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In this paper, we propose a physical model leading- to the causal interpretation of the quantum theory.
In this model, a set of fields which are equivalent in many ways to a conserved Quid, with density

~ P ~, and
local stream velocity, dg/dt = ryS/ns, act on a particle-like inhomogeneity which moves with the local stream
velocity of the equivalent Quid. By introducing the hypothesis of a very irregular and e6ectively random
Quctuation in the motions of the Quid, we are able to prove that an arbitrary probability density ultimately
decays into

~ P ~
. Thus, we answer an important objection to the causal interpretation, made by Pauli and

others. This result is extended to the Dirac equation and to the many-particle problem.

1. INTRODUCTION

A CAUSAL interpretation of the quantum theory
has been proposed, '' involving the assumption

that an electron is a particle following a continuous and
causally defined trajectory with a well-defined position,
g(t), accompanied by a physically real wave field,

P(x,t). To obtain all of the results of the usual inter-
pretation, the following supplementary assumptions
had to be made:

1. f(x,t) satisfied Schrodinger's equation.
2. d(/di= r'S/m, where f=R exp(iS/Is).
3. The probability distribution in an ensemble of
electrons having the same wave function, is I'=

~P ~'.

These assumptions were shown to be consistent.
Assumption (3), however, has been criticized by

Pauli' and others4 on the ground that such a hypothesis
is not appropriate in a theory aimed at giving a causal
explanation of the quantum mechanics. Instead, they
argue it should be possible to have an arbitrary prob-
ability distribution [a special case of which is the
function P=ll(x —xs), representing a particle in a well-

defined location), that is at least in principle inde-

pendent of the P field and dependent. only on our degree
of information concerning the location of the particle.

In a more recent paper, ' one of us has proposed a
means of dealing with this problem by explaining the
relation, I' =

~ f i

' in terms of random collision processes.
It was shown in a simplified case that a statistical
ensemble of quantum-mechanical system with an arbi-

trary initial probability distribution decays in time to
an ensemble with P=

~ P ~

'. This is equivalent to a proof
of Boltzmann's H theorem in classical mechanics. Thus,

' L. de Broglie, Compt. rend. 183, 447 (1926); 184, 273 (1927);
185, 380 (1927).

s D. Bohm, Phys. Rev. 85, 166, 180 (1952).
3 Les Savants et le Monde, Collection dirigbe par Andrb George,

Louis de Broglee, Physeceen et Penseur (Editions Albin Michel,
Paris, 1953).

4 J. B. Keller, Phys. Rev. 89, 1040 (1953).
e D. Bohm, Phys. Rev. 89, 1458 (1953).

we can answer the objection of Pauli, for no matter
what the initial probability distribution may have been
(for example, a delta function), it will eventually be
given by I'= ~P~'.

In the work cited above, however, certain mathe-
matical difhculties make a generalization of the results
to an arbitrary system very difficult. (The difticulties
are rather analogous to these appearing in classical
statistical mechanics when one tries rigorously to treat
the approach of a distribution to equilibrium, by means
of demonstrating a quasi-ergodic character of the
motion). In the present paper, we shall avoid these
difficulties by taking advantage of the fact that the
causal interpretation of the quantum theory permits
an unlimited number of new physical models, of types
not consistent with the usual interpretation, which lead
to the usual theory only as an approximation, and
which may lead to appreciably diferent results at new
levels (e.g. , 10 "cm). The model that we shall propose
here furnishes the basis for a simple deduction of the
relation, I'= ~f~', and in addition, gives a possible
physical interpretation of the relation dg/dt=V'S/m
(postulate 2), which follows rather naturally from the
model. This model is an extension of the causal inter-
pretation of the quantum theory already proposed,
which provides a more concrete physical image of the
meaning of our postulates than has been available
before, and which suggests new properties of matter
that may exist at deeper levels.

2. THE HYDRODYNAMIC MODEL

The model that we shall adopt in this paper is an
extension of a hydrodynamic model, originally proposed
by Madelung' and later developed further by Taka-
bayasi' and by Schenberg. ' To obtain this model, we

first write down Schrodinger's equation in terms of the

6 E. Madelung, Z. Physik 40, 332 (1926).
s T. Takabayasi, Progr. Theoret. Phys. (Japan) 8, 143 (1952);

9, 187 (1953).' M. Schenberg, Nuovo cimento (to be published).
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variables, R and S, where P=R exp(tS/II):

BR'/Bt+ div (R'VS/m) =0,

BS (VS)' 5' PR—+— —— +V=0.
Bt 2' 2m R

(2)

As shown by Takabayasi' and by Schenberg, ' the
quantum potential may be thought of as arising in the
effects of an internal stress in the Quid. This stress
depends, however, on derivatives of the Quid density,
and therefore is not completely analogous to the usual
stresses, such as pressures, which are found in macro-
scopic Qulds.

The above model is, however, not adequate by itself;
for it contains nothing to describe the actual location,
g(t), of the particle, which makes possible, as we have
seen in previous papers, '' a consistent causal inter-
pretation of the quantum theory. At this point, we
therefore complete the model by postulating a particIe,
which takes the form of a highly localized inhomo-
geneity that moves with the local fluid velocity, v(x, t)
The precise nature of this inhomogeneity is irrelevant
for our purposes. It could be, for example, a foreign
body, of a density close to that of the Quid, which was
simply being carried along with the local velocity of
the Quid as a small Qoating body is carried along the
surface of the water at the local stream velocity of the
water. Or else it could be a stable dynamic structure
existing in the Quid; for example, a small stable vortex
or some other stable localized structure, such as a small
pulse-like inhomogeneity. Such structures might be
stabilized by some nonlinearity that would be present
in a more accurate approximation to the equations
governing the fiuid motions than is given by (I) and (2).

