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Approximate expressions are obtained for the coherent radiation loss by electrons in a synchrotron in the
presence of finite parallel plate metallic shields, such as the pole faces of the magnet. The results would seem
to provide a useful interpolation between the two simple limiting cases of shielding by infinite plates and no

shielding at all.

INTRODUCTION

S is well known, the coherent radiation loss by
electrons in a synchrotron, although independent
of energy, increases with decreasing bunch size as the
(—4/3) power.! In some of the extremely high-energy
synchrotrons reportedly under consideration, the bunch-
ing is likely to be sufficiently marked so that the coherent
radiation loss could become serious. As is also well
known, the coherent radiation has a spectrum mainly in
the short-wave radio and microwave regions and hence
can be suppressed in part by the use of metallic shields.!
It is our purpose to extend some unpublished results of
Schwinger,? in which this radiation was calculated
assuming the orbit to lie midway between two plane
parallel sheets of metal of infinite extent, to the case in
which these metallic sheets are finite, as would be the
case, for example, if the shielding were produced by the
pole faces of the race track magnet itself. Our results,
although necessarily rough, would seem to provide a
useful interpolation between the two simple limits of
shielding by infinite plates and no shielding at all.

POWER RADIATED BY ONE ELECTRON

We begin by writing an expression for the power 7,
radiated in the »th harmonic by an electron moving in
the z=0 plane in a circular orbit of radius R with angular
velocity w; namely,

P,= Re{élinwezf d(p— ¢")Gr(R,0,0; R,¢',0)

X[1—8%cos(p—¢) Je~ntemeD ¢, (1)

where 8=wR/c. In the above, the Green’s function
Gu(r,0,2;7,¢',2"), which is to be evaluated on the orbit
as indicated, is the outgoing wave solution of

(VP+kn?)Gr=—8(—2)3(p— " )o(r—7")/r, (2)
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1L. I. Schiff, Rev. Sci. Instr. 17, 6 (1946). See also Eq. (23)
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2 J. Schwinger, “On radiation by electrons in a betatron,” 1945
(unpublished). We wish to thank L. Jackson Laslett who called our
attention to this material.

with
kn=nw/c=nB/R.

In addition, G, must satisfy appropriate boundary

conditions if a metallic shield is present. We consider
three cases as follows:

I. No Shielding

In this case G, is just the free-space Green’s function
G,® which, when evaluated on the orbit, is given by

1 exp[2in8|sin} (o— ¢')| ]
Go® (R,0,0; R,¢',0)=— : )
4 2R|sin(p—¢))|

Substitution into Eq. (1) yields, after the angular
integration is performed, the well known result®*4

PO = (m,ez/R)[Zﬁzf 2n’ (208)

~ (16 f " me)dx]. @

II. Infinite Parallel Plate Shields

In this case G, must satisfy the boundary condition
that it vanish on the metal plates. Taking these plates to
be separated by a distance @, with the electron orbit
midway between the plates, we thus require a solution
of Eq. (2) subject to

G,=0; z=4a/2. (5)

This function, which we denote by G,, is easily de-
rived® and can be expressed as

Gn™ (r,0,2;7,0' %)

~(/20)% Y sinjr(3+5/a)

7=1 m=—®
X sinjr(3+2'/a)
X e e (Ynit YHu® (ynir>),  (6)

3G. A. Schott, Electromagnetic Radiation (Cambridge Uni-
versity Press, Cambridge, 1912).

4J. Schwinger, Phys. Rev. 75, 1912 (1949). Our starting point,
Eq. (1), with G, given by Eq. (3), is essentially Eq. (IIL.7) of this
reference.

