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The principle of minimum entropy production says that the steady state of an irreversible process, i.e.,
the state in which the thermodynamic variables are independent of the time, is characterized by a minimum
value of the rate of entropy production. This theorem, due to Prigogine, is proved by the methods of statis-
tical mechanics for a particular process —the Row of matter and energy through a narrow tube connecting
two containers of an ideal gas. The two containers are maintained at slightly different temperatures. The
resultant form for the entropy production in the steady state, and the method used in the proof, give addi-
tional insight into the significance of the principle of minimum entropy production.

I. INTRODUCTION

HE principle of minimum entropy production
gives a thermodynamic criterion for determining

the steady state of a system in which an irreversible
process is taking place. The criterion can be formulated
very simply: the steady state is that state in which the
rate of entropy production has the minimum value
consistent with the external constraints which prevent
the system from reaching equilibrium. The equilibrium
state takes its natural place in this way of looking at
thermodynamic processes as the simplest kind of steady
state. When there are no constraints, the system pro-
ceeds to that state in which the rate of entropy produc-
tion is zero, i.e., to the equilibrium state. When con-
straints, such as an externally maintained temperature
difference between parts of the system, prevent the
system from reaching equilibrium, the system does the
next best thing: it goes to a state in which the thermo-
dynamic variables do not change with time and in
which the smallest possible amount of entropy is
created per unit time.

This characterization of the steady state as the state
of minimum entropy production is due to Prigogine'
and, in a somewhat generalized form, to de Groot. ' The
proofs given by both authors are based on the Onsager'
relations, which form the starting point of the recently
developed thermodynamic theory of irreversible proc-
esses in the steady state. 4

Because the principle of minimum entropy produc-
tion has a wide range of applications and because
it seems to pick out an essential feature of irreversible
processes, we have tried to derive it by the methods of
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statistical mechanics. The method we have used is a
generalization of the method used by Pauli' to derive
the second law of thermodynamics (or H theorem) from
quantum mechanics. This method has recently been
discussed by Thomsen, ' and we have drawn upon
Thomsen's paper in our own work.

Using this method we have derived the principle of
minimum entropy production for a particular irre-
versible process —the Qow of matter and energy through
a small capillary connecting two containers of an ideal
gas. The two identical containers are maintained at
slightly diferent temperatures by two heat baths.
Starting with a set of equations which gives the time
variation of the numbers of molecules in the energy
states of the two containers, we have proved that the
steady state corresponds to that set of occupation
numbers which minimizes the rate of entropy produc-
tion. Two features of interest in our derivation are the
necessity for a small temperature difference between the
two containers and the important role played by the
two heat baths in the entropy production. Our final
form for the rate of entropy production in the steady
state has a simple physical interpretation relating the
entropy production to the Qow of heat from one heat
bath to the other.

We conclude this introduction with an outline of the
contents of the subsequent sections. Section II contains
the detailed specification of the system considered, and
includes the basic stochastic equations for rates of
change of the relevant probabilities. Section III
contains the derivation of the equations for the rate of
production of entropy, and includes a discussion of the
role played by the heat baths. Section IV contains the
proof that the steady state is the state of minimum
entropy production, and includes a discussion of the
necessary assumptions. The final section contains a
brief discussion of the entropy production in the steady
state.

II. SPECIFICATION OF THE SYSTEM

Our physical system consists of two identical con-
tainers, C» and C2, each of volume V, containing a total

' W. Pauli in Probleme der 3Eodernen Physi&, edited by P. Debye
(S. Hirzel, Leipzig, 1928), p. 30.

e J. S. Thomsen, Phys. Rev. 91, 1263 (1953).

250



PRINCI PLE OF M IN I M UM ENTROP Y PRODUCTION

of N molecules of an ideal gas. The two containers are
connected through a narrow capillary tube. ' We assume
that the dimensions of the capillary tube are so chosen
that collisions between molecules in the tube can be
neglected. We assume also that collisions of the mole-
cules with the walls of the tube do not affect the energies
of these molecules. Each container is in good thermal
contact with a heat bath, the heat baths having tem-
peratures T& and T2, respectively. We shall eventually
have to assume that T& and T2 dier by an amount
small compared to either, but we shall not make this
assumption until it becomes necessary.