3. FLUCTUATIONS OF THE MADELUNG FLUID

Thus far we have been assuming that the Madelung
Quid undergoes some regular motion, which can in
principle be calculated by solving Schrodinger s equa-
tion with appropriate boundary conditions. We know,
however, that in all real Quids ever met with thus far
(and indeed, in all physically real fields also) the motions
never take precisely the forms obtained by solving the
appropriate equations with the correct boundary con-
ditions. For there always exist random Quctuations.

Now Madelung originally proposed that E.' be inter-
preted as the density p(x) of a continuous fiuid, which
had the stream velocity v=7'S/m. Thus, the fluid is
assumed to undergo only potential flow. Equation (I)
then expresses the conservation of Quid, while Eq. (2)
determines the changes of the velocity potential 5 in
terms of the classical potential t/', and the "quantum
potential":

$2 +2R Q2 +2p $ (gp) 2

2m R 4m p 2(p)

These Quctuations may have many origins. For ex-
ample, real Quids maybe subject to irregular disturbance
originating outside the Quid and transmitted to it at
the boundaries. Moreover, because the equations of
motion Qow of the Quid are, in general, nonlinear, the
Quid motion may be unstable, so that irregular tur-
bulent motion may arise within the Quid itself. And
Anally, because of the underlying constitution of the
Quid in terms of molecules in random thermal motion,
there may exist a residual Brownian movement in the
Quid, even for Quid elements that are large enough to
contain a great many molecules. Thus, in a real Quid,
there are ample reasons why the usual hydrodynamical
equations mill, in general, describe only some mean or
average aspect of the motion, while the actual motion
has an addition some very irregular Quctuating com-
ponents, which are effectively random.

Since the Madelung Quid is being assumed to be some
kind of physically real Quid, it is therefore quite natural
to suppose that it too undergoes more or less random
Quctuations in its motions. Such random Quctuations
are evidently consistent within the framework of the
causal interpretation of the quantum theory. Thus,
there are always random perturbations of any quantum
mechanical system which arise outside that system.
(Indeed, as we have already shown in a previous paper, '
the effects of such perturbations are by themselves
capable of explaining the probability distribution,
P= ~f ', at least for certain simple systems. ) We may
also assume that the equations governing the f field
have nonlinearities, unimportant at the level where the
theory has thus far been successfully applied, but
perhaps important in connection with processes in-
volving very short distances. Such nonlinearities could
produce, in addition to many other qualitatively new
effects, the possibility of irregular turbulent motion.
Moreover, we may conceive of a granular substructure
of matter underlying the Madelung Quid, analogous to
(but not necessarily of exactly the same kind as) the
molecular structure underlying ordinary Quids.

We may therefore assume that for any or all of these
reasons, or perhaps for still other reasons not mentioned
here, our Quid undergoes a more or less random type of
Quctuation about the Madelung motion as a mean.
Thus, the velocity will not be exactly equal to V'S/m,
nor will the density, p, be exactly equal to

~ P ~

'. All that
we require is that the relations p= ~f~' and v=7'S/m
be valid as averages. Indeed, it is not even necessary
that the exact velocity be derivable from a potential.
Thus, we would have d(/dt = V'S'/m+ VXA, more gener-
ally, ' ' where 5'XA)A„——0 and (VS')A„——(V'S)A„. Hence
Schrodinger's equation will not apply to the Quctua-

Such vortex components of the velocity may also explain the
appearance of "spin" provided that they could have a regular
component as well as a random component. Indeed, in another
paper, the Pauli equation will be treated from this point of view.
But here we concern ourselves only with a level of precision in
which the spin can be neglected, so that Schrodinger's equation
is a good approximation for the mean behavior of the Quid.
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tions. However, the conservation equation Bp/R
+div(pv)=0 will be assumed to hold even during a
Quctuation. Such an equation is implied almost by the
very concept of a Quid; for if there were no conservation,
then the model of a Quid would lose practically all of
its content.

From the above assumptions, it is clear that if we
followed a given Quid element, we would discover that
it undergoes an exceedingly irregular motion, which is
able in time to carry it from any specified trajectory of
the mean Madelung motion to practically any other
trajectory. Such a random motion of the Quid elements
would, if it were the only factor operating, lead even-
tually to a uniform mean density of the Quid. For it
would on the average carry away more Quid from a
region of high density than it carried back. The fact
that the mean density remains equal to ~P~', despite
the eGects of the random Quctuations, implies then
that a systematic tendency must exist for Quid elements
to move toward regions of high mean Quid density, in
such a way as to maintain the stability of the mean
density, p= ~P~'. As for the origin of such a tendency,
the question is, of course, not important for the problem
that we are treating in this paper. We may, however,
suggest by way of a possible explanation that the inter-
nal stresses in the fluid are such that whenever p devi-
ates from

~ f ', a kind of pressure arises that tends to
correct the deviation automatically. Such a behavior is
analogous to what would happen, for example, to a gas
in irregular turbulent motion in a gravitational field,
in which the pressures automatically adjust themselves
in such a way as to maintain a local mean density close
to p=poe ""~xr if the temperature T is constant. (In
this connection, note that as shown in theoretical
treatments of turbulence, the irregular turbulent motions
themselves raise the effective "pressure" in the Quid, so
that the eGective "temperature" T is equal to the sum
of the mean kinetic energy of random molecular motion
and that of irregular turbulent motion. )

