Fig. 1).

what similar band structure" from a symmetry point
of view. In Fig. 2 we show schematically what the band
structure is like when we include spin-orbit effects.

From the character tables 1, 2, 5, 7, 9 of A, we have
found the degeneracies of the new irreducible represen-
tations and the way in which the old representations
are split by adding spin (multiplying by D,*). There is
further splitting of F~5, F25', 65, 65', A3, J3, J3', but not
of X~ and X4. Because of time reversal each of the
bands is doubly degenerate in Fig. 2 as it was in
Fig. 1 because of the spin orientations. In the figure
we have not attempted to draw the new bands accu-
rately or the splittings to scale. Away from the places
where there are extra splittjngs the energies have been
left unchanged. In fact there will be a slight admixture
of wave functions from other bands which now have
the same transformation properties, and a second-order
change in energy.

The details of the band structure are greatly affected
near these degeneracies which are now split; like F15,
I'25'. Herman investigated these points in some detail
by means of a perturbation procedure, and it is therefore
convenient to take them as a detailed example of the
effects we are considering. For small values of k the
original triplet is split and Herman obtains the energies
from a secular determinant of the form:

Ak'+ (B—A)k ' EDk,k„— Dk,k,
Dk,k„Ak'+ (B A) k„' ED—k„k, —
Dk k, Dk„k, Ak'+ (B—A)k, '—E

=0 (&2)

(where A, B, and D are constants obtained by numerical
computation). An effective mass can be defined for the
three bands in the usual way,

E= k'k'/2tl*, (&3)

although m* varies in a complicated way with angle.
%ith the inclusion of spin-orbit coupling, however, the

's F. Herman, Phys. Rev. 88, 1210 (1952l; thesis, Columbia
University, 1933 (unpubJishedl.

energy E may not be proportional to k' over a sufficient
range of k to make the concept of effective mass useful.
Possible results have been sketched diagrammatically
in Figs. 3 to 6. In Fig. 3 we have drawn typical curves of
energy versus k for an arbitrary direction in k space
and for small values of k in Herman's picture. The

"F. Herman and J. Calloway, Phys. Rev. 89, 518 (1953).
Dr. Herman has informed me that more accurate calculations are
now being made.
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curves are the parabolic solutions (13) of the secular
determinant (12). Figure 4 shows a possible eRect of
the introduction of spin-orbit coupling; for large k the
curves are similar to those in Fig. 3, but for smaller k
the splitting makes the picture very different. Thus if
we have an electron system in which the Fermi level
is Ii2 in the figures, the effective mass and general
properties of the electrons at the top of the distribution
would not be greatly altered by the spin-orbit effects.
This would also be true at high temperatures where the
electrons have thermal energies and obey Boltzmann
statistics rather than Fermi-Dirac. On the other hand,
if we have an electron system with a Fermi level Ii 3,
it is clear that Herman's calculations will not be
applicable. Figures 5 and 6 show a different kind of
splitting and display how complicated the addition of
the spin-orbit coupling may make the band forms.

We can make more explicit calculations of these
effects by making the approximations discussed in Sec.
lII. That is, we calculate the matrix elements of the
spin-orbit coupling by assuming that the tight-binding
wave functions give a representation of the actual wave
functions with the correct symmetry properties. The
tight-binding approximation for the diamond crystal
has been solved by Morita. " His band structure did
not agree with Herman's in that his bands occurred in
a different order but he did have bands with the same
symmetry properties which he built up from 2s and 2p
atomic wave functions. We label the atomic wave
functions of the s-type g, and the three P-types g„p„,
and g,. The symmetry properties of the tight-binding
functions will be the same whatever the principal
quantum number n, and the results will apply to
diamond +=2, silicon m=3, germanium m=4, and grey
tin, m=5. To obtain the wave functions, we note that
the diamond lattice is built up from two interpene-
trating face-centered cubic lattices, with principal
vectors —',u(0, 1,1); sa(1,0,1); —',a(1,1,0); and so we define
functions

l
x, (r) = —P exp(ik d)p, (r—d),

QcV a

where d are the lattice points of such an f.c.c. structure
and j can be s, x, y, or s. Now one of the lattices is
obtained from the other by a translation t= 4@(1,1,1),
and the general tight-binding wave function built from
these functions can be written

O'=P;[a,x, (r)+n, exp(ik t)x;(r+t) j,
where, since the two lattices are equivalent, ~u;~'
= ~rr; ~'. In particular Morita finds that at k= (0,0,0)
the eight eigenfunctions are

P[y;( —d) ay;( —d+ t)j.
(2$)'* s

(16)

For the irreducible representations in which we are
interested, the appropriate forms of (16) are,

for F~,

for 12)

for F2g )

P[y, (r+d)+y, (r+d —t)],
(2')'* a

;2[4.(r+d) —4.(r+d —t)3,(2')' s
(17)

for I ~q)

where j=x, y, s,

P[y;(r+d)+y;(r+ d —t)].
(2iV)* a

Since we are assuming that spin-orbit coupling is small,
the wave functions of the representations formed from
these when we include the spin will just be linear
combinations of (17). By inspection we see that just as
in an atom when spin and spin-orbit effects are included,
the component g's are the same in the s-states but in
the p-states they are those corresponding to a total

FIG. 3. Typical curves of energy es k near a band degeneracy
without spin-orbit coupling. F~ and F& are Fermi levels (see
text).

