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The density matrix of von Neumann can be used to formulate an exact variational principle for quantum
statistics which embodies the principle of maximization of entropy. Using the formalism of second quantiza-
tion, we can write this variational principle for fermions or bosons and can then derive from it an approximate
variational procedure which yields the particle states of a system of interacting bosons or fermions as well
as the distribution of particles in these states. These equations yield the generalization _of the Hartree-Fock
equations for nonzero temperature and the corresponding extension to bosons.

I. INTRODUCTION

HE quantum statistics of interacting identical

particles was first attacked from the point of view’

of the density matrix by Dirac! who derived the
Hartree-Fock equations for fermions at zero tempera-
ture in this way. The problem of a system of interacting
fermions at nonzero temperatures has been studied by
Husimi? in his long paper on the density matrix and,
more recently, by Husimi and Nishiyama.?* These
authors used the principle of maximization of entropy
to derive their results, although the minimization of
free energy has been suggested by Lidiard,® who has
used the method to derive the approximate free energy
used by Koppe?® in a calculation of the influence of the
exchange energy on the specific heat of free electrons in
metals. Kubo” has also minimized the free energy in
his treatment of antiferromagnetism.

The purpose of this paper is the formulation of a
general approximate variational method in the quantum
statistics of fermions and bosons using the grand
canonical ensemble of Gibbs and the procedures of
second quantization. The emphasis in this treatment is
no longer on the individual particles but on the states,?
and we shall speak appropriately of correlations and
interactions between these states for example. After
first discussing the exact variational principle, which is
equivalent to the entropy maximization principle, we
derive its formulation for identical particles by the use
of second quantization. In treating the variational
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principle for identical particles, we introduce the ap-
proximation that correlations between particle states
are to be neglected. By “no correlation” we mean that
the number of particles in one state does not depend
strongly upon the number of particles occupying other
states. More explicitly, we set the density matrix equal
to a product of factors each referring to a particular
particle state. We then introduce the further approxi-
mation that each factor is a function only of the operator
for the number of particles in the particle state to which
the factor refers. The now approximate variational prin-
ciple gives the best form for each factor, in the sense of
minimizing the quantum mechanical partition function
for the grand canonical ensemble.

Even though correlations between particle states are
neglected, the interactions between them are present in
a manner like that of the familiar “effective field”
theories. This fact appears when we vary the functional
form of the particle states in our variational expressions;
the equations which emerge are a generalization of the
Hartree-Fock equations for fermions at nonzero tem-
perature. These equations have already been given by
Husimi? for fermions in a somewhat similar derivation.
From the point of view adopted in this paper we can
also justify the application of our procedure to the boson
case in which we obtain a similar set of equations.
Although the distributions of particles and the particle
states are a natural extension of the fermion case, these
latter equations have not been given previously.

II. GENERAL FORMULATION

In quantum statistics the grand canonical ensemble
of Gibbs is introduced by taking the density matrix of
von Neumann® in the form

©

p=exp[B(uN— H)]/Trace 2 explBWN—m)], (1)

where 8= (RT)7, u is the chemical potential, H (an
ordinary Schrédinger operator) is the Hamiltonian for
a system of the ensemble, and V (a scalar) is the number
of particles in a system. The trace is to be taken over
the space spanned by the eigenstates of the system. It is

9 J. von Neumann, Die Mathematische Grundlagen der Quanien-
mechanik (Dover Publications, New York, 1943).
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well known that Eq. (1) can be derived from the varia-
tional principle:

©=Tracep(logp—BuN+GH), 60=0, 2

where we minimize ® with respect to p subject to the
constraint
Tracep=1. 3)

If the system is homogeneous it can be shown that
Omin=—pBpV, where p is the pressure and V is the
volume of the system. This variational principle is re-
lated to the entropy maximization principle which
leads to the Gibbs petite canonical ensemble. The use
of the n-particle Hamiltonian and wave functions which
are the product of single-particle wave functions in
Eq. (2) will lead to the proper wave functions and
distributions for Maxwell-Boltzmann particles.

