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Supyression of Coherent Radiation by Electrons in a Synchrotron*
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Approximate expressions are obtained for the coherent radiation loss by electrons in a synchrotron in the
presence of finite parallel plate metallic shields, such as the pole faces of the magnet. The results would seem
to provide a useful interpolation between the two simple limiting cases of shielding by infinite plates and no
shielding at all.

INTRODUCTION
~

~

~

S is well known, the coherent radiation loss by
electrons in a synchrotron, although independent

of energy, increases with decreasing bunch size as the
(—4/3) power. ' In some of the extremely high-energy
synchrotrons reportedly under consideration, the bunch-
ing is likely to be sufficiently marked so that the coherent
radiation loss could become serious. As is also well

known, the coherent radiation has a spectrum mainly in
the short-wave radio and microwave regions and hence
can be suppressed in part by the use of metallic shields. '
It is our purpose to extend some unpublished results of
Schwinger, ' in which this radiation was calculated
assuming the orbit to lie midway between two plane
parallel sheets of metal of infinite extent, to the case in
which these metallic sheets are finite, as would be the
case, for example, if the shielding were produced by the
pole faces of the race track magnet itself. Our results,
although necessarily rough, would seem to provide a
useful interpolation between the two simple limits of
shielding by infinite plates and no shielding at all.

POWER RADIATED BY ONE ELECTRON

Ke begin by writing an expression for the power I'„
radiated in the eth harmonic by an electron moving in
the a=0 plane in a circular orbit of radius R with angular
velocity M, namely,

f
P =Re 4irtcoe'~ d(p q')G (R, oo,0; R—, oo', 0)

with
h„=rtco/c= rtP/R

P iol= (sscoe'/R) 2P'Js '(2rtP)

aJ p

Js„(x)dx . (4)

II. Infinite Parallel Plate Shields

In this case G„must satisfy the boundary condition
that it vanish on the metal plates. Taking these plates to
be separated by a distance a, with the electron orbit
midway between the plates, we thus require a solution
of Eq. (2) subject to

G =0; s=+a/2. (3)

This function, which we denote by G„&"', is easily de-
rived' and can be expressed as

In addition, G„must satisfy appropriate boundary
conditions if a metallic shield is present. We consider
three cases as follows:

I. No Shielding

In this case G„ is just the free-space Green's function
G (" which, when evaluated on the orbit, is given by

1 exp f 2irtP
~

sins (y —io')
~ j

G (o)(R, io,0; R, (p', 0) =— (3)
4sr 2R

i
sin-', (io—oo')

~

Substitution into Eq. (1) yields, after the angular
integration is performed, the well known result' 4

&&L1—p' cos(v —
o ')3e '"'~", (1) G.&"&(r,q, s; r', q', e')

where P=coR/c. In the above, the Green's function
G„(r,io,s; r', oo', s'), which is to be evaluated on the orbit
as indicated, is the outgoing wave solution of

= (i/2a) Q P Sin jor(Is+e/a)
j=l m=—oo

&& sin jsr (-', +s'/a)

Xe"' «—v'lf „(q„;r()H„i» (q„,r)), (6)
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SUPPRESSION OF COHERENT RADIATION

where

v- = [&-'—(i~/a)'J'*= [(~p/R)' (—i~/a)'l',

and where r& is the lesser of the two radii r and r', r) the
greater of the two. Substitution into Eq. (1), then yields
after performance of the angular integration,

P„(")= (tlute'/R) (47rR/a) Re{ g [—a (')J
3 o ~ ~

+lp'(&= ")~-+&.+ ("J:+)j) (7)

where the argument of all the cylinder functions is

y R= [(mP)' —(jsR/a)'j~.

The power radiated into the attenuated modes is of
course zero since for these modes the arguments of the
cylinder functions, and also therefore the products
II ("J„,become purely imaginary. Only those terms for
which j &nPa/sR consequently contribute to Eq. (7).