"A. Morita, Science Repts. Tohoku Univ. 33, 92 (1949).
FIG. 4. Effect of inclusion of spin-orbit coupling on

the curves shown in Fig. 3.
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for F6

for j7,
—,ZL4. (r—d)+& (r—~+~)3I~&

(2.V)' a

angular momentum J of —,'in the twofold representation
and. —,

' in the fourfold. Then we have,
where @1 are the functions:

1—(4.+i'm) I+» -- L(&.+id.) I
—

&
—24. I+&3,

v2 /6

I:(4*—i4,) I+&+24. I

—&j, —(4'—i4.) I

—
&

and qb~ are the functions: (19)

fol I7

for F6—,

for F8+,

fol I 8 )

1
gLy;(r —d) —y;(r —d+ t)j,

(2V)t a

, 2[0,(r—d)+0:(r—d+ t) 3,
(2.V)l a

, ZLA(r —d) —A(r —d+ t)],
(2Ã)l a

Using the functions (19) as basic functions and calcu-
lating the spin-orbit matrix elements by means of (10),
we can now construct the secular determinant which
gives the energies of the bands near ir= (0,0,0) analo-
gous to (12). Since we know the matrix elements of the
potential more accurately from Herman's calculation
than from a tight-binding approximation like the above,
we have used his calculation and written these elements
in terms of the constants 3, 8, and D. The determinant
ls:

—,'X+ i~P —E

1—8
v3

1
$Y

2@3

1—R
K3

~X+6 (P+4Q) —J.'

1———S
2&3

5
2&3

k) +6 (P+4Q) —E

1——S
2&3

1—R
V3

—,'X+—'P —E

1
(P—2Q)

3V2

1—8
V2

1——5

——(P—2Q)
3&2

=0)

1
8

Q6

1
-(P 2Q)—

3v2
—:l+-:(P+Q)-E

1——It'.

v2
(P—2Q)

3V2

2—R ——,'X+-', (P+Q) —E

where
P= 2A k'+ (B A) (k '+k ')—
R= Dk, (k,+ik„),
Q=Ak'+ (B—A)k, ',
S= (B—A) (k '—k ')+2iDk, ky

LA, B, and D are as defined by Eq. (12).$ The roots of
this determinant are equal in pairs, which can be readily
checked since it can be transformed into a skew-
symmetric form. The roots are, however, complicated

(20)

solutions of a cubic equation. Ke can obtain efFective
masses when the spin-orbit coupling is large and we are
interested in electrons with kinetic energies much
smaller than X. For the ~3 (F8) levels,

E= 6{2(P+Q)~C(P—2Q)'+3(4IRI'+ I~l'j')
=Bk'&-', {(B—A)'k4

LD' —3(B—A)'](k, 'k '+k 'k, '+k, 'k.')}l. (21)

For the 2 (Fi) levels,

E=-', (P+Q) =Bk'. (22)
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FIG. 5. Another possible form of band degeneracy. The curves
shown are parabolas, so the curves can be described in terms of
an effective mass.

FIG. 6. Possible effect of spin-orbit coupling on the curves
shown in Fig. 5. The curves are now more complicated in form
and cannot be described in. terms of an effective mass.

In fact spin-orbit coupling has such a profound eGect
on bands near a degeneracy that any attempt to explain
observations of the effective mass, magnetoresistance,
etc. of electrons occupying such bands should be made
with the above methods.

V. g-VALUES

The Hamiltonian of the interaction between a mag-
netic field and an electron is PH (l+2s). This lifts the
remaining twofold degeneracy of the electron states and
causes a splitting which we call gPP, thus defining g as
the matrix element of 2(l+2s) in the direction of the
field. In general g will depend on the direction of II
and on k. However, in a metal, collisions of the electron
with lattice waves and impurity centers take place so
often (every 10 "second or less) that the measurement
sees only an average e8ect. We shall compute the
average value of g in three cases which seem to cover
the possible band forms which can occur in these
substances.

A. Electrons in a Nondegenerate Band

In the absence of spin-orbit coupling the wave func-
tions for any vector k are simply products of orbital
and spin functions O'I+) and %I —). In all singlet
states the orbital magnetic moment is "quenched" and
thus all such states have exactly the free-electron g
value. "Spin-orbit coupling causes admixtures of states
corresponding to the same k in all bands with the same
transformation properties. In the general case, we saw
in Sec. IV that the wave functions of all bands belong
to the same irreducible representation; this means that

"This will be true if the component of angular momentum in
an arbitrary direction s is zero. This is the quantity J'O' L,%'dr,
where L,= —i(r)&~),. Writing + as a Bloch function NI, t,'~' we
require t"up"L,uqdr If (as is the case h.ere) the crystal has
inversion symmetry uI,*=uzi

A, , where ca*=1, then

f;I. , f.r; f,L : =(f:L...,) =-o, . = —

since it must be real.

wave functions from all bands will be admixed. Since
the matrix elements of spin-orbit coupling are small
compared to the separation between bands, we can
write the wave functions by perturbation theory in the
form (15); and if xp, xi, ' 'x were the original
localized functions, the new localized function will be

xpI+)+z 2 I &x-Ifl*Ixp&x. I+&
Ep (k) —E.(k)

+&x. I f(1.+~~.) I xp&x- I

—H. (»)
The matrix element of t, is, to 6rst order (using 11),

&xo I
(1.

I x.&&x. I
l.

I x &

z, (k) —z.(k)
(24)

The average value of the matrix element of / for any
direction will be of the same order of magnitude and so
we expect that in this case the change in g from the
free-electron value to be of the order

(25)

where X is the spin-orbit coupling constant and AE the
separation to the nearest band with the same transfor-
mation properties. This eGect is very small, and because
of the uncertainty in the value of A. it is hardly worth
calculating the exact equality to replace the approxi-
mation (25). The more accurate calculation of Yafet

. for sodium gives a resulting hg of the order expected
from (25), with a value of X somewhat smaller than in
the free atom.