For a system of # identical particles the wave func-
tions for the system must be symmetric or antisym-
metric combinations of some single particle states yx(s),
where s denotes space and spin coordinates. This re-
striction is easily incorporated by the use of the second
quantization procedure developed by Jordan and
Wigner!® and discussed more fully by Fock.!! In second
quantization we first introduce the ordered orthonormal
set of single-particle wave functions ¥(s). The sym-
metric or antisymmetric combinations of the y;(s)
which form the permissible states of the n-particle
system can then be characterized by the number of
particles N occupying each state yx(s) and therefore
denoted by ¥(Ny, - -+, N,). In so designating the wave
functions of this so-called Fock space, we have shifted
our emphasis from the particles to the particle states
¥ (s). Two operators a,.and a.* logically appear in the
theory as generators of these states:

am*\I/(...’Nm’ )
=5m(Nm+1)%\I'(y Nm+1; )y
am\I/(. . .,Nm, .. ')=€m(Nm)%‘I’(' . .’Nm._l, .. ) (4)

The factor e~ depends on the statistics of the particles;
for bosons en=1, whereas for fermions

m—1
€m= ("‘1)”7 n= Z N,.

r=0

The operators @, and a,* (annihilation and creation
operators) satisfy the commutation [ ] and anticom-
mutation relations [ 7, :

Lam,an]=[a,*a.*]=0,

[@my@n* 1= 0mn;
(fermions) : [@m,an J+="[an*a,*]+.=0,
[@m,@* )1 =0mn.  (5)

10 P Jordan and E. Wigner, Z. Physik 47, 631 (1928).
1V, Fock, Z. Physik 75, 622 (1932); 76, 852 (1932).

(bosons) :

The operator whose eigenvalue is the number of par-
ticles in the particle-state ¥ (s) is

Ni= ak*dk, (6)
and the operator for the total number of particles is then
N=3Ni=Y a*a. )

It follows from the commutation relations of Eq. (5)
that the eigenvalues of Ny are 0, 1 for fermions whereas
for bosons they are the entire set of non-negative
integers.

Let the Hamiltonian for interacting particles be ex-
pressed in the particle formalism as

H=3 H\(s)+3 2 Ha(s,), ®)

s#£s’
where Hy(s) is an operator depending only on the co-
ordinates of s, whereas H(s,s") is a two-particle inter-
action term depending on the coordinates of s and s’.
The Hamiltonian for interacting identical particles can
be shown to be

H=Y 0, nan*(m|H1|n)a,
+ 32 mnpa@m @™ (mn [ H, l 29)a4,, (9)

where

(m| Hy| )= f A (V) Hr (D (1),

(mn| Ho | pg) = f AWt (DY*(2)
X Ha(1, 29510 2).

We can now substitute the expressions for N and H
given by (7) and (9) into Eq. (2) and can proceed to
minimize ® with respect to p.

We now make the assumption

P=H Pm(Nm)-

(10)

(11)

This equation can be regarded as containing two ap-
proximations: (1) p is the product of operators each
referring to a particle state ¥ (s), and (2) each of these
factors is a function only of V,,. The first approximation
is of the same type as that made by Hartree for the
wave functions of atomic electrons. This factorization
implies the neglect of correlations between particle
states. We emphasize that this does not imply a neglect
of correlations between two bosons in the same par-
ticle state. For the case of fermions, the neglect of
correlation between particle states is obviously equiva-
lent to the neglect of correlations between particles
since there can be, at most, one particle in a state. For
the sake of uniqueness we shall take each factor as
individually normalized so that

(bosons):  Trace pm(Nm)= 2. pn(Nm)=1;
N0

(fermions) : Trace pm(Nm) =pm(0)+on(1)=1. (12)
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Even though the results of minimizing the exact
variational expression are invariant to the choice of
particle state, the minimum of the approximate varia-
tional expression which incorporates Eq. (12) depends
on the choice of the orthonormal set. For this reason
we shall minimize © not only with respect to the p,, but
also with respect to the functional form of the set ¥m,
with the orthonormality condition (5) as the only

constraint.