We must now make some assumptions concerning the
behavior of the particle-like inhomogeneity. We assume
that ever ie a,CNctlatioe, it follows the Quid velocity
v(x, t). Such a behavior would result if the inhomo-

geneity were a very small dynamic structure in the
fiuid (e.g., a vortex, or a pulse-like inhomogeneity) or if
it were a foreign body of about the same density as the
Quid, provided that the wavelengths associated with
the Ructuations were appreciably larger than the size
of the particle. For in this case, the inhomogeneity
would have to do more or less as the Quid did, since it
would act, for all practical purposes, like a small element
of Quid.

The presence of Quctuations with wavelengths smaller
than the size of the body could complicate the problem,
especially if we were considering inhomogeneities, such
as vortices and pulses, which were dynamically main-
tained structures in the Quid itself. For, such Quctua-
tions would treat diGerent parts of the inhomogeneity

diGerently, and thus, in general, would tend to lead to
a dispersal of the inhomogeneity. Let us recall, however,
that we are by hypothesis considering only equations
having such nonlinearities in them as to lead to stable
inhomogeneities. It is true that the equations of ordi-
nary hydrodynamics do not do this. But it is not
necessary that the sub-quantum-mechanical Madelung
Quid should have exactly the same kinds of properties
as are possessed by ordinary Auids. Indeed, we have
already seen that instead of the usual classical pressure
term, it has a quantum-mechanical internal stress,
which depends on the derivatives of the Quid density,
rather than on the density itself. Thus, we may reason-
ably postulate that it also has some characteristically
new kind of nonlinear term which leads to stable
inhomogeneities. Hence, small Quctuations of wave
length much less than the size of the body will merely
cause irregular oscillations in the inhomogeneities, the
eGects of which will, for practical purposes, cancel out.
Large Quctuations may destroy the inhomogeneity or
transform it into new kinds of inhomogeneity. This
could, however, represent certain aspects of the "crea-
tion, " "destruction, " and transformation of "ele-
mentary" particles, which is characteristic of phenomena
connected with very high energies and very short
distances. But in the low-energy domain, which we are
treating now, where Schrodinger s equation is a good
enough approximation, such processes will not occur.

YVe see then that if there are Quctuations of wave-
length a great deal shorter than the size of the body,
they will have a negligible eGect on the over-all motions
of the body (whether it be a foreign body or a stable

dynamic structure in the fiuid). In this case, the body
will follow the mean velocity of the Quid in a small
region surrounding it. To take into account the possi-
bility that such Quctuations may exist, we shall there-
fore hereafter let v(x, t) and p(x, f) represent respectively
the mean velocity and mean density in a small neigh-
borhood surrounding the body, while V'S(x, t) and

p(x, t) represent the means of these quantities in a region
that is much larger than the size of the body, but still
small enough so that g (x,t) does not change appreciably
within this region. The consistency of these assumptions
evidently requires that the body be very small; but
with a choice, for example, of something of the order of
IO "cm for its size, one obtains ample opportunity to
satisfy the above assumptions in a consistent way.

It is clear, of course, that Auctuations having a
wavelength close to the size of the body will neither
cancel out completely, nor will they necessarily cause
the body to move exactly with the mean of the Quid

velocity in a small neighborhood surrounding it. We
may assume, however, that the magnitude of the
longer-wavelength Quctuations is so great that we can
neglect the eGects of Quctuations of these intermediate
wavelengths. Thus, a rather wide range exists of kinds
of Auctuations that could lead to the type of motion
that we are assuming for the inhomogeneity.

I
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On the basis of the above assumptions, it is evident
that the inhomogeneity will undergo an irregular
motion, analogous to the Brownian motion. " Let us
now consider a statistical ensemble of Quids, each having
in it an inhomogeneity, and let us denote the prob-
ability density of such inhomogeneities in the ensemble

by P(x,t). Let us further assume that the fluid motion
is so irregular that in time a Quid element initially
in an arbitrary region dx' in the domain in which the
mean fluid density

~
it (x,t) ~' is appreciable, has a non-

zero probability of reaching any other region dx in
this domain. We can then quite easily see in qualitative
terms that the proba, bility density P (x,t) must
approach ~f(x, t) ~

' as an equilibrium value.
First of all, it is clear that if, for any reason whatever,

the distribution P= ~P~', is once established, then it
will be maintained for all time, despite the random
Quctuations in the Quid motion. For the inhomogeneities
simply follow the Quid velocity in a small neighborhood
surrounding the body. Now by hypothesis the Quid

Quctuations are just such as to preserve the equilibrium
mean density of P= ~lt i'. Therefore, they must also
preserve the equilibrium probability density of par-
ticles in the same way.

Let us now consider what happens when I' is not
equal to ~P~'. Suppose, for example, that there were a
larger number of particles in a specified element of
volume than is given by P= ~lt ~'. Now, the random
motions carry particles away from such an element at
a rate proportional to their density in this element. The
systematic tendency for particles to come back to the
element, which results from their following the Quid, as
it drifts back. at a rate sufficient to maintain the mean
equilibrium density of p= tf~', will however be just
large enough to cancel the loss that would have taken
place if the probability density of particles had been
P= ~P~'. Since the density was actually greater than
this, more particles are lost than are compensated by
the drift back and the density therefore approaches
P= ~iJ ~'. If the probability density of particles in this
element had been less than P=

t f ~

', the element would,
of course, have tended to gain particles until it had a
density of ~f~'.