5 See, for example, P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (McGraw-Hill Book Company, Inc., New
York, 1953), Chap. 7, particularly p. 892. A detailed derivation is
given in reference 2.
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SUPPRESSION OF COHERENT RADIATION

where

Vni=[ka*— (jr/a)* 1= (nB/R)*— (jm/a)* I},
and where 7 is the lesser of the two radii and 7/, 7> the
greater of the two. Substitution into Eq. (1), then yields
after performance of the angular integration,

P = (nwe?/R) (4nR/a)Re __i [—H.OF,

13,0+

_*_%62 (Hn—l(l)]1L-—1+Hn+1(1)-]n+1):'}, (7)
where the argument of all the cylinder functions is
¥niR=[(1nB)*— (jmR/a)* .

The power radiated into the attenuated modes is of
course zero since for these modes the arguments of the
cylinder functions, and also therefore the products
H,®J,, become purely imaginary. Only those terms for
which j<#uBa/mR consequently contribute to Eq. (7).

III. Finite Parallel Plate Shields

Imagine now that the shielding plates of Case II,
instead of being infinite, extend from an inner radius R,
to an outer radius R. (with R;<R<R, of course) as
would be the case if the pole pieces of the ring magnet
itself were the shielding plates. In this case, the Green’s
function in the region between the plates must satisfy
appropriate (and very complicated) boundary condi-
tions at the surfaces =Ry and 7= R, in addition to the
boundary conditions of Eq. (5). These extra conditions
can be satisfied only if a general solution of the homo-
geneous equations is added to the Green’s function of
Eq. (6). Thus for this case we must have

Gn= Gn(w)"*_Fn, (8)

where we write F, in the form

Fo=(/20)3 S sinjr(b+2/0)

j=1 m=—o0
Xsinjr(34-2'/a)eimie=e)
XLAniHn® (Yajr)+BumiHn® (ynir)],  (9)

where the factor (i/2a)e= "¢ sinjr(3-+2'/a) is included
for convenience. The important fact is that F, is a
general solution of

(V*+EHF =0,

and satisfies Eq. (5). The coefficients 4.; and Bn; are
exactly determinable only upon consideration of an
extremely difficult, if not insoluble, boundary value
problem. However, F, represents essentially reflected
waves at the boundaries R; and R,, and hence these
coefficients can be roughly estimated from physical
arguments. In particular, we shall seek to stay on the
safe side by looking for something like an upper limit to
the power radiated. As a first step, we assume that as
far as the propagating modes are concerned, the power
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radiated is not less than it would be for an infinite
shield, i.e., we set 4 ,;, B,;=0 for propagating modes. It
is then necessary only to consider the power radiated
into the attenuated modes. As mentioned previously,
G, contributes nothing for attenuated modes and only
F, enters. Thus we have

PaS Pa 4 Pew), (10)
where P, is given by (7) and where
P, et = Re{ 4inwezf d(o— ¢")F,(orbit)
X[1—8* cos(p—¢') Je~mle=e b (11)

In order to evaluate Eq. (11), we must estimate the
remaining A4 ,; and B,;. The easiest way to do this is as
follows. In any high-energy synchrotron, the length
Ry— R, and the plate separation a are very small com-
pared to the orbit radius R. Thus the cylindrical waves
behave very much like plane waves, i.e., the Bessel
functions can be replaced by their asymptotic values.
To this approximation, a typical attenuated mode of G,
of Eq. (8) has the form of attenuated plane waves
emitted by the source plus waves reflected at the
boundaries with amplitudes expressible in terms of a
complex reflection coefficient of order of magnitude
unity. The power transmitted in the attenuated modes
is easily calculated in terms of such reflection coefficients
and an “upper limit” estimated by choosing the phase of
these reflection coefficients properly while setting their
magnitudes equal to unity. The simple result is then the
following : '