B.Electrons with Kinetic Energies Large Compared
to the Spin-Orbit Coupling Energy Occupying

States with Energies Near a Point Where
Bands are Degenerate

An example of this would be that of the electron
system with Fermi energy F2 in Fig. 4. The electrons
at the Fermi surface are in states which are determined
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almost entirely by the lattice potential. The states
around each lattice point are linear combinations of
p„p„,and p, which are completely determined as is
their energy by a secular determinant like (12).Without
spin-orbit coupling the wave function at k in one band
r, say, is in the form (15) where at each lattice point
the wave function is

p = (2m*) ' VWr'*dQ/2fP (2n)'.

The average Ag value is just

(32)

unit energy range is Vm*kdQ/k'(2n)' and the density
at the Fermi surf ace is then

I ro) =a„@,+b,'@„+c,'b, (26) P p„hg,dQ
&p 7

P p,.dQ.
r

(33)

Using the functions (26) and noting that

we find
l,g, =i/„, l,P„= i b„—l,g, =0,

&ro I
l

I
so& = ar*b a,b„*. — (29)

Now we need the average value, which we will define
for simplicity as

~g= s (~g.+~g.+~g.).

Regarding spin-orbit as a perturbation to first order,
we get, by using (10),

lr, +&= I«, +&+s 2 &(soll*lro&Iso +&
~ E,(k) —E,(k)

+(so
I
l,+ilo

I ro& I so, —&}. (27)
From (11),

I ( o I
l* I o) I

'
~ E,(k) —E,(k)

Assuming that the spin-orbit coupling has little e6ect
on the energies E„(k),we have

k'k'(m, *—m„*) Wr (m, *—m,*)
E„(k)—E,(k) = =, (34)

2m.*m,*

when k is such that the electron in the rth band is at
the Fermi surface. After some manipulation from (34),
(32), and (30), Eq. (33) becomes:"

&g = P dQ P (m„*)-*'dQ. (35)
2X

3Wr ~ gm„*+pm,* 7

The Fermi temperature depends on the number e of
conduction electrons,

kp 4m t/

n= Q 't I k'dkdQ
"o o (2or)o

By symmetry, from (29),

~g=s Z [Q (a„*b,—a,b„*)(a,b,*—a,*b„)]
c/rE„(k)—E (k) abc

X
a„a„* a,a,*

s~r E„(k)—E,(k) a a

2&2VWp'*
t
'

P (m„*)-:dQ,
3 (2or)%' o

~4m'

Ag= P dQ
Ors(3n)fIb'~ O ~ace m„*+pm,*

(36)

a7 a8 a7ag )

and since the wave functions (26) are normalized and
orthogonal this is just

~g=s 2
~ E„(k)—E,(k)

(31)

Besides averaging over the direction of H we require
the average over all directions and all those values of k
in all three bands which have energies equal to the
Fermi energy; E(k) = Wp. Now in a given direction in
space we de6ne an eGective mass for each surf ace by
means of (13). The number of electron states within a
solid angle dQ of k and with wave vectors of magnitude
between k and k+6k are

4m' 1
3

(m,*)~dQ . (37)
7 p

In our approximation the m* are determined completely
by the secular determinant (12), but the averages in
(35) and (37) are found to depend in a very complicated
way on the constants A, 8, and D.

Another useful result which can be calculated on this
approximation is the expression for Ag at high temper-
atures when the electrons obey Boltzmann statistics.
Then

Ag= ' Q n„(k)hg„(k)k'dkdQ
J

Vk'hkdQ/(2n)'. Q n„(k)k'dkdQ, (38)
7

The e~e~gy sPread of such state»s, from (13),
„ I am indebted to professor C. Kittel for erst pointing out

k'krak/2m* so that the number of energy states Per that one might expect ng X/Wz in this case.
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where n„(k), the number of electrons in the rth band
with k, is

A exp( —h'k'/2m, *kT). (39)

After manipulation, and writing the expression (35) as
(~g) P

Dg= (Wr /kT) (hg) p. (40)

Thus hg will decrease with increasing temperature
once we get above the Fermi temperature.

C. Electrons in a Degenerate Band with Energies
Small Compared. to the Spin-Orbit Coupling

An example of this would be the electron system in
Fig. 4 with Fermi level F&. In this case the electrons at
the Fermi surface would have wave functions given in
first order by (18). Thus they would have the Lande

g factor for these J states which is -', for the single /=-',
band, and 4/3 for the double J=as band. In any
practical case the states will be considerably perturbed
and g can be expected to have a wide range of possible
values. Explicit calculations unfortunately require the
solution of the determinant (20) and hence must be
numerical. Some idea of the possibilities can be obtained
by considering a simple model where the energy depends
only on ~k~ and the interaction is independent of
direction. For a general value of k the three p bands
will have wave functions around each nucleus like

1—(0 +id.) I+),
v2

1
sin8—(P,+i&„)

~

)+cos8—&,
~ +),

v2

cos8 (qb.+—iQ„)
~

—)—sin8$,
~ +),

and their Kramers' conjugates. The first two, which
have g» ——4, g~= 0, and g» = 2 cos'0, g~= 2 cos'0
+2v2 sin8 cos8, respectively, are degenerate when 0 =0.
The other has g„2sin'8, g, =2 sin'8 —2@2 sin8 cos8
and arises from the J=-,' band. In the case of large A, ,
when only one or two of these bands are occupied, it
is clear that g may have a wide range of values, and
the actual result will depend in a complicated way on
the electron-lattice interaction.