In the next section, we shall give a mathematical
demonstration of the above result, the correctness of
which should however, already be evident from the
qualitative considerations cited above.

Finally, we may mention that the picture of a Quid

undergoing random motion about a regular mean is
only one out of an infinite number of possible models
leading to the same general type of theory. Indeed, all

the properties that we have assumed for our Quid could

equally well belong to some 4-vector field (p, j) which

was conserved, and which underwent random Quctua-

Brownian motion models of the quantum theory have already
been proposed elsewhere, but on a very diGerent basis. See,
I. Fenyes, Z. Physik 132, 81 (1952); W. Weizel, Z. Physik 134,
264 (1953);135, 270 (1953).

tions about a mean given (in the nonrelativistic limit)
by p=

i
P[' and j= (h/2toti)(Q*VP P—VP*)=R'VS/rtt,

where P is a solution of Schrodinger's equation. And if

p and j were assumed to satisfy suf6ciently nonlinear
equations, there could also exist pulse-like solutions"
for p and j that moved with a 4-velocity parallel to
(p, j)

Although it is important to keep in mind these more
general possibilities when one is actually trying to
formulate a more detailed theory, we have found it
convenient in this paper to express our assumptions
and results in terms of a hydrodynamical model,
because this model not only provides a very natural
and vivid physical image of the behavior of the f field,
but also a simple explanation of the formula, d(/dt
=VS/stt, (postulate 2) expressing the velocity of an
inhomogeneity in terms of the local mean stream
velocity.

4. PROOF THAT PROBABILITY DENSITY APPROACHES
FLUID DENSITY IN RANDOM FLUCTUATIONS

OF A FLUID

We shall now prove the following theorem. Suppose
that we have a conserved Quid that undergoes random
fluctuations of the velocity, v(x, t), and of the density,
p(x, t), about respective mean values vp(x, t) and pp(x, t)
Lso that 8p/r)t+div(pv) =0 and itpp/Bt+dlv(ppvp) =0].
Suppose in addition that there is an inhomogeneity that
follows the Quid motions, with the local stream velocity,
v(x, t). Then if the fluctuations are such that a fluid

element starting in an arbitrary element of volume, dx',
in the region where the Quid density is appreciable has
a nonzero probability of reaching any other element of
volume dx in this region, it follows that an arbitrary
initial probability density of inhomogeneities will in
time approach P= pp(x, t).

This theorem is seen to apply to our problems as a
special case, in which we set pp= ~P(x,t) ~' and vp(x, t)
= VS(x,t)/m, where P(x,,t) satisfies Schrodinger's equa-
tion, provided that we regard p(x, t) and v(x, t) as the
mean Quid density and velocity in a small region sur-
rounding the inhomogeneity. This theorem is a general-
zation of a well-known theorem concerning the approach
to equilibrium in a Markow process. " Essentially, we
have generalized the theorem to treat the time-de-

pendent probabilities of transition and time-dependent
limiting distributions with which we have to deal in

our problem.
To prove this theorem, we note that, as shown in the

previous section, a given Quid element follows an
extremely irregular trajectory, in which its density

p(x, t) fluctuates near the mean density pp(x, t). Now

because the volume of a given Quid element is always

"See L. de Broglie, I.u Physique Quantique, Restera-t-elle Inde-
termiliste (Gauthier-Villars, Paris, 1953), where the idea of L. de
Broglie and J. P. Vigier on this subject are discussed.

n W. Feller, Probability Theory artd Its A PPlicatiols (John
Wiley and Sons, Inc., New York, 1950).
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changing in accordance with the changing mean Quid
density in the new regions that it enters, it is rather
dificult in rectangular coordinates to keep track of
how much Quid is transferred on the average from
one element of volume to another. To facilitate the
treatment of the problem, we shall therefore take
the preliminary step of introducing a new set of coor-
dinates, $i(x), $s(x), $s(x), which are so defined thatan.
elementary cell in the space of jt, $s, $s always contains
a mean quantity of Quid proportional to its volume.

Such a set of coordinates is easily defined. For the
mean quantity of Quid in a given volume element is

dg= pp(x, f)dx= pp(x~t) J(Bx&/Bg„)dcidgsdb

where J(8$„/8x„) is the Jacobian of the transformation.
Now we want to have J(8$„/Bx„)=cps(x, t) (where we
shall choose e to be unity for convenience).

Since there is only one equation, it is clear that only
one of the g„can be defined in this way, so that the
other two can be chosen according to what is convenient.
Thus, if we fix the forms of Ps and $s, we see that the
above equation becomes a linear differential equation
defining gt, in terms of $s, gs, and ps. Such an equation
always has solutions wherever $s, gs, and ps are regular.
There may exist singular points or curves, but we shall
later show how these are to be dealt with.

As an example, consider a cylindrically symmetric
density function p(R)=e ~/R. We first express the
volume element in cylindrical polar coordinates (with
Rs= X'+ Y')

p(R)RdRdrtidZ= e ndRdrtidZ.

Now we want e dR=dgi, or pi= e ".As for $s and $s,
we can in this case leave them equal to it and Z respec-
tively.