I.et us denote the energy levels of a molecule in one
of the boxes of volume V by e; (i =1, 2, ). Since the
boxes are identical the energy levels are the same in
both containers. We can specify the state of the system
at any time by giving the values of the two sets of
occupation numbers n, &", n, &2) at that time. The symbol
n;"' represents the number of molecules in the ith
energy state in C» and e;") is defined similarly.

For later developments it is slightly more convenient
to work in terms of the occupation probabilities rather
than the occupation numbers. We, therefore, make the
following definitions:

p;= js;&'~/jV, q, =n, "'/!V.

We notice t:hat p; is the probability of finding a molecule
in the ith energy state of C» and q, is defined similarly.
The p; and q; are subject to the obvious restriction

Z(p'+q') =1, (2)

which expresses the constancy of the total number of
mole cules.

Our first step is to state the equations giving the time
variation of the p, and q, . Let us define a;j as the prob-
ability per unit time that a molecule in C» originally
in state i makes a transition to state j, remaining in C&.

We define c;; as the corresponding transition prob-
ability per unit time for a molecule. in C2. Let b;; be the
probability per unit time that a molecule in state i
moves from C& to C& or conversely. By the assumption
discussed above we need not consider any but the
diagonal b;,.

The equations' for the time rates of change dp, /dt
and dq, /dt are now taken to be

molecules come into state i (in Ci) from all other states
j (in Ci), plus the probability that molecules come into
state i from Cs(b;,q,) minus the corresponding prob-
abilities that molecules leave state i for the other states
in C~ or for C2.

We must now point out the relations among the a,;
and among the c;; which follow from the fact that C~

and C2 are in contact with heat baths at temperatures
T& and T2, respectively. The relations in question are

and
(6)

These equations are derived in the Appendix. The
derivation is based upon the conservation of energy for
the system of container and heat bath, and upon the
rapid increase of the density of energy states of a
macroscopic system with increasing energy.

III. THE ENTROPY PRODUCTION

The rate of entropy production in our problem can
now be expressed in the following schematic form:

dS/dt = (dS/dt) c,+ (dS/dt) cs

+(dS/dt)a, +(dS/dt)as. (7)

The first pair of terms express the rates of entropy
production in the gas in the two containers, and the
second pair of terms express the entropy production in
the two heat baths. The presence of this second pair of
terms is worth special mention; we must include them
since the heat baths play an important part in the
production of entropy. We shall return to a discussion
of this point later in the section.

We must now evaluate the four terms of Eq. (7).
Consider first the entropy production in the gas, the
first pair of terms. The entropy of the gas can be ex-
pressed in terms of the molecular occupation numbers
as'

Scr+Scs= —& P$ss "' »gjs "'+is "' »gjs "'$ (g)

or in terms of the occupation probabilities as

Scr+Sc&—— jVle QLP; logp;+—q, logq~]+jVk logjV. (9)

and

dp~/«=2( 'P 'p')+f "( ' p—'), —

dqi/dt=g(&jiqj &ijqi)+f ii(pi qi) ~

(3)
Differentiating with respect to the time and substi-
tuting from Eqs. (3)—(4), we obtain

(dS/dt) ci+ (dS/dt) r. s

&&LE»gp'(2( —P —' P')+&"(q"'—p') }
Equation (3) can readily be interpreted: the time rate
of change of p; is the sum of the probabilities that

See the discussion in reference 2, and also in H. 8, G. Casimir,
Revs. Modern Phys. 17, 343 (1945).

s A. J. F. Siegert, Phys. Rev. 76, 1708 (1949).