Ag will have the same order of magnitude as that
calculated in case 8 for any degeneracy which is lifted
by the spin-orbit coupling. For any such degeneracy
and case C the g will in general differ widely from 2 but
its actual value will depend on the actual wave func-
tions. If there is a degeneracy which is not affected by
the introduction of spin-orbit coupling, case A will

apply.
VI. REVIEW OF EXPERIMENTAL DATA

In an impurity semiconductor the extra electrons
(or holes) have two kinds of energy states. There are

those which represent the electron trapped around the
impurity centers, and others in which the electrons
move freely (and occupy states in the bands). At high
enough impurity concentrations there are no trapped
states and the electrons are in the conduction band
even at very low temperatures. The experiments' seem
to indicate that this is the case in some of the specimens
studied. Assuming then that the impurities have little
effect on the actual band structure we can compare
the experimental values with the g's calculated for the
band states in the last section.

The actual form of the bands in silicon and ger-
manium is of considerable interest at the present time.
Herring' and others have deduced something about
their form from magnetoresistance, and measurements
of cyclotron resonance" also throw some light on the
problem. Since in n silicon the g-values are very close
to 2, we can conclude that case 3 holds, and that the
lowest point of the conduction band is not near a band
degeneracy. Herman's calculation for diamond gave
the minima in the conduction bands at six points along
the (1,0,0), (0,1,0), and (0,0,1) directions. This is also
likely to be true in Si and would certainly fit the
observed g values. Ag seems to be about 3)&10 ', which,
if 'A is about 100 cm ' as discussed below, gives DE~4
ev, which is quite reasonable for the separation to the
nearest A7 band.

It is of some interest to consider briefly what values
one might expect for X in general. Now X for 3p electrons
on a Si atom" with configuration 3s'3p' 'P is 150 cm '
and on Si+ with 3s'p'P is 190 cm ', i.e., somewhat
larger. In silicon metal the ground state with completely
filled valence bands is roughly equivalent to a 3s3ps
configuration for each atom so that the extra electrons
in n Si make a 3p' configuration and the holes in p Si a 3p'.
There are no measurements of X on atomic Si with
these configurations but atomic S has X= 175 cm ' and
300 cm ' in similar configurations. Thus if the electron
wave functions in the metal are just linear combinations
of the atomic wave functions around each lattice point
we might expect X to be very roughly about 100 cm '
for electrons in e-type Si and 200 cm ' for holes in
p-type. The overlap of the atomic wave functions with
those of neighboring atoms has a profound effect,
however. The largest contribution to I, is made when

the electron is very near the nucleus, so that the overlap
region is not important from this point of view, but
this overlap gives a contribution to the normalizing
factor so that in effect the electron spends less of its
time near a nucleus than it would do in an atom.
Even in the general case when the tight-binding
approximation is bad, one might expect the electron to
behave rather like an atomic electron near the nucleus

"C. Herring (private communication).
"Dresselhaus, Kip, and Kittel, Phys. Rev. 92, 827 (1953).
"This and other numerical values quoted here are calculated

from spectral measurements given by C. E. Moore, National
Bureau of Standards Circular No. 467, 1949 (unpublished).
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(where the field comes overwhelmingly from the nuclear
charge) and hence X to be still that of a free atom
reduced by the fact that it spends less time there.

In the case of germanium A, will be very much larger,
and only for high concentrations can we expect 8'p to
be larger than the splitting. In atomic Ge, with con-
figuration 4 s4p' Ps, )i is about 1150 cm '. Se has
)t = 1090 cm ' for 4p4 and 5400 for 4p' so that, following
our argument for Si, we might expect A. to be, say,
500 cm ' for electrons and 1500 cm ' for holes in Ge.
Even though the actual X for the solid may be several
times smaller as we have seen, the splitting will still
be considerable. A similar situation will arise in grey tin.

Dp D/rs =dD/dt = W+ —W~, —(42)

~ E. Abrahams and C. Kittel, Phys. Rev. 92, 544 (1953).
F. Dyson (unpublished). See also reference 4.

2' P. %. Anderson and P. R. Weiss, Revs. Modern Phys. 25,
269 (1953).

~ Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

VII. SPIN LATTICE RELAXATION AND
RESONANCE LINE WIDTHS

The widths of the resonance lines observed from
conduction electrons vary a great deal from substance
to substance and with frequency and temperature in a
given case. This width arises from a variety of causes.
Because of the motion of the electrons there is a
"diffusive broadening"" which, however, becomes very
small for particles much smaller than a skin depth. A
width remains which increases rapidly with increasing
temperature' ' and is therefore probably due to a spin
lattice relaxation time. The width which occurs in
paramagnetic resonance of salts and arises because
electrons in diferent states have different g values and
see diGering magnetic fields from the other electrons
and nuclei is negligible in this case because of motional
narrowing. It has been shown for similar problems"
that, if the expected energy spread is hen but the
electrons change states in a time r, because of inter-
actions with the lattice, the actual spread is Ae 7,. Since
r, is very short (10 " sec or less) this line width is
never appreciable except possibly in case C.

Overhauser' has studied spin-lattice relaxation on a
free-electron picture, but he finds that the times ob-
tained from various mechanisms are somewhat longer
than those observed in alkali metals. 4 If his formulas
are naively extended to the semiconductor results, the
agreement is much worse. We shall discuss below an
effect involving the spin-orbit coupling which gives fair
agreement with experiment, and some of the discrep-
ancies are possibly due to the crudity of the approxi-
mations involved.

The relaxation time 7- can be conveniently defined' "
in terms of the number E+ of electrons with spins
parallel to the applied magnetic field and the number
S' antiparallel. If the population difference D=Ã+
—E is denoted by Do at equilibrium, we have

where 5'+ is the rate of transitions of electrons from
the (+) to the (—) st'ates. These W are proportional
to the square of the matrix elements of an interaction
between the electron and the lattice which causes a
spin Alp.