Here we see that when R goes from 0 to ~, (, goes
from unity to zero. This is an example of a charac-
teristic property of the g„space to be limited in volume
when the function ps(R) is appreciable only in a limited
domain. Such a property is to be expected, because we
are mapping the x„on the $„ in just such a way that
each region maps into a new volume proportional to
the amount of Quid originally in that region. Thus even
infinite regions of x„space may map onto negligible
regions of $„space, if they contain negligible quantities
of Auld.

The solution of the differential equation for Pi, will
lead in general to multiple-valued functions. This,
however, causes no trouble, as we need merely establish
a convenient cut somewhere which defines which branch
of the function that we are using. Thus the transition
to cylindrical polar coordinates, R'=X'+ Y', &=tan '
X(Y/X), leads to a multiple valued function for g,
but we deal with this problem by establishing a cut,
say at &=0, and then defining the range of variation
of it as being from zero to 2w. In order to cover the

entire XF plane only once, a similar definition can be
made with any multiple-valued function.

If ps(x, f) vanishes at certain points, then at those
points we cannot solve for all the g„ in terms of the x„
(as, for example, in cylindrical polar coordinates we
cannot solve for P at R=O). As long as ps(x, f) vanishes
only at a set of isolated points, or at most, on a set of
one-dimensional curves, where will be no real difhculty.
For the vanishing of ps(x, f) means only (as in the case
of cylindrical polar coordinates) that some of the $, are
not defined along these curves. To avoid any ambiguities
arising from the lack of definition, we may surround
each of these curves with a tube, as small in radius as
we please, and thus exclude them from the region
under consideration without excluding any significant
physical eGects.

If, however, there are two-dimensional surfaces where
ps(x, t) =0, this creates more serious mathematical dif-
ficulties. Since such surfaces do not, in fact, arise in any
real problem of interest to us,"we shall assume that
ps(x, f) vanishes at most on a set of one-dimensional
curves.

Finally, let us note that since po changes with time,
our P„will change with time correspondingly. Thus, we
are adopting a moving set of coordinates (but not in
general one that moves with the mean motion of the
fiuid elements).

In the space of the $„, the mean fiuid density will be
a constant which also does not change with time. As a
result, the problem of describing the Quctuations will
be greatly simplified. For in the g„space there is no
tendency for the Quctuation to favor any special
region since the equilibrium density, which was ps(x, t) in
rectangular coordinate, is now a constant. Thus, in the
$. space, the fluctuations have a truly random character,
independent of the Quid density at any particular point.

%e are now ready to set up the equations governing

"In the case of interest to us, po= ~it(x, t)('. At first sight, it
may seem that we shall have to be concerned with surfaces on
which po vanished, because in a perfectly stationary state, it (x,t)
can be zero on certain nodal surfaces. In the case of a perfectly
stationary state, it can be real Lor more generally, writing
it = LT(x,t)+fV(x,t), we may have a functional relationship
between V(x,t) and V(x,t) permitting both to vanish on some
two-dimensional surfacej. However, for the general complex
function P, which we obtain in a nonstationary state, it may be
shown that there is no such functional relation between U' and t/",

so that P can vanish at most on a set of one-dimensional curves.
Now a perfectly stationary state is an abstraction that never

really exists. For all systems that have ever been dealt with are
perturbed to some extent by interactions with other systems. Thus,
in a gas, a hydrogen atom suGers 10'~ collisions per second. In a
metal, the electrons suffer a correspondingly large number of
collisions with each other and with the cores. In the nucleus, there
is a continual process of perturbation due to the Quctuating elec-
tronic and ionic 6elds acting on the spin and quadripole moments
of the nuclei. EVen in interstellar space, atoms undergo at least
one collision with electrons in 10~ seconds. Thus, all states are
slightly nonstationary, and no perfectly nodal planes of the P
function ever really appear in nature.

A set of perfectly nodal surfaces could interfere with our proof
that P~(P~'; for they would represent surfaces that would never
be crossed so that the regions on diferent sides of these surfaces
could be completely isolated from each other.
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the changes of the probability density P(x, t) for the
inhomogeneities. We first transform to the P„space,
writing

F(x,t)d( P(x, t)
F(x,t)dx= = d)=F(g, t)dg, (3)J(8&„/Bx„) pp (x,f)

where we have defined the vector g= ($i,$s, js) in the
$„space, with the volume element, dg=dpidpsd(„Th. e
probability density for the space of the $„ is clearly
F=F/ps. To prove that F—+ps, we then merely have
to show that in $„space, F(Q) approaches a constant.

We now de6ne the probability that Ruid in an element
8g, centered at the point g at the time I, has in the
process of fluctuation come from an element 8g' at
an earlier time I' with its center $' lying in a region d$'.
(Note that 8(' is the magnitude of the volume element, "
whereas dg' is the size of the cell in which the center of
the volume element was located at the time t'). This
probability is

Let us now discuss the motions of the inhomoge-
neities. Since these latter follow the Ruid in its Ructua-
ations, it is easily seen that the probability density of
inhomogeneities, F((,t), is just the average of F((',f')
weighted with the probability E((g', f,t'). Thus,

(6)

Now, let (sr(f) represent the value of ( for which F((,t)
is a maximum, g (f) the value for which it is a minimum.
(If there is more than one pair of such points, let us
consider any single pair. ) We also let F ((,t) =M(t),
and F;„((,I) =m(f). Setting (=)sr(f) in Eq. (6), and
using (5), we obtain

dF =E((,(', t,f')dg'.