+Z»gq'(Z(c, 'q;-c', q')+f "(p'—q') }3. (»)

R. C. Tolman, The PrinczPles of Statistical Mechanics (Oxford
University Press, London, 1938), Chap. VI.
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Differentiating Eq. (15) with respect to p„we obtainOur next task is the evaluation of the entropy pro-
duction in the two heat baths. Consider the bath B~
at constant temperature T:. We can write, for its rate ~("

~
&& ~(1

of entropy production, tip, Edt ) E kT, )
(dS/dt) a,= (1/Tt) (d U/dt) a„

(dS/dt) at = —(1/Tt) (d Ut/dt);„ker„. t. (12)

Since Ut is just X P; e,P;, we can evaluate the right-
hand side by omitting the last term in Eq. (3) and
obtain

(dS/dt)a, = —(lV/T, )Q e, Q(u, ,P, a,,P,). —(13)
'b 1

where Ua& is the internal energy of the bath, and where
the right-hand side expresses the fact that any energy
which enters or leaves the bath does so at temperature
T&. Since the bath 8& exchanges energy only with the
gas in C~, it follows that the rate of change of Ua~ is the
negative of the rate of change of U&, the internal energy
of the gas in C&, if we omit from the latter the energy
exchanged with container C2. Thus, we can write the
following equation for (dS/dt) at,

( Pi i (q, i qrt+El lk1.—l2.1 I+&- (
—1 [+log— . (16)"~p, ),lJ

Similarly, by differentiating with respect to q„, we
obtain

8 (dS) ( e; f»I Z-l»gq'+ I("—5-2 "l)
Bq„ddt ) ' ( kT2) 1

( q i (P l P+2( c.—"I+&„
I

—11+log— . (17)
1 ( q ) (q ) q„

We cannot set these derivatives equal to zero because
the p; and q; are subject to the constraint expressed by
Eq. (2). If we introduce a Lagrange multiplier t2 to
take care of this constraint, and at the same time make
use of Eqs. (5) and (6), we can write the conditions for
a minimum of dS/dt as

Similarly we obtain the equation p
err'lkT1 (p. err'lkT1,

lJ, =Nk p 12„, log +i ———1
i

(dS/dt)a2 (N/T2)Q e pr(C&&qz' Cr'lq ') (l4) r' p errlkT1 (p errlkT1 )

dS (dp')—= —&&2 I l»gp+I I»gq'
dt 1 ( dt ) 0 dt )

e' (dp') e' (dq'lt+ I I +
I T, E dt );„,. I.*T, & dt );„,.

= —V&Z
I logP'+ ll&(o P ~'P')—

e, )+ l»gq'+ IZ(c,'q,—c',q')
tT, )

+& (logp —»gq)(q —P) (15)

Combining Eqs. (10), (13), (14), we have the final
expression for the total rate of entropy production:

q„(q„
+tl,„ log—+( —1

)

(p„

q
.er flkT2 (q err'/ kT2

l =lVu pc„; log
q

errlkT2 i q
errlkT2 )
Pr (P

+b„, log—+i ——1
)

. (18)
q, (q„

At this point we must introduce the assumption that
the system is not far from equilibrium. We may make
this more physical by saying that we require that the
temperatures T, and T2 be given by T+8T and T bT, —
respectively, where only first order terms in oT/T need
be maintained. Further, we require that the gases in
the two containers be nearly in equilibrium at the
respective temperatures T& and T2. We may summarize
the restrictions by the equations

IV. THE STEADY STATE

We must now prove that the set of values of the p'
and q; which minimize the rate of entropy production&
as given by Eq. (15), are constants in time, i.e., con-
stitute a steady state of the system. Before we formulate
our theorem, we shall obtain the equations determining
the p, and q; which minimize dS/dt. "

'0 This discussion generalizes that given by Thomsen in reference
6.