It was shown in Sec. II that when spin-orbit inter-
action is considered, the two classes of electrons which
make up each band no longer dier just by the spin
orientation but are described by wave functions of
mixed character like Eqs. (4) and (6). Except when we
are near a degeneracy point, the wave function can
usually be written in a form where the function is
overwhelmingly one of spin type with just a small
admixture of the other orientation. In other words a&)b.
For convenience we shall continue to refer to these
states simply as the (+) and (—) types. Now let us

suppose that there is some interaction which scatters
an electron from k to k' without changing the spin.
The matrix element in the process will contain in first
order the integral

(43)

Then the same interaction will cause transitions from
one kind of spin state to the other but the matrix
element (43) must be replaced by

J
(tt—k'3Lintf k fi—k'xintPk)s (44)

In a number of cases we shall show in detail below that
the matrix elements (43) and (44) are in the ratio
bk/ak (=c, say). Then the probability of an electron
making a transition from ~k,+) to ~k', —) is c' times
the probability of it making the transition ~k,+) to

~

k', +). Now, except for an angular factor which
discriminates against forward scattering, the matrix
element (k, + ~X;„,~k', +) enters into the expression
for the relaxation time ~g characteristic of electrical
resistivity, " in exactly the same way in which
(ft, +~BC;„&~k',—) enters into rs as obtained by (42).
Thus we expect c'rs=rtt. Further in Secs. V (A) and
(3) we showed that c~)i//hE which is also of the same
order as hg. Thus we have

rs rR(g 2)'. —

In order to completely satisfy ourselves of the applica-
bility of this relatiov we shall consider in detail below
the expressions pert: ~'ng to lattice scattering in alkali
metals, and to lattice and impurity scattering in semi-
conductors. The formula is not. expected to apply to
the case when the spin-orbit coupling is large and g is
not nearly 2 as in Sec. V (C), but this must be con-
sidered separately.

ss See for example A. H. Wilson, Theory of Metals (Cambridge
University Press, Cambridge, 1936) or F. Bloch's original paper,
Z. Physik 52, 555 (1928).
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. VIII. RELAXATION BY LATTICE SCATTERING 'where II(k,k') is the probability that an electron in
IN ALKALI METALS state k is scattered into state k' and 8 is the angle

In an alkali metal the wave functions of the partially between k and k . By using perturbation theory, II is
occupied band can be written to a good approximation proportional to the square of the matrix element,
by Sardeen's method'4 in the form

1
LQ up(r —d)+i(k r—d)ui(r —d)]e'"' (46)S a

where 00 and N& are spherically symmetric. Yafet
incorporated spin-orbit coupling into Bardeen's method
and obtained wave functions of the same form except
around each lattice point the expression in square
brackets had the form

(r, k, yIx;., IQ, k', +)
1

— Q expLi(k' —k+q) d]~S M&

X~
~ u (r) (t, A) I

(k' —k) r]u (r)a(q)
cell

XexpLi(k' —k+q) r]dr IQ) (51)

I up(r)+i(k r)ui(r)+c(kXr)zup(r)] I+) Lusing state (47)]. Here J' and Q are states of the
+c'(kXr)x+;rup(r)I —). (47) lattice, and II is an average over all such possible

states. Now
The subscripts X, V, Z refer to the components of these
vectors along axes chosen so that the Z axis is the axis
of the applied magnetic field H, which is also chosen as
the axis of quantization for the spin. N2 and N3 are
spherically symmetric wave functions, and c and c' are
constants, which Vafet obtains by numerical compu-
tation. If first-order perturbation theory had been
used, the same form would have resulted with

Pp expIi(k 'k—+d) r]=Nb. (k' k+d —K„),—

where K„is a vector in the reciprocal lattice. If we
make the further simplifying assumption that E„=o
(i.e., if we neglect the "Umklappprozesse"), Eq. (51)
can be written

and

c=c'-) /AZ= (g—2),

ui(r) = up(r) = up(r).

(J'IE(t, (k'-k)a(q)&(k'-k+q) IQ&,
M

where
We write the interaction Hamiltonian arising from

the distortion of the lattice by the phonons as 8 = up(r) (A r)ui(r)dr.
cell

1
g a(q)t, Ae'p'+int 49

Then, following the usual calculation, one gets at high
temperatures, where T))8& (the Debye temperature),

where M is the mass of the crystal, q the wave vector,
a(q) the amplitude and tp the polarization vector of a
phonon and the summation is carried over all allowed
phonons. In calculations of resistivity an explicit
expression has to be taken for A, but we need only
assume its transformation properties since we wish only
to compare our rs with rid (for which we can take the
experimental value). We assume that A transforms as
a vector, in common with some other resistivity calcu-
lations. ""This simplifies the algebra considerably but
gives the same order of magnitude as a more general
interaction. We first outline the simple perturbation
method of calculating rip using the Hamiltonian (49).
Bloch" finds that, assuming the e&ective mass concept
is adequate I

i.e., E(k) =k'k'/2m*],

(2mkp&kT )
IB' (1—cos8) sin8d8,

E ~Apts' ) J
(53)

where ko is the value of k at the top of the Fermi
distribution and 5 is the velocity of sound. If we assume
the simple Debye theory, the maximum possible value
of g

gmax= 2 &0 (54)

Thus, with K„=O,the limits of the integral in (53) are
0 and 8=2 sin '(2 ') and the value of the integral
becomes 2 '"'. With these approximations then

1/r, =m*kpykTBp/215pMS'2~. (55)
1 t'ppp*KVq

II(k,k') (1—cos8)d(cos8), (50)( as~)~ Tg the spin-relaxation time, can be readily calculated
using Overhauser's method. ~ It is simply necessary to

~ J. Bardeen, J. Chem. Phys. 6, 367 (1938). substitute the matrix element of (44) into his formula
~5 The best calculation for alkali metals is that of J. Bardeen,