Clearly, by definition,

(4)

and with (=g (f) in Eq. (6), we get similarly

E((,(', l, l')dg'= 1.

Now the exact form of E(g,(',t,t') will depend on the
precise nature of the Ructuations that are taking place
in the Ruid. We shall see, however, that in order to
prove that F(g, f)—+1, it is suKcient to assume that
E((,g', t, t') fails to be zero over the part of g space
corresponding to the region of x space in which pe(x, t)
is appreciable. This is clearly just a mathematical
expression of the assumption appearing in the 6rst part
of this section that there is a nonzero probability that
an element starting at any point x in this region has
a nonzero probability of arriving at any other point x'
in the region.

Note, however, that the region of x space in which pp

is appreciable will include, for practical purposes, the
whole of the g space (except for a region of negligible
dimensions). Thus, we may postulate that E(g,g', f,f')
fails to be zero in the whole of g space (except possibly
along some one-dimensional curves where ps(x, t) may
be zero, which we can exclude by means of tubes of
negligible dimensions) .

As for other properties of E, they are irrelevant for
our purposes here, although we shall discuss some of
them in Sec. 6, in another con'nection. "

'4 On the average, bg will not change as the Quid element moves
because the Quid density Quctuates near a constant volume in space."It may be noted at this point that; the kernel E(g,(', t')l
already contains implicit within it a description of the mean Quid
velocity VS/I'm. To show this, consider t—t'=St to be a small
interval of time. Then A(x, x',t, t' 8t) will be lar. ge in on—ly a small
region of g space corresponding in x space to a region centered
around (x x' VS8t/m)=0. The motion o—f th—e center of this
region describes the mean Quid velocity. The spread of this region
describes the random deviations from the mean. In a typical
random diBusion process, this width is given by (rex)s~bt, for

Thus,
M(f)&M(f'), (9a)

m(t)) m (t'). (9b)

Thus, F((',t') = constant is also an equilibrium solution,
since it does not change with the passage of time. The
result, of course, is more or less to be expected from
the physical argument given at the beginning of this
section showing that 8=ps(x, t) is an equilibrium solu-
tion, so that F=F/ps constant must likew—i—se be one.
We conclude then that if F((',t') is not a constant, Eqs.
(9a) and (9b) must be written as

(10a)

(10b)
short times. For longer times, the functional form of IC is deter-
mined in a complicated way, which is however of no concern to
us in this paper.

In order for the equal sign to hold in Eq. (9a), it is
necessary that F(g', f') be a constant. For by hypothesis,
E(g,g', t,f') fails to vanish anywhere in the g space; and
if F((',t') is not a constant, then the integral (7) must
obtain contributions from regions in which F(g', t') &M.
Similarly, we can show that the equal sign can hold in
(9b) only if F(g', t') is a constant. But if F(g', t') is a
constant in g space, then by (6) we have
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Now we can show that Eqs. (10a) and (10b) imply
that F(x,t) must approach a constant, with the passage
of time. To do this, let us consider a series of times,
t» f» ts t~, 1„+r. .. We apply (10a) and (10b) from
one element of the series of times to the next. Thus

M(t )(M(t i), (11a)

m(t„) &m(t„,). (11b)

It is clear that M(i„) and te(i„) must each approach
constant limits. For M(t„) is always decreasing and
yet remains greater than some fixed number, m(t, ),
where t, is any element of the series such that t„&t,.
Similarly m(t„) is always increasing and yet less than
M(1,). Now there are just two possibilities: (a) The
two constant limits are different; (b) they are the same.
We easily see that alternative (a) is self-contradictory.
To do this, we denote the two limits by 3f and ns, respec-
tively. Then M —m=lim[M($„) —nz(t„)J. But by (11a)
and (11b), we have

M —m&lim [M(t„,)—m(t i)]

Because this is a contradiction, alternative (b) must
hold. Then F(g,t) must approach a constant limit, and

E(x,t) must approach ape(x, t), where u is a constant.
If, as happens in quantum theory, the integral of
ps(x, t) is normalized to unity, then since by definition
the integral of I' is also normalized to unity, we must
have a=1, and

(12)

5. APPLICATION TO DIRAC EQUATION AND
EXTENSION TO MANY-PARTICLE

PROBLEM

We may apply the preceding results to the causal
interpretation of the Dirac equation, "where, as in the
Schrodinger equation, we have a stream velocity,
vs P*~/P*P, and——a conserved density, ps P*P. If-—
we assume a fluid of the same kind as that treated in
Sec. 4, and replace V'S/ns by /*rsvp/P*P and ~f~' by
P*f, then according to the results of Sec. 4, the prob-
ability density will ultimately approach 1t*p.

Our results can also be extended very readily to the
case of many particles. We first discuss this extension
in a purely formal way. We have a wave function,
f(xr, xs . xiv, t), defined in a 317'-dimensional config-
uration space. Writing P=E exp{i5/5), we have a set
of 3X velocity fields, v„=V' S(xr,xs, . x&,1), where V'„

refers to differentiation with respect to the coordinates
of the eth particle. Ke have a conservation equation
in the configuration space."We may now assume that
each particle follows the line of Qow given by
v„(xi,xs, x&,t). Thus, our model is formally just a

"D.Eohm, Progr. Theoret. Phys. (Japan) 9, 273 (1953).
'7 See reference 2, Paper I, Eq. {16}.