P9 (nwe?/R) (4nR/a) T (2/m)(e/jmR)
ek
X [e2im(R~ED/a{ g—2in(Re—R)/a],

In obtaining this result, multiple reflections have been
neglected and the argument v,;R of the Bessel functions
in Eq. (9) has been approximated by i(jwR/a), both
being permissible for highly attenuated modes. The
various terms which appear are then easily identified.
The factor (nwe?/R)(4wR/a) is the same normalization
factor as in Eq. (7); the factor (2/7)(a/jwR) arises
from the asymptotic expansion of the Bessel functions,
while the first exponential gives the attenuation of a
wave of unit amplitude originating at the source and
then being reflected back to it by the surface at R; and
similarly for the second exponential term with reflection
at R,. In any event, if we now introduce the dimension-
less parameters,

51= (R—Rl)/d, 322 (Rz—"R)/d, (12)

we obtain finally
P, o0~ (8nwe?/rR) 3. (1/7)(e¥m1+4¢-2m%), (13)
i=1,3

7 <'na'/7rR
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The procedure described above is admittedly crude,
but in fact we have obtained the same result by a much
more careful treatment in which the shield was regarded
as a section of a radial transmission line with proper care
being given to asymptotic representations of the Bessel
functions in the various domains of order and argument
which occur. We shall not reproduce that treatment here
except to say that it shows that Eq. (13) is adequate
provided 652 and (R/a)220. This restriction on § is
relaxed somewhat if R/a is larger, as might be expected
for actual synchrotrons. For example, if R/a>100, then
8X5 is suitable. However, as we shall see, the shield
behaves very much as if it were infinite when & ap-
preciably exceeds 2 and hence this is not a serious
restriction.

COHERENT RADIATION

Having obtained expressions for the power radiated in
the nth harmonic by a single electron for each of the
three cases, we now desire expressions for the power
radiated by, say, NV electrons distributed in a specified
way around the circular orbit."? In particular, suppose
the kth electron to have the angular coordinate ¢+ w/
at time ¢. In the Fourier decomposition of the fields, the
contribution of each electron thus contains a phase
factor e~k for the nth harmonic. It is then easily
established that the power radiated in the #th harmonic
by the N electrons is

N N
P> e inoe|2= NP, +P, Y. cosn(eor—e,). (14)
1

k>q

The first term gives just the incoherent power loss. Since
the spectrum of this radiation is mostly in the visible or
ultraviolet region, it is of course unaffected by the
presence of the shields, i.e., when summed over #, it
gives the usual results'™ in all cases and we shall not
discuss it further.

Our interest is in the second term, representing the
coherent radiation, which we express as

NNA1)P,fitN?P, [,

where the form factor f, is
fo=[1/N(N+ I)JkZ cosn(pr—¢q).
#q

Assuming that the electrons are symmetrically dis-
tributed about the same mean angle, say zero, and that
each electron is independent, we then have at once

fn=(f cosnso~S(¢)d¢)2,

where S(¢)de is the probability that a given electron is
found in the angular interval between ¢ and ¢+4-d¢. For
example, if the electrons are uniformly distributed over
an angular interval o, then

S(e)=1/e, —a/2<¢<a/2
=0, otherwise

(15)

(16)
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and
fo=[sin(Gna)/ (na) (17)

As a second example, if the electrons are distributed
according to a Gaussian law, then

S(g)=(1/ar/7) exp(— ¢*/a?)
fa=exp[— (na/2)*]. (18)

In any event, the total coherent radiation is obtained by
summing Eq. (15) over all harmonics and we then have,
for the three cases under consideration:

and

I. No Shielding

Pen®=N23 PO f. (19)

II. Infinite Parallel Plate Shields
Peop™@=N23_ P, f,. (20)

II1. Finite Parallel Plate Shields
Poon= Poon™ 4 Poon®?, (21)
Peoon®@W == N23" P, 6t f (22)

Using the fact that P,@~mn}, Eq. (19) has been
evaluated for a uniform distribution by Schwinger? and
for a Gaussian distribution by Schiff,! with the results

Poon® = (N?we?/R) (V3 /a)*? (uniform) (23)

and
Poon®@ = (N2we?/R) (V3 /a)*?
X (4/7V3)2YT'(2/3)]* (Gaussian).