—= 1+8„,
p

n .
t

&j/@T2
q2

n g&s/@T2qs

= 1+a.;,, (19)

"Compare with I. Prigoginer Physica 15, 272 (1949).

where 6, p, and r are functions of the time in general
but are all small, and second-order terms in any of
these quantities may be dropped. "

Under these assumptions we shall now prove the
basic theorem: the necessary and sufFicient condition
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(dS) la;; a;,
bl —

I
= N—l Z bp—'bp~ —(b—p')'

', lp,' ' '
po

A. SuRciency
c, ,; c,,

t
(bp)'+ bq,—bq —(bq—;)' +g b" ——Given that (dp, /dt) =0 and (dq/dt) =0 (all i), we

are to prove that for these values of the p; and q;,
dS/dt is minimum. From Eq. (3) it follows that

(bq')' q"+P"——+ bp, bq; . (25)
q,o p .Oq,ob;;(q,—p,)+p(&;;p;—&;,p;) =O.

that the entropy production is a minimum is that all by p o and 0,0. A direct calculation from Eq. (15) gives
p; and q; are independent of the time, i.e, that the
system is in a steady state.

( q;q (p,e' '" '
b„~ 1—~=q.„l

p J (P,8~;/+r~ ] (2o)

If we make use of Eq. (5) this can easily be rewritten
in the form

There are no first-order terms because we are computing
the change from a stationary value. In order to prove
that 8(dS//Jh) is positive we show that it can be ex-
pressed as a sum of squares. To do this replace P; a,;
and P, c;, by their values from the equations

Furthermore, if we make use of the assumption ex-

pressed in Eq. (19), we can rewrite Eq. (20) as
P a, ,p,'—p P c,;+b;;(q —p,') =0,

(26)

p ~e///" Fg

—b " log—=P a "log
p . / p .gE//Icrj

(21)

Now, Fq. (20) and (21) tell us that the equations which
determine the minimum for dS/dh, Eq. (18),are satisfied
for all r with p=0. This result, with a similar argument
for the terms in the g's, proves the suSciency of our
condition.

B. Necessity

Given that dS/dt is a minimum we are to prove that
for these values of the p; and q;, dp;/dt, and dq~/dt

vanish. Making use of Eq. (19) we can rewrite the
minimum conditions of Eq. (18) in the form

(p,

qadi/k

l r) (q
„=ZiVI P ~„,

~

—1 [+b,„) —1 [ . (22)
gp ~sr/kT& ) l p )

Multiplying by p„and using Eq. (5) yields

/Jp„= 21K(dp„/dt).

Similarly, we can obtain the equation

//, q„= 2Nk(dq„/dt).

(23)

(24)

If we sum Eq. (23) and (24) over all values of r and
take note of Eq. (2) it follows that p must be zero.
Hence all dp, /dt and dq„/dt must vanish, establishing
our theorem.

One point remains for discussion —the proof that
the value of dS/dt is actually a minimum, rather than
some other stationary value, in the steady state. To
show this we shall compute the change r/(dS/dt) in the
entropy production for small changes 6P;, bq, in the~,
and q; from their steady-state values which we denote

& ~ 'q" q" 2 ~*—+b" (P,' q,') =o,—

which express the fact that p;0, q,
o correspond to a

steady state. It is also necessary to add to the resulting
expression for 6(dS/dt) the expression obtained from
Eq. (25) by interchanging the summation indices i, j
in the second and fourth terms of that equation. We
obtain finally

t'~» ( ~p' ~p (P')'i '
»I —I=N& 2 ~'

I

~(p;)-:

bq/(q")'i '

0(q )* qP )
l~p;+p b, ,(p,. +q.o)

~ )
o0 (27)

&p;o q,o),
which proves that the stationary value of dS/d& is
actually a minimum.

This completes our proof that the steady state is the
state of minimum entropy production.