Phys. Rev. 52, 688 (1937). for W+ and carry out the appropriate averages. In



this case the element required is

(P, k, +IX;„gIQ,k', —)

= (P
I Q g exp[i(k' —k+ q) tel

a iVQM a

X )t uo(r) (tq A) [(k+k') Xr) jx+;r
cell

Xu&(r)u(q) exp[i(k' —k+q) r)dv IQ)

= (P IZ[(t,x (k'+k)j.„.
Xa(q)8(k' —k+q) IQ)B(g—2), (56)

if we use (48), and put K„=O as before. We can
follow the argument in Sec. II of Overhauser's paper.
The square of the matrix element (56) when averaged
over all polarizations of q is

what smaller than unity, at high temperatures. At low
temperatures however the (1—cos8) term has a much
more profound eGect. Since only long wavelength
phonons are present only small angle collisions can occur
(the maximum value of 0 is kT/kSko if T«OD). The
angular integral therefore varies as T' and since the
number of phonons varies as T', 1/rg~ T'. On the
other hand, in the absence of the angular factor 1/r&~
~ T'. Bloch" showed that the ratio of 7-g at T& and T2
if T,«On«T2 is

'r jg (2)/rz (1)=497.6 (T&/On) '(Tg/T2) .

If we make the simple assumpt:ion that 1/rs is propor-
tional to the number of phonons we obtain from the
Debye function a similar expression

&s(2)/rs(1) = 13.3 (Ts/On)'(Ts/Tr).

Therefore, if T&(OD,

B2(g—2)2(~,y1)kIk+ k'I /msq ~s-(»~/(g 2)') (T/—On)' (60)

(where q is written for his k). With this we obtain,
instead of his expression, on p. 692

dD VB'(g 2)' t. —
,

I [ff~'(~,+1)+ff,'~q]
dt m.MS&T

X
I
k+k

I
'kdkdq (D—Do) (57)

At high temperature T»On, this gives

1 nzko Vk TB'(g—2)' ( q,„,„

I
2 log —2-:— I, (5g)

7.s 2~5'MS' E q; )
where q, is given by (54) and q„„„dependson the
particle size (see Overhauser). In fact: q, /q,„;„is
approximately equal to the particle diameter divided
by the atomic diameter. For the small particles used
in resonance the log may be expected to be of the order
of 10.

With the above approximations we have

&S (59)
2'"(g—2)'»g(q--/q- -) 3o(g—2)'

The numerical factor arises partly from the different val-
ues for the averages of (t, q) ' and

I [t,X (k+4') $x~ r I

'
over the directions of polarization of the phonons.
Another numerical factor arises from the (1—cose)
term which is present in resistivity calculations to
discriminate against forward scattering but does not
appear in the relaxation calculation. Because our
treatment used a 8 independent of 0, neglected the
"Umklappprozesse, " and assumed the simple Debye
theory for the lattice waves, the above calculation
cannot be very accurate. Nevertheless we can expect
rs=nrp/(g 2)', where 0. is a nu—merical factor some-

A more correct calculation would no doubt change the
numerical factor, but if the conductivity obeys the
usual T ' law at low temperature as is the case in the
alkali metals, we can expect 7-s to vary as T ' and to
be given roughly by (60) in the same region.

It may be pointed out that because of the factor
(t, q) occurring in (52), only longitudinal phonons
contribute to the resistivity (as is well known), while
the [t,X(k+k') j in (56) means both transverse and
longitudinal phonons contribute to the spin relaxation.

In the alkali metals the relaxation time for resistivity
is at room temperature approximately 1&10 ", 3
)&10 ", and 2)&10 "sec in Li, Na, and K, respectively.
Unfortunately, the g values are so close to the free-
electron value that there is as yet no reliable experi-
mental value of Ag except that in Li and Na it is 10 '
or less. In view of the usual increase of spin-orbit
coupling with increasing atomic number we might
expect Ag to increase as we pass along the series.
Yafet' calculated Ag in Na to be 3X10 4, which by our
formula (45) leads to a spin-lattice time of about
3&10 ' sec, whereas the observed4 line width at room
temperature corresponds to about 1&10 ' sec. The
agreement is surprisingly good—in fact much better
than our crude assumptions justify. The experimental
value of Ag may of course make some di6'erence.
Overhauser' obtained relaxation times of about this
order, but somewhat longer, by his process, and it is
not possible to rule this out because of the above
agreement. It is, however, possible that more detailed
experiments could decide between the two processes
since Overhauser's shortest time varies slightly with H.

We expect that our mechanism will hold for most
metals and it is of interest to consider briefiy the order
of relaxation time we may expect. In the noble metals

"F, Bloch, Z. Physik 59, 208 |,'1930).
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the resistivities are low and rg is again 10 "sec, but it
is believed from measurements on the transition metals
that the band overlaps with bands made up largely
from the atomic d electrons. Thus we would expect this
band to have some d character and because of the
nearness of the other band we expect ) /AE and hence
Ag to be somewhat larger than in the alkalis. If Ag
were ~10 ', this would lead to z8 10—io sec and a
very broad line at room temperature, which may
prevent the observation of the resonance. However, it
should be easier to see at helium temperatures where v-~

is 100 times longer. In other metals it is known that
the bands overlap and here again this may lead to small
AE and larger hg with similar eGects. In these metals
the resistance is often larger than in the alkalis and 7-~

may be less than 10 " sec at room temperature.

IX. RELAXATION BY LATTICE SCATTERING
IN SEMICONDUCTORS

In this case it is not as easy as it is in the alkali
metals to write down wave functions which are a good
approximation for calculating resistivity, and hence the
argument for proving that (45) is a good approximation
cannot be as precise. However, Bardeen and Shockley'"
have been able to relate the scattering of electrons by
lattice waves to the elastic constants and so account for
the resistivity observed at high temperatures in e and
p-type silicon and germanium.