IIL Finite Parallel Plate Shields

Imagine now that the shielding plates of Case II,
instead of being infinite, extend from an inner radius E~
to an outer radius R2 (with R)&R&R2 of course) as
would be the case if the pole pieces of the ring magnet
itself were the shielding plates. In this case, the Green's
function in the region between the plates must satisfy
appropriate (and very complicated) boundary condi-
tions at the surfaces r= E~ and r=E2 in addition to the
boundary conditions of Eq. (5). These extra conditions
can be satisfi. ed only if a general solution of the homo-
geneous equations is added to the Green's function of
Eq. (6). Thus for this case we must have

radiated is not less than it would be for an infinite
shield, i.e., we set A„;,8„;=0 for propagating modes. It
is then necessary only to consider the power radiated
into the attenuated modes. As mentioned previously,
6„("&contributes nothing for attenuated modes and only
F„enters. Thus we have

p (p (~)+p (8«)

where P„(")is given by (7) and where

p ( ) =Re 4(~e d(p —p )F&(orb)t)

X[1—P' cos(p —s)')$e '"(~"' . (11)

In order to evaluate Eq. (11), we must estimate the
remaining A „;and 8„;.The easiest way to do this is as
follows. In any high-energy synchrotron, the length
E2—E~ and the plate separation a are very small com-
pared to the orbit radius E. Thus the cylindrical waves
behave very much like plane waves, i.e., the Bessel
functions can be replaced by their asymptotic values.
To this approximation, a typical attenuated mode of 6„
of Eq. (8) has the form of attenuated plane waves
emitted by the source plus waves reQected at the
boundaries with amplitudes expressible in terms of a
complex reQection coeScient of order of magnitude
unity. The power transmitted in the attenuated modes
is easily calculated in terms of such reQection coeKcients
and an "upper limit" estimated by choosing the phase of
these reQection coeKcients properly while setting their
magnitudes equal to unity. The simple result is then the
following:

G —G„( )+F„
where we write F„in the form

(8) P-'"'=( '/R)(4 R/ ) 2 (2/ )( /j R)
3 ~ ~ ~j)na/mR

X[e 2/w(R Ry)/a+e 2iw(R2 ——R)/aj—
F„=(i/2a) Q P sinjvr(~~+s/a)

j=l m=o()

Xsinjs (,'+s'/a)e' (~-&'

X[~.,a.()(~„,~)+fl.;a„(')(~.,~)$, (9)

where the factor (i/2a)e '~&' sin js.(s+s'/a) is included
for convenience. The important fact is that. Ii„ is a
general solution of

(|7'+k„')F„=O,

and satisfies Eq. (5). The coefficients A, and P; are
exactly determinable only upon consideration of an
extremely dHFicult, if not insoluble, boundary value
problem. However, F„represents essentially reQected
waves at the boundaries E~ and E2, and hence these
coefFicients can be roughly estimated from physical
arguments. In particular, we shall seek to stay on the
safe side by looking for something like an upper limit to
the power radiated. As a first step, we assume that as
far as the propagating modes are concerned, the power

8,= (R Rg)/a, l)s ——(Rs R—)/a, —(12)

we obtain finally

P (~«)~(8ncoe2/sR) P (1/j) (e
—2/~~&+e —2/~~2) (13)

3 ~ ~ ~j(na/mR

In obtaining this result, multiple reQections have been
neglected and the argument y„,R of the Bessel functions
in Eq. (9) has been approximated by i(j~R/a), both
being permissible for highly attenuated modes. The
various terms which appear are then easily identified.
The factor (ma&e'/R) (4nR/a) is the same normalization
factor as in Eq. (7); the factor (2/s. )(a/ js-R) arises
from the asymptotic expansion of the Sessel functions,
while the first exponential gives the attenuation of a
wave of unit amplitude originating at the source and
then being reQected back to it by the surface at E& and
similarly for the second exponential term with reQection
at R2. In any event, if we now introduce the dimension-
less parameters,



J. S. NODVICK AND D. S. SAXON

The procedure described above is admittedly crude,
but in fact we have obtained the same result by a much
more careful treatment in which the shield was regarded
as a section of a radial transmission line with proper care
being given to asymptotic representations of the Bessel
functions in the various domains of order and argument
which occur. We shall not reproduce that treatment here
except to say that it shows that Eq. (13) is adequate
provided 8&2 and (R/a) &20. This restriction on () is
relaxed somewhat if R/a is larger, as might be expected
for actual synchrotrons. For example, if R/a& 100, then
8&5 is suitable. However, as we shall see, the shield
behaves very much as if it were infinite when 5 ap-
preciably exceeds 2 and hence this is not a serious
restriction.

