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Reactions of Cesium with Protons at 60, 80, 100, 150, and 240 Mev*
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Absolute production cross sections have been determined for certain isotopes of barium, cesium, iodine,
and tellurium produced by reactions of cesium with protons of energies 60, 80, 100, 150, and 240 Mev. The
yields are based on the known cross section for the monitor reaction Al2'(p, 3pn)Xa'4. In the region up to
100 Mev the data indicate that the yields are largely explained on the basis of an evaporation mechanism
which competes with the prompt knock-on optical model to an extent which decreases rapidly with in-
creasing energy because of increasing nuclear transparency. The neutron pick-up reaction manifests itself
in extraordinarily large yields of Cs"~ and to a lesser extent in the yields of Cs"'. Formation of small
amounts of neutron-excess iodine isotopes argues for alpha, -particle fragmentation especially at the lower
bombardment energies.

INTRODUCTION
' QREVIOUSLYI we have reported on the spallation

of cesium with 240-Mev protons from the Roch-
ester 130-inch cyclotron. The results indicated that a
majority of reactions at 240 Mev occur as primary
knock-on collisions in which the incident proton inter-
acts with only a few nucleons. This primary interaction
is followed by dissipation of the residual nuclear excita-
tion, whose energy spread is quite broad, leading to a
distribution of products which reach far down the
nuclide chart. At an energy of 240 Mev those yields
due to the knock-on process largely predominate over
those due to an evaporation mechanism because of the
nuclear transparency' which increases with energy
rapidly up to roughly 200 Mev and then much more
slowly up to about 400 Mev.

In this paper we report the behavior at a variety of
proton energies; namely, 60, 80, 100, 150, and 240 Mev.
The experimental techniques are identical with those
reported earlier, ' as are all of the assumptions and cor-
rection factors which are applied to obtain the yield
of each nuclear species.

The results are given in Table I, which also lists the
counting eKciency used for each nuclide. This efficiency
is de6ned as the ratio of the number of events recorded
in the beta-proportional methane Qow counting chamber
to the total number of events occurring within the
sensitive volume of the chamber. The values are identi-
cal to those given previously with the exception of
Cs'". We have reconsidered the value of the counting
eKciency for this nuclide and have used a value of 0.01
in place of the value of 0.005 used formerly. The yield
of Cs" at 240 Mev given in our 6rst paper should
therefore be revised to that given in Table I.
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BARIUM YIELDS

Figure 1 depicts the yield data for barium isotopes
taken from Table I. It is seen that the yield of Ba"
has a threshold of about 60 Mev and a maximum at
approximately 80 Mev. The relative shape of these
yield curves must be attributed to differences in average
excitation energies imparted to the struck target nuclei
by the incident protons. In general, lower bombardment
energies result in lower average excitation energies left
to the struck nuclei. Consequently, the broad peaks
must result from a rather wide distribution of smaller
excitation energies given to the excited nuclei following
an initial knock-on reaction. Subsequent evaporation
ejects protons and neutrons either singly or in frag-
ments such as alpha particles. The maximum yield of
each barium isotope in Fig. 1 occurs in the expected
sequence Ba"', Ba"' and Ba"'. Apparently the hump

Nominal
half-life

Nu-
clide

Counting
efficiency

60
Mev

80 100 150 240
Mev Mev Mev Mev
(Yields in millibarns)

2.4 days
2.0 hr

12.5 days
42.5 hr

g al23
Bal29
Bal31

a133m

1.0
1.0
0.72
0.78

0
173
20
31

67 58 14
3.1 4.7 11
48 13 3

8.1
3.6
5.3

5.5 hr
31 hr
30 min
9.8 days
7.1 days

1.6 hr
13 hr
4.0 days

12.5 days
25.0 min
12.6 days

Cs127
Cs123
Csl30
Cs131
CS132

I120+121
$123
$124
$126
$123
$130

1.0
04
1.0
0.0025
0.01

1.0
0.17
0.30
0.53
0.95
1,0

0
83

137
470
790

0
0
0
0.05
0.36
0.004

7.1
123
46

1120

0
0
0
0.94
0.4
0.02

15.4
116

500
890

0
0
0.9
2.4
0.44
0.04

6.4
36
12

320
570

3.6
8.5
5.7
2.5

45
15

460
59

li
21
8.4
5.0

2.5 hr
6.0 days

17.0 days

fe117

fell3
fe121

1.0
1.0
0.1

0
0

0
0

7.3

0 2 2.4
1.1 4.8
5.1

a Energies quoted are nominal beam energies of the Rochester 130-inch
cyclotron as estimated from radius. Places in the table showing a yield of
0 millibarns signify that in those instances the nuclide should have been
observed had it been present, so that a 0 yield signifies a lack of production
of detectable amounts of the nuclide. Places showing a dash (—) signify
that in those instances the nuclide might have been present in small amounts
but could not be detected and identified because of experimental difhculties
such as (a) the time for chemical separation was too long; (b) other species
of similar half-life or stronger radiations were produced at that energy,
causing masking; or (c) the yield was too small to be detected or identified.

TAm, E I. Absolute production cross sections of spallation
products resulting from irradiation of cesium with protons at
various energies. '
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REACTIONS OF Cs W'I TH PROTONS

the excited target nucleus. Emission of alpha particles
increases the neutron/proton ratio of the product which
may account for the augmented yield of F28 at the
lower energies. Formation at these energies of such
shielded isotopes as I'~ I"' and I" is also an indica-
tion of alpha-particle fragmentation.

The apparent threshold for formation of I'"+"' and
F23 is about 100 Mev for formation of P'4 about 80
Mev; and for I"', about 60 Mev. The reason that the
yields of F23 are larger than those of its neighbors up
to the highest energy studied, 240 Mev, must be
associated with the assumption that in the range 140
to 240 Mev, the average excitation energy given to the
struck target nucleus must be such as to favor the
reaction leading to P". Thus, as the bombardment
energy is increased to 240 Mev from the lowest value,
each iodine isotope starting from stable P" is in turn
the product of a favored reaction, the yields first rising
successively and then eventually Battening out. Thus,
in Fig. 3, the yield of P26 rises 6rst and Battens out
soonest; next comes F24, rising and then Battening out;
then P23, the most favored product between 140 and
240 Mev, which possibly would Batten out at still
higher energies; finally, the yield of the most neutron-
delcient isotope(s) I"+'" is still rising at 240 Mev and
presumably would reach and surpass that of I'~ at
much higher energies. Consequently, it is clear that the
iodine yield curves can be explained qualitatively on the
picture of successively higher average excitation en-

ergies imparted to the target nuclei with a particular
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FIG. 3. Variation of the yields of iodine isotopes
vrith proton bombardment energy.

reaction being favored over the others at a given aver-
age excitation energy.

TELLURIUM YIELDS

Yields of tellurium isotopes are given in Table I, but
are not plotted. In common with the iodine results, the
data for the more neutron-dehcient isotopes Te" and
Te"' indicate a production threshold near 100 Mev and
yields that increase with energy.
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