V. DISCUSSION

The minimum entropy production in the steady state
can be expressed in an interesting form. If we examine
the first form of Eq. (15), we notice that in the steady
state the first two terms vanish, and we can write

dS e; (dp;'t
+

dt ' kTg 0 dt );„t. kT2 E dt );„t,. l

In the steady state the rate of change of p; due to
internal transitions is just balanced by its rate of
change due to molecules passing to or from the second
container. Using this fact as expressed in Eq. (26) we
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obtain the equation

or

(29)

(30)

A (inl jp) the transition probability per unit time from
(i, n) to (j, P), then the equation for dW; /dt has the
form

dW, /dt=p A(7plin)W, tz
W—; p A(inly/), (A-1)

where

In this form the entropy production, in the steady
state, is expressed as the sum over all states of the
product of two factors. The first, b,,(p,e q,o)i—V, is the
net number of molecules going from the first container
to the second per unit time. The second, (e,/T2) —(e;/Ti),
is the increase in entropy produced when energy e; is
removed from the higher temperature bath (Ti) and
delivered to the lower temperature bath (Tz). Hence,
the entropy is produced simply by the conduction of
heat from the higher to the lower temperature by means
of the flow of molecules. The steady state is maintained
since the total number of molecules in each container
(iV P p; and XP q;) remain constant in time. LWe
notice that the expression for d5/dt in Eq. (30) is
Positive since P;e) pie if Ti) Tz.]

In conclusion we may say that the theorem of mini-
mum entropy production has been proved, by the
methods of statistical mechanics, for a particular type
of irreversible process. This proof has helped to clarify
the assumptions on which the theorem is based and
also its position in the general framework of statistical
mechanics.

The probability m; of finding the system itself in
state i is obtained from the 8"; by summing over all
heat bath states o, , thus we have

io, =Q W;.. (A-3)

(A-4)dzsz;/dt=g a, ;io,—io, Q a...
and to sho~ that

(A-5)

In our notation e, is the energy of state i of the system
and E is the energy of state 0. of the heat bath.

Summing on n in Eq. (A-1) leads to the equation

ditz;/dt=p W,tip A(julia) —p Q A(znl f/)W, . (A-6)

We see that Eq. (A-6) is not yet in the desired form of
Eq. (A-4). To obtain this form we must assume that

Our problem is to rewrite Eq. (A-1), by summing
over n, in such a way as to obtain an equation of the
form

APPENDIX W, =io;/s, (A-7)

This appendix is concerned with the derivation of
Eq. (5) of the text which relates the transition prob-
abilities per unit time u;; and a, ; for a system in contact
with a heat bath at temperature T.

It can be shown by the use of quantum-mechanical
perturbation theory that for an isolated system the
transition probabilities per unit time are symmetric. '-

More precisely, if we have two nondegenerate states, a
and b, each being one of a group of closely spaced states,
then the probability per unit time of a transition from
a to b is equal to the probability per unit time of a
transition from b to a. {The condition of isolation
implies that real transitions occur only between states
of essentially equal energy. )

We shall use this result to derive Eq. (5) by con-
sidering the isolated system consisting of the system
of interest plus the heat bath at temperature T with
which it is in contact.

%e shall denote the states of the system by indices
i, j, and those of the heat bath by indices n, p,
If we denote by 8; the probability of finding the
combined system in the joint state (i, n), and by

"See reference 9, pp. 424-436, and E. C. Kemble, The Punda-
znentat PrinciPles of Qzzantzzzn 3Eectzanics (McGraIs-Hill Book
Company, Inc. , ¹wYork, 1937), Chap. XII.

where s„ is the degeneracy of the level o. of the heat
bath. It is important; that. we clarify the assumptions
cont:ained in Eq. (A-7). The 6rst assumption is that the
probability 8'; is the product of the probability m;
that the system is in state i and the probability that the
heat bath is in state o.. The second assumption is that
this latter probability is just the reciprocal of the
number of bath states of energy E . These assumptions
are justified by the fact that a heat bath is a system of
arbitrarily large heat capacity. Consequently, the prob-
ability of finding the bath in a given state is practically
unaffected by the coupling to the system.

Using Eq. {A-7) in Eq. (A-6) we obtain the equation

=2 w. '2 ~ (jPlin) —u; Q Q —A (injlP) (A-8).