3$-dimensional extension of the model given previ-
ously. Hence, if we assume random Quctuations of the
3E-dimensional velocity field, we shall obtain the
result that the probability density in configuration
space, P(xi,xs, . xs, t), approaches ~P(xi,xs, x~,1) j .

To obtain a possible physical picture of the meaning
of this model, we may use the causal interpretation of
the ~V-particle problem recently proposed by de Broglie."
De Broglie has shown that the usual formulation in
terms of a wave function in the 3X-dimensional con-
figuration space can be replaced by an equivalent
formulation, according to which each particle is accom-
panied by its own 3-dimensional wave field, which
depends on the precise locations of the other (X—1)
particles. Since each wave field satisfies its own
Schrodinger's equation, the preceding demonstration
still applies.

The above model would imply that each particle
moves in its own Quid, and that the Quids interpene-
trate each other. For the case of equivalent particles,
however, de Broglie has suggested that all particles can
be regarded as moving in a common three-dimensional
Quid, the velocity of which, at any point x, is dependent
on the locations of all the particles, x„.Thus, we would
merely need as many Quids as there are types of par-
ticles.

6. ON THE RELATION BETWEEN THE THEORY OF
MEASUREMENTS AND FLUCTUATIONS

IN THE Q FIELD

Ke have demonstrated that with time, the limiting
distribution, I'= ~f~, will be established for any func-
tional form of E(g,g', 1,1'), at least within a region which
is such that E((,(',1,t'), does not vanish for any pair of
points F„' and g in the region in question. But without
a further specification of the E((,(',1,t'), the rate of
approach to the limiting distribution cannot be esti-
mated.

The very fact that no conclusion drawn from the
assumption that I' = ~P ~

' has as yet been contradicted
experimentally, suggests, however, that at least to a
fairly high degree of approximation, P is equal to ~f ~'
in all quantum-mechanical systems which have thus
far been investigated. Hence, we are led in our model
to assume that the existing Quctuations are at least
rapid enough to insure the approximate maintenance
of the relation, I'= ~P~' in the very wide variety of
systems which has thus far been studied.

In connection with the theory of measurements,
however, there arises an important case in which the
rate of approach to the equilibrium distribution must
be quite slow, if the theory as a whole is to be con-

sistent. This is the case of two wave packets separated

by a classical order of distance, throughout which the
mean density

~ P ~

s is completely negligible.
To show why this case is important, let us recall

» See reference 11; also Compt. rend. 235, 1345, 1372 (1953).
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briefly some results of the theory of measurements
given in a previous paper. '

It was shown that in a measurement process, the
interaction between measuring apparatus and observed
system breaks the wave function into a series of clas-
sically separated packets, corresponding to the various
possible results of the measurement. The particle,
however, enters one of the packets and thereafter
remains in it. It is important that the particle remain
in this packet; because if it does, the other packets will
never play any physical role, so that they can thereafter
be neglected and the complete wave function replaced
by a simplified one corresponding to the actual result
of the measurement. Thus, we understand how a
measurement can come to have a definite result, despite
the spread of the wave function over a range of possi-
bilities.

Now, if the introduction of a random fluctuation of
the f field led to an appreciable diffusion of the particle
from one of these classically separated packets to
another, the above definiteness of the result of a meas-
urement would be destroyed. It is essential therefore
for the over-all consistency of the theory that the prob-
ability that the particle diffuse across a large region
where pp(x, t) is very small shall be negligible. 'P

It is easy to see, however, that almost any reasonable
assumptions concerning the Quctuations will lead to
this result. For the mean current of particles is (pv)A„.
Now p is everywhere of the order of magnitude of
pp(x, t), which is by hypothesis very small in the region
between the wave packets. Thus a large probability of
a Quctuation that would carry a particle across this
space would mean an enormous Quctuation velocity in
this region. The mere assumption that Quctuation
velocities do not diRer by large orders of magnitude in
different parts of the Quid is therefore sufficient to
insure that the probability of diffusion across this space
be very small.

'7. CONCLUSION

The essential result of this paper has been to show
that the probability density P= ~ii ~' follows from
reasonable assumptions concerning random fluctuations
of the f 6eld. Now, it has already been demonstrated'
that once the probability distribution P= ~f~' has,
for any reason whatever, been set up in a statistical
ensemble of quantum-mechanical systems, then the
results predicted for all measurement processes will be
precisely the same in the causal interpretation as in

' Note that the slowness of this particular type of diftusion
does not interfere with the validity of the relation P= ~tt )', for
the wave function as a whole (i.e., over a whole set of wave
packets). For the relation P= ~P ~' will aires, dy have been estab-
lished by random fluctuations before the measurement took
place; and as we have seen, once established, the relationship
persists and is not thereafter altered by the fluctuations no matter
what happens. But what we have been discussing is another
probability; namely, the probability that if a particle has entered
a given packet, it will within a given time diffuse to another packet.
It is this probability that is negliaible,

the usual interpretation. The difference between the
two points of view, however, is this: in the usual inter-
pretation, the irregular statistical fluctuations in the
observed results" obtained in general when we make
very precise measurements on individual atomic systems
are assumed, so to speak, to be fundamental elements
of reality, since it is supposed that they cannot be
analyzed in more detail, and that they cannot be traced
to anything else."In the model that we have proposed
here, however, the statistical Quctuation in the results
of such measurements are shown to be ascribable con-
sistently to an assumed deeper level of irregular motion
in the P field.