The interaction is very similar to the one discussed
in the last section, although the details of the calculation
are modified by the fact that the electrons involved
have small k vectors and can only interact with phonons
with small q (i.e., long wavelength); and the statistics
are different. These modifications can be readily taken
over into a calculation of 78 which will go through in
exactly the same way as in the last section with both
kinds of phonons taking part. For a single band where
the wave functions have the form (4) and the compo-
nent of the wave function with reversed spin is of
order X/AE (g 2) the matrix —elements for a spin flip
process are (g—2) times those for resistivity as before,
and r8 rg/(g —2)'. If case (8) of Sec. V holds and the
electrons occupy states near a band degeneracy the
calculation is complicated by the fact that electrons
can be scattered from states in one band to states in
another. However a rough calculation shows that for
every scattering there is an equivalent process which
causes a spin Rip and again the matrix elements are in
the ratio (g—2):1 except for some angular factors which
will on the average be of order unity. So the expression
for rs still holds. In the other case (C) the situation is
more complicated still. For example at su%ciently high
temperatures there will be phonons present which could
give electrons sufhcient energy to jump from one band
to another, but this will not be true at low temperatures.
We shall not consider this case in detail here, but rough

"J.Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

calculations show that for electrons with kinetic energies
comparable with the splitting of the degeneracy v-& is
of the same order as v-g.

For n-type silicon'8 the resistivity at high tempera-
tures appears to be independent of impurity content and

10 'T: sec,

where T is the temperature in 'K. The experiment. s
indicate that Ag 3)&10 ' which gives

10 ' sec at 300'K,

and a line width of 50 gauss compared to an observed
30 gauss which can be considered good agreement in
view of the uncertainties in the formulas and in Ag. In
germanium the v-g are some 5 times longer, " and the
over-all absence of resonance can be accounted for
only if Ag is large in both types. Certainly if we have
the nearly degenerate bands this can be expected.
Even if the bands were like those in silicon and case A
could be applied, we would expect Ag=), /AZ to be
greater since X is greater by what could well be a factor
of 20. Allowing for the longer ~jg would increase the
line width by a factor of 10' and account for the failure
to observe resonance at high temperatures.

X. RELAXATION BY IMPURITY SCATTERING
IN SEMICONDUCTORS

In germanium and silicon semiconductors" " of
relatively low impurity content it is found that 7&&,

which we noted in the last section varies as T: at
high temperatures, passes through a maximum as the
temperature is decreased and then decreases with
decreasing temperature. This is caused by the inter-
action between the electrons and the impurity centers,
an interaction which increases with decrease in velocity
(and hence in temperature as long as we remain above
the Fermi distribution). We expect that this mechanism
will also give rise to a spin-lattice relaxation time, since
the argument of Sec. VII would sti11 seem to apply.
However, if there is a similar proportionality factor we
would expect the curve of line width against tempera-
ture to have exactly the form as the inverse of the
mobility curves (see Fig. 9 of reference 28), but the
resonance experiments do not show this. '

Unfortunately it has not so far been possible to give
an account of resistivity from this mechanism in terms
of reasonably correct wave functions. Conwell and
Weisskopfs' calculated the effect by use of a free electron
model and obtained curves which give quite good
agreement with the form of the experimental results.
We have calculated the relaxation time due to the spin-
orbit eGects caused by the impurity itself on a similar

"G.L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949)."J.R. Hayes and W. Shockley, Phys. Rev. 81, 835 (1951).
The experimental data have recently been reviewed by E. M.
Conwell, Proc. Inst. Radio Engrs. 40, 1327 (1952).

E. M. Conwell and V. F. Weisskopf, Phys. Rev. 71, 388
(1950).



278 R. J. ELLIOTT

model but find that the times are far too long to give
an observable eGect. (See Appendix. )

We consider that the impurities cause an interaction
which in a medium of dielectric constant a is

es exp( —r/p)

D

where D are a random selection of r) of the lattice
points and p is a screening radius which will be taken
as the Debye length.

Fourier-analyzing this potential" ra~re/(g 2) R ksy . (64)

contains terms linear in (k —ki) a'nd then (63) is seen
to be of order of magnitude XkA„R/hE where kA, is the
average value of k measured relative to an origin at ki
and E is a quantity of the dimension of length which
represents the magnitude of these second-order terms.
If the electron wave functions are tightly bound about
the nuclei, E can be very roughly taken as the atomic
radius. (It may be noted that the alkali metal wave
functions (47) lead to an order of magnitude ckA„sR'

since b is zero to first order. ) If we neglect the small
numerical factor arising from the angular dependence,
we obtain

we 6nd

V= Vs exp(ik r)dk

g2 p2

Vs ——(P exp(ik D))—
D «k'p'+1

(61)

ra/(g —2)'ci. (65)

Below the Fermi temperature the average value of k
is ko, the value at the top of the Fermi distribution.
If each impurity donates one electron, ks ——(3n'm/V)',
so that Rkp= (3wn/41V)'. So if c is the concentration of
impurities,

The matrix element

$2p 2

(k'+ ~X~k+)= (P exp(ik. d))
«(q'p'+1) n

Above the Fermi temperature ks„' 2ttskT/k', so

r s r~LA'/2mkT (g—2)'as'j, (66)

X (its *~s+bs *4)dr, (62)

where k —k'+q=0. The matrix element required for
rg is

$2p 2

(k' —~K~ k+)= (Q exp(ik D))
«(q'p'+1) &

X (a s bs b sas)dr —(63—).
Thus, except for some small numerical factors arising
from the angular dependences, r /r sisrrproportional to
the ratio of the squares of the integrals in (62} and (63).