Equation (A-8) has the form of Eq. (A-4) with

Ke must now evaluate s and sp. The density of
states in a heat bath varies as the energy raised to an
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enormous power M, of the order of the number of where 8=e~+E . Identifying h/M with kT we have
molecules in the heat bath. "Hence, if h is the energy
of the system plus bath we have cg//re sg—/kr'ss —cg/rre er/k—r (A $ ])

s =cE ~=c(8 e,)—~—cBM[1—(Me,/8)]
—cS~ exp (—Me, / h), (A-10)

"See reference 9, p. 490, and E. Schrodinger, Statistical Ther-
modynamics (Cambridge University Press, Cambridge, 1952), pp.
38 and 89.

since h, the total energy, is also equal to e;+E//.
Using Eq. (A-2) with Eq. (A-9) and (A-11), we

obtain Anally

which is Eq. (A-S).
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Equations are derived for the flow of electrons and holes through a surface barrier region by using the
emission theory. The solution allows for nonequilibrium concentration of carriers on the semiconductor side
of the barrier. It also allows for the possibility that part of the applied potential is between the metal surface
and the semiconductor surface, as would occur if the surface states do not remain in equilibrium with the
metal. The solution for the rectification characteristic is completed for the special case of small currents by
combining the barrier region equations with the solution for current How beyond the barrier region. The re-
sulting equations are compared with those for P-n junctions, and the implications are discussed with regard
to the relative roles of diffusion and emission in the Qow of electrons and holes. Finally, the small current
equations are compared with experiment, with a discussion of the evidence for the existence of an inter-
surface potential.

l. INTRODUCTION

' 'HE early "diode" theory for point contact rectih-
cation was based on the Qow of a single type of

carrier, and did not consider the eGects of minority
carrier injection. "After the discovery of the latter
phenomenon, the small current theory for p-rt junctions
was advanced by Shockley. ' The application of this
theory to point contacts was also discussed. 4

The present theory of point contact rectihers does
not agree with experiment in the current voltage
characteristic. The discrepancies have been discussed
extensively. "particularly with reference to the reverse
characteristic. In view of this disagreement, it seems
desirable to develop the theory in a more systematic
and rigorous fashion. In such a manner, one may be

*This work was first presented at the Cambridge American
Physical Society Meeting in February, 1953 /Phys. Rev. 90, 337
(1954)g.' R. C. Torrey and C. A. Whitmer, CrystaL Rect@ers (McGraw-
Hill Book Company, Inc. , New York, 1948), Chap. 4.

2 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, London, 1948), Chap. 5.

'W. Shockley, ELectrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc, , New York, 1950), Chap. 12.' See reference 3, pp. 95—101.' S. Benzer, J. Appl. Phys. 20, 804 (1949).

J. Bardeen and W. H. Brattain, Phys. Rev. 75, 1208 (1949).
J. H. Simpson and H. L. Armstrong, J. Appl. Phys. 24, 25

(1953)

able to investigate more carefully the validity of the
accepted model for surface rectification.

The behavior of a rectifier may be obtained from the
combination of the solutions of two separate problems:
The Qow of electrons and holes in the barrier region,
which is "emission" controlled; and the Qow beyond the
barrier region, which is diffusion controlled. A solution
of the latter kind, which is one dimensional and appli-
cable to p-n junctions or large area surface contacts has
been derived by Van Roosbroeck. ' The purpose of this
paper is to present a self-contained solution to the
former problem; that is, for the emission of electrons
and holes through the barrier region of a semiconductor.
In addition the solution will be completed for small
currents in point contacts, for which case the diGusion
problem has been solved; the results are compared
with p-n junction theory. A general solution for the
diGusion problem with radial Row, in combination with
the emission equations, would permit the discussion of
the forward (large current) characteristic of point
contact rectifiers. This will be done in a later paper.

The emission equations to be derived are more
general than the original diode equations in two ways.

This approach is discussed in a paper which has appeared
recently. See P. C. Banbury, Proc. Phys. Soc. (London) 866,
833 (1953).' W. Van Roosbroeck, Bell System Tech. J. 29, 560 (1950).