In this paper we have proposed as a possible picture
of this deeper level the more specific model of a Quid,
undergoing a random Quctuation of its velocity and
density about certain mean values determined from
Schrodinger s equation, and having in it an inhomo-
geneity that follows the local stream velocity of the
fluid. Of course, this proposal has not yet reached a
definitive stage, since we have given only a very general
description of the assumed Quctuations and of the
properties of the inhomogeneity. Nevertheless, such a
model, incompletely defined in character as it is, already
suggests a number of interesting questions.

For example, the Quid may have vortex motion. In
another paper" it will be shown that such vortex
motion provides a very natural model for the non-
relativistic wave equation of a particle with spin (the
Pauli equation). Work now in progress indicates that a
generalization of such a treatment to relativity may
yield a model of the Dirac equation.

Another interesting problem to be studied is the
possible eRects of the assumption of nonlinear equa-
tions for the P field, which could, as we have seen in
Sec. 2, explain the existence of the irregular Quctuations
that lead to P= ~1( ~'. Such nonlinear equations can
lead to many qualitatively new results. For example,
it is known that they have a spectrum of stable solu-
tions having localized pulse-like concentrations of
field, "which could describe inhomogeneities such as we

"Let us recall that as discussed in reference 5, Sec. 3, there
exist real observable large-scale phenomena obtained in a measure-
ment process, which depend on the properties of individlul atoms
(e.g., clicks of a Geiger counter, tracks in a Wilson chamber, etc.)

2' For example, they cannot in general be ascribed to the uncon-
trollable actions of the measuring apparatus, as demonstrated by
Einstein, Rosen, and Podolsky, Phys. Rev. 47, 774 (1933) and
also D. Bohm, Qttorttlet Theory (Prentice Hall Publications, New
York, 1951), p. 614. As Bohr has made clear /Phys. Rev. 48, 696
(1935)] the measuring apparatus plus observed object must be
regarded as a single indivisible system which yields a statistical
aggregate of irregularly Ructuating observable phenomena. It
would be incorrect, however, to suppose that these fluctuations
originate in anything at all. They must simply be accepted as
fundamental and not further analyzable elements of reality, which
do not come from anything else but just exist in themselves. For
a complete discussion of this problem, see, A/bert Einstein,
Philosopher Scientist, Paul Arth-ur Schilpp, Editor (Library of
Living Philosophers, Evanston, 1949).

~ Bohm, Tiomno, and Schiller (to be published).
"Finkelstein, LeLevier, and Ruderman, Phys. R.ev. 83, 326

(1951).
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have been assuming in this paper. Such pulse-like con-
centrations of field mould also tend, for many types of
field equations, to follow the local stream velocity. "
The transitions between diferent possible forms of the
inhomogeneous pulse-like part of the solution, combined
with transitions between various modes of vibration in
the rest of the Quid, could perhaps describe changes
from one type of particle to another. Thus, we see that

at 1east in its qualitative aspects, the model seems to
have possibilities for explaining some of the kinds of
phenomena that are actually found experimentally at
the level of very small distances.
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The Fourier coefficients of a wave packet are proved to be equal to the coefficients obtained when the

wave packet is expanded in terms of a set of functions appropriate to a scattering problem.

"N a recent paper discussing the use of ingoing waves
- & in scattering problems, Breit and Bethe' made use

of the fact that when a wave packet is expanded in

terms of a set of functions appropriate to a scattering

problem, the expansion coefFicients are in most cases
identical with the Fourier coe%cients of the packet.
This note indicates a more precise proof of this theorem.

Let II (r) be a wave packet which is well localized in

both coordinate and momentum space; r' and k' denote

the center of the packet in the two spaces. Ke assume

that the spread of the packet in coordinate (mo-

mentum) space is small compared with r', (k'). Let
Pa(r) be a complete set of wave functions appropriate
to a scattering problem. As Breit and Bethe point out,
we get a complete set of functions if we choose lt q to
behave asymptotically as a plane wave plus an outgoing

spherical wave; thus

Let C(k) =B(k)—A (k), and form

J(r',k') = (2~)
—

&
( C(k) i

'dk.

We assume that f(r) is far enough removed from the

origin so that the asymptotic form of f& may be used in

computing B(k). This gives

C(k)=(2~) I y(r)f~*(8,q)e ""/rdr,

and

J(r',k') = (2') "'
i de)*(r) dr'P(r')

X ~dkf~(8 q)f~*(8' q'')

Xexp| ikr —ikr'j/rr'. (4)

4'(r)-e'"'+f~(8 q)e'""/r

dkft, (8,q) f~*( ',8')q(rr') ' expLikr —ikr'j

(I)
The completeness relation for P~ combined with Eq. (1)

We will expand 1I(r) in terms of p& and denote the yields th«esuit

. expansion coefficients by B(k); the Fourier coefFicients

of P(r) are A (k). Thus

li (r) = (2~) '*~' B(k)0.(r)dk, = —I dk fi, (8,q) expLikr —ik. r'j/r

lt (r) = (2sr) & ~ A (k)e'"'dk (2') dkfi, *(8',q') exp) ikr'+ik rj/r'—. (5)

J= —(2ir) ' dk dr(LP*(r) fg(8, q)

XA (k)e""/rj+(cc)). (6)' G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954).

Inserting (5) into (4) and noting that one integration
It can now be proved that, except when r' and k' are

parallel, B(k)~A(k). In particular, Breit and Bethe
used the fact that B(k)~A(k) when r' and k' are

antiparallel.