COHERENT RADIATION

Having obtained expressions for the power radiated in
the eth harmonic by a single electron for each of the
three cases, we now desire expressions for the power
radiated by, say, Ã electrons distributed in a specified
way around the circular orbit. ' ' In particular, suppose
the 4th electron to have the angular coordinate q), +a&L

at time t. In the Fourier decomposition of the 6elds, the
contribution of each electron thus contains a phase
factor e '"~' for the eth harmonic. It is then easily
established that the power radiated in the eth harmonic
by the S electrons is

1V N'

P (g e '"" ~'=IVP„+P„P cosa(p —((t,). (14)

The first term gives just the incoherent power loss. Since
the spectrum of this radiation is mostly in the visible or
ultraviolet region, it is of course unaffected by the
presence of the shields, i.e., when summed over e, it
gives the usual results' 4 in all cases and we shall not
discuss it further.

Our interest is in the second term, representing the
coherent radiation, which we express as

f„=I sin(-,'nx)/( —'ttn)]'. (17)

As a second example, if the electrons are distributed
according to a Gaussian law, then

and
~(() ) = (1/nV'~) exp( —v'/n')

f„=exp L (ttn/2) ']
In any event, the total coherent radiation is obtained by
summing Eq. (15) over all harmonics and we then have,
for the three cases under consideration. '

I. No Shielding

II. Infinite Parallel Plate Shields

P„h'"' N' Q P——("'f

III. Finite Parallel Plate Shields

P;.),=P-) (")+P-h"",
(ttt) A)'2 P P (ttt) f

(21)

(22)

P„h("= (1V'cue'/R) (v3/n) I'

&( (4/trv3) 2lLI'(2/3)]' (Gaussian).

It is seen that the results are not terribly sensitive to the
detailed character of the form factor, and henceforth we
shall consider only the uniform distribution. For this
distribution, Schwinger' has also evaluated Eq. (20), but
only under the assumption that the size of the bunch is
at least of the order of the plate separation (i.e., that
Rn&a), with the result

Using the fact that P„(" )t'*, Eq. (1()) has been
evaluated for a uniform distribution by Schwinger' and
for a Gaussian distribution by Schiff, ' with the results

P,. ( )=o)(S'~e'/R) (V3/n)4" (uniform) (23)

where the form factor f is
P,. (")= (X' e'/R)(%3(J/2R '). (24)

f =L1/Ar(A)'+1)] Q cosa(p), —y,). (16)
kQq

Assuming that the electrons are symmetrically dis-
tributed about the same mean angle, say zero, and that
each electron is independent, we then have at once

f =
i

"
icosttq S(q)dq )

where S(rp)dq is the probability that a given electron is
found in the angular interval between ((t and p+d((). For
example, if the electrons are uniformly distributed over
an angular interval n, then

5(y) =1/a, —a/2& et&a/2
=0, otherwise

This restriction on the size of the bunch is not as serious
as it seems at 6rst glance, since for En much less than u

the shielding effects become very small and hence
are not of significance. Additionally, examination of
Schwinger's derivation leads one to the conclusion that
Eq. (24) represents essentially an upper limit to the
coherent radiation loss as n becomes smaller than a/R.
Presumably, therefore, Eq. (24) can be safely used until
n becomes small enough that the result is numerically
equal to that of Eq. (23), which is the result in the
absence of shielding. 7

' See the Appendix for details.' Actually one can do considerably better than this as follows:
As the bunch size n decreases toward zero, for 6xed plate separa-
tion u, the shielding effect becomes negligible. In other words,
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