It is seen that the results are not terribly sensitive to the
detailed character of the form factor, and henceforth we
shall consider only the uniform distribution. For this
distribution, Schwinger? has also evaluated Eq. (20), but
only under the assumption that the size of the bunch is
at least of the order of the plate separation (i.e., that
RaZa), with the result®

P = (N?we?/R) (V3a/2Ra?). (24)

This restriction on the size of the bunch is not as serious
as it seems at first glance, since for Ra much less than a
the shielding effects become very small and hence
are not of significance. Additionally, examination of
Schwinger’s derivation leads one to the conclusion that
Eq. (24) represents essentially an upper limit to the
coherent radiation loss as a becomes smaller than a/R.
Presumably, therefore, Eq. (24) can be safely used until
a becomes small enough that the result is numerically
equal to that of Eq. (23), which is the result in the
absence of shielding.”

6 See the Appendix for details.

7 Actually one can do considerably better than this as follows:

As the bunch size a decreases toward zero, for fixed plate separa-
tion a, the shielding effect becomes negligible. In other words,
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Finally, we calculate the correction term for finite
shields from Eq. (22), using Eq. (17) and Eq. (13):

Pean®= (8N%we?/xR) ¥ (1/4)

=1,3,+0

X (6—2;{#81.{_6—2 1'1r62) Z n

n=1

irRla (sin%na 2
3na

For >3, only the j=1 term contributes significantly,

as is easily verified, so that, using

rR/a

(1) sin*(bna)

wRala
~ f (1/x) sin*(x/2)dx=S(rRa/a) (25)

we obtain

Poon @02 (N?we?/R) (32/7a?)

X[e 20427 |S (rRa/a). (26)
10 T T T T
\\\
0.8 \\ o =04 N
\\ R/0=50
\\
0.6 4
Pcoh \
Pon
o4l 4
0.2 i
PER/PO, =.071
% 05 o 5 0

6

F16. 1. Coherent power loss, relative to the loss in the absence of
shielding, vs plate width in units of the plate separation.

This result is valid under the conditions R/a2>20 and
1<6<2. Although this may seem to be a small domain
of validity, it actually covers the most important region.
The quantity S(mRa/a) is easily expressed in terms of
known functions;? viz.,

S(y)=3[C+logy—Ci(y)], (27

where C=0.577- - - =Euler’s constant, and Ci(y) is the
cosine integral; so that the final result is extremely
simple.

As an example, in Fig. 1, we present a plot of the
coherent power loss, relative to the loss in the absence of
shielding, against plate width for the special case ;=28
=§/2 and for =0.04 and R/a=>50. Although only a

regarded as a function of «, Pcon™ approaches Peon® as a ap-
proaches zero. Knowing that the result (24), valid for large q, is
essentially an upper limit for small @, one can then easily sketch in
the entire curve to reasonable accuracy.

8 See, for example, E. Jahnke and F. Emde, Tables of Functions
(Dover Publications, New York, 1943), pp. 2-6.
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F1c. 2. Plate width s orbit radius, both in units of the plate
separation, for constant ratio of coherent power loss to that for
infinite parallel plate shields and for the electrons bunched uni-
formly over an angular interval 0.02 radian.

portion of the curve can be calculated [using (21), (23),
and (26)] we do know the limit points when 6=0 (no
shielding) and 6=« (infinite parallel plate shielding)
and hence the remainder of the curve can be sketched in
without serious error. The dotted portion in the figure
has been so sketched, while the solid portion has been
calculated according to the above.