Now in case (A) we saw by perturbation theory that
bs (X/DE)vs, where use'"' is the wave function of
another band in the absence of spin-orbit coupling. In
a semiconductor where we are concerned with just a
few electrons in a band, k will not be very different
from k', and all the wave vectors will be clustered
around some value ki which is not necessarily at the
center of the zone (e.g., in the 6-valley model for n-Si).
We may therefore use a perturbation procedure. "To
first order uj, ——aA, =a~, and s~ ——vI, .——vj,„sothe inte-
gral in (63) is zero. To second order, each wave function
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to obtain our Eq. (12). It is similar to Bardeen's method (see
reference 24) which gave the wave function (46).

where ao is the atomic radius.
For case (B) of Sec. V, however, (63) is no longer

small since the di6'erence between aI, and a~ is a first-
order e8ect in their angular dependence. And so, since
b (g—2)a we again have rs~rrr/(g 2)'. If case (—C)
holds in the general case where the electrons have
kinetic energies comparable with the band splitting b

and u will be of the same order of magnitude and our
crude argument gives 7.q~r~.

In n-type silicon, (65) is satisfactory in that the
extra term c i not present in rg given by the phonon
scattering ensures that 7 z is determined by the phonons
to a much lower temperature and there is no maximum
as there is in rz. The actual magnitude of rz given by
(65) is a factor 10' too small to account for the line
width at O'K'. This may partly be accounted for if the
picture of six energy minima is correct. In this case
the nearest excited band is relatively close and admix-
ture of it may be somewhat larger than kao. Further
the scattering process in which the electrons change
from states in one minimum to those in another gives a
relaxation time related to the 7.~ for this process given
by (46) rather than (67). This rg is, however, much
smaller than that observed.
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—f(k', p)[1—f(k, e~) j)b[E(k)—E(k')
4V'

+2PHjIiI' dkdk'. (A4)
(2m)P

( Q' e' jPe'
vp ——+ —l S Ie=m. (A1)

2m kr 2k''c' r'

APPENDIX f(k, e) and substituting in (42),

If the spin-orbit effect is included, the equation dD 2m.

describing the scattering of a free electron by a point =ls—
J J (f(k, e+)[1—f(k'~e —)j

charge +IeI representing an impurity center in a
medium of dielectric constant k is

The last term gives a probability that the electron will

Rip its spin in the process of scattering. YVe consider the
electron as free so that its wave function is (1/g U) e'"'
when in a state Ik}. From the Born approximation,
the probability that an electron is scattered from k to
k' and Qips its spin is proportional to the square of
the matrix element,

where X=A&e'/2k''c', and X, V, are two axes chosen
perpendicular to the axis of quantization Z of the spin.
H there are m such impurity centers in the volume V,
the total scattering probability will be m times the
probability of scattering by a single center. It is con-
venient to assume that at any time the electron sees
only the nearest center and that on the average it sees
each center when it is within a distance R of it; where
4prR'/3= V/n. The integral in (A2) is therefore taken
over a sphere of radius R. If we put k —k'=K, ele-
mentary integration gives the matrix element equal to

2iprA (sinER —1
I
[(kxk')x+i(kxk') r].

VE'0 ER )

Because of energy conservation
I
k

I
=

I
k' I, so that if

the angle between k and k' is nI KI =2k sin(n/2)=2ks.
If we further call the angle between (kXk) and Z, p
(A2) becomes

X (sin2kRS ) n
I=i~ —1

I
cot—sing.

V( 2kRS p 2
(A3)

Following Overhauser' we let the electrons with spin
parallel to Z form a Fermi distribution with Fermi
energy e+ and those with spin antiparallel have Fermi
energy ~ . By writing the Fermi distribution function

1
(k, + I

x—(l S) I
k', —}

r3

1
e '~'" (lx+ilr)e—'""r'drd(coso)dp, (A2)

2V~

f(k&p+) f(k &e ) = (e+ e )[Bf(k&e)/Be5e =op

= (e+—e )b[(b'k'/2m) —ep],

where ep is the Fermi energy. After some manipulation
we obtain

1 32rrlsnzkp e' (sin2kpSR) ' (1—S')
dS. (As)

3Vfi' ~p E 2kpSR j S
The integral in (A5) can be reduced by tedious but
elementary manipulation to

1 cos2kpR sin4kpR——+sin2kpR—
2 2kp'R' 4kpR

1 ( 1
(1—cos4kpR)+I 1—

I log2ykpR
16k 'R' 8kpPRP)

1—
I

1+ —I[log2 —Ci(4kpR) j—2Ci(2kpR), (A6)
8k(PR')

where
p' 1—cost

Ci(x) = logyx — ' dt,
t

and is given in Jahnke and Emde" (y is Euler's con-
stant). If we apply a simple one band model and if each
impurity has donated one electron to the semiconductor,

kp ——(3n'ls/V)&= (1/R) (9s./4)'*. (A7)

Putting kR=2 then, we 6nd (A6) has the value 1.81.
In a typical observation' n-Si was used where ls/V

10'P/cm' and k 10. If we put these values in (A5)
and (A7) we get 10' sec. This is very much too long
to give any observable line width. It is possible that
the effect has been somewhat underestimated because
(a) the fact that the electron will spend relatively more
time near an impurity than the free model allows; and
(b) the effective charge seen by the electron when near
the impurity center will be greater than one and hence X

will be greater. Nevertheless it does not seem feasible
to introduce the factor 10' which would be required to
make this mechanism effective, and we conclude that
it can make no contribution to the line width.

e' K. Jahnke and F. Emde, Tables of FNnelioms (Dover Publi-
cations, New York, 1945).