In Figs. 2, 3, and 4, we present the results in con-
venient form by introducing the parameter k(8,,R/a)
defined by

Pcoh= [1+k(51,(1,R/(l)+k(52,0[,R/d)]Pcoh(°°),

where Poon® is given by Eq. (23). Values of 6 vs R/a for
constant % have been plotted for a=0.02, 0.04, and 0.06.
These curves enable one to estimate the width of
shielding required to reduce the coherent radiation loss
to a given amount in units of the loss for infinite shields.
As an example, given R/a=60 and ¢=0.02, it might be
desirable to know the plate widths necessary toreduce the
coherent power to twice Peon™. Selecting 8;=48; so that
k(31,0,R/a)=k(85,0,R/a)=0.5, we find from the curves

(28)

T T T

k=3.0
"% ) 726 s
R/a

Fic. 3. Plate width s orbit radius, both in units of the plate
separation, for constaht ratio of coherent power loss to that for
infinite parallel plate shields and for the electrons bunched
uniformly over an angular interval 0.04 radian.
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o% 1 1 1 L 2 1
60 100 140
R/a

F16. 4. Plate width s orbit radius, both in units of the plate
separation, for constant ratio of coherent power loss to that for
infinite parallel plate shields and for the electrons bunched uni-
formly over an angular interval 0.06 radian.

of Fig. 2 that 6;=8,=1.15; and hence, from (12),
R—R1=R2—R=1150
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APPENDIX

Because of the unavailability of reference 2, we give
an outline of Schwinger’s derivation of Eq. (24). Taking
the indicated real part of (7) we have

P, = (nwe?/R)(47R/a)

X X [T+ nr T )]

=1,3

J <naﬂ/7rR
= (nwe*/R) (4wR/a)
imR/a)?
X b [sznlz | (2] (‘l) 2]n2:|’ (A1)
gk 8= GrR/)

where the argument of the Bessel Functions is

YniR=[(nB)*— (jwR/a)*J:.

Since mR/a>>1, the harmonics involved in the radiation
are sufficiently high so that approximation formulas for
Bessel functions of large order are applicable and we
write,9 placing =1,

® G. N. Watson, Bessel Functions (The MacMillan Company,
New York, 1945),” p. 248,
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SAXON
T o= (R /o)1)
jmR/a \ \
m( - )Kétuvrk/a) (1/3m2)],
(A2)
70— (R /)

imR/a
— ( ! )Kz/s[(]WR/d)3(1/3”2)]

Recognizing that the contributions to P, are negli-
gible unless 22> (77R/a) (jwR/a)}, so that » must exceed
jmR/a by a rather large factor, we simplify the second
term of (A-1) accordingly and obtain

Po= (we*/R)(4R/3ma) 3 (vit/n")
7i=1,3,
vi <n
XK (v#/3n%)+Koys* (v #/3n%) ],
where
v;=jmR/a.

The total coherent power is then given by

Pcoh(w) = (1\720)62/R) (4R/37ra)

sindna 2
xx( >
n=1

tna J j=1,3,---
vi<n

XK (v/3n))+Koys?(v£/3n2)].

Replacing the sum over # by an integral, and intro-
ducing x=+v,%/3n?, we then have

-Pcoh(u>> = (NZ(OGQ/R) (12R/1raa2)

(vi*/n*)

X = () [ sinCri/ssTal)
X LK 32 () + Koy* () Jade,

where the correct upper limit of the integral, v;/3, which
is large compared to unity, has been replaced by infinity.
Now the main contribution to the integral comes for
values of x in the interval 0<x< 1. In this interval the
argument of the sin? term in the integral is at least of
order ayj\/v~(jRa/a)(jR/a)>Ra/a. Hence, if Ra/a
is at least of order unity, the sin® term can be replaced by
its average value 3, the known integrals® and sums
performed and the result of Eq. (24) follows.

Without this restriction on Ra/a, the evaluation of
Eq. (A3) seems possible only numerically. However, we
remark that if o is small enough that the argument of
the sin? term is rather small over the important range,
then this term is considerably less than its average value
and hence, as indicated in the text, one errs only on the
conservative side in extending Schwinger’s result.
Needless to say, an absolute upper limit is obtained by
replacing the sin? term by unity, thus giving twice the
result of Eq. (24), but this seems unnecessarily con-
servative,

(A3)