III. INTERACTING FERMIONS

For the case of fermions we can take pn(NV.) in the

form

p,,,(Nm) = (1 - wm) (1 - LV"L)—{_‘mem; (13)

in which w,, is clearly the probability for the occupation
of the particle state Ym. We can combine Egs. (2), (11),
and (12) to obtain
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0=3 . (1—w,) log(1—w.)
+ 2 Wil logwm—Bu+ (m| Hy|n)]
+ 32 m, n Wnal (mn| Hy| mn)— (mn| Hy|nm) . (14)

Carrying out the variation on w. we find

wn={exp[B(en—u) 1+1}7, (15)

where en is an effective energy which includes the direct
and exchange interaction energy

en=(m|H|n)+> . wn
X[ (mn|He|mn)— (mn| Hy|nm)]. (16)

Aside from the fact that en is an effective energy, Eq.
(15) is what one obtains for noninteracting fermions.

The variation of ¥,.* subject to the orthonormality
constraint yields

H(n ()43 0 f d(zw<2>H2<1,2>¢n<2>¢m(1>~znwn[ f d(2)¢n*(Z)Hg(1,2)¢m(2)+)\mn]¢n(1)=0. an

We emphasize that the integral represents summation
over spin as well as integration over space. An, is a
Lagrange multiplier for the orthonormality condition.
The variation of ¥ gives the complex conjugate of
Eq. (17). The Hartree-Fock equation is a special case
of Eq. (17) obtained by letting the temperature go to
zero (B— ) so that wn,=1 if e,<p and w,=0 if
€m > M.

Husimi has derived Egs. (15), (16), and (17) from a
different point of view. He asserts, therefore, that
Eq. (11) implies the neglect of correlations between
particles and that this approximation makes the treat-
ment of the boson case unreasonable by this approach.
We have pointed out that the approximation neglects
correlations only between particle states and in the
boson case will also provide reasonable results.

IV. INTERACTING BOSONS

In treating interacting bosons we do not have a
simple form for pm(/Vm) but instead must carry along
the normalization of Eq. (12) by Lagrange multipliers.
In the representation in which the N,, are diagonal,
Eq. (14) reduces to

0= NZ Pm(lvm){k)gpm(Nm)‘{'ﬁ[_F'*' (m ' H, I n)]N'm

+18(mm| Hz|mm)N (N m—1)}
—{—%Zm#n ZNmyNn Pm(lvm)Pn(Nﬂ)

X[ (mn| He|mn)+ (mn| Hy|nm) IN nN,. (18)

Upon minimizing this with respect to p.(Nm) and ¥,.*,
we find

Pm (Nm) =Pm (O) eXp[’*ﬁ (fvmém— l‘)]; (19)

where, for bosons,
€n= (m|Hy|n)+ (mm|Hz|mm) (N n—1)

+Zn Pn(Nn)[(mn, Hlen)"*' (mn{H2[”m)]: (20)

Hy(Dgn(1)+2N,0 f AW () Ha(1,2m(20m(1)

+)‘m¢1n(1)+ Zn ZNn Pn(Nn)Nn

n#Em

x[ f A2 () Ha (1,200 (2)m(1)

n f AW 2) Ha(1,2)Ym(2¥a(1)
+xm,,¢,,<1>]=o. 1)

Again the integral represents integration over space and
summation over spin. The Lagrange multipliers A, and
Amn are again the result of the orthonormality condi-
tions. Equation (21) then constitutes a “consistent
field” or Hartree-Fock equation for bosons. We note
that the most significant differences between Egs. (17)
and (21) are in the presence of an interaction term
between bosons in the same particle state and in the
sign of the exchange term. We can easily see that in
the case of no interaction Egs. (19) and (20) lead to
the Bose-Einstein distribution, for these equations
become

Pm(zvm) =Pm(0) exp{ —6ZVMD‘—' (mlHlln)]}

The average number of particles in the particle state

(22)
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¥m is then
(Nm)= sz pn(Nw)Nom
= {expBL (m| Ha|n)—u]—~ 1)
SUMMARY

(23)

The approximate variational procedure described
herein has enabled us to obtain suitable wave functions
for the description of the individual particle states of a
system of “weakly” interacting bosons or fermions and
to give the distribution of particles in these states. The
procedure is not limited to these two cases, which are
to be considered merely as illustrative of the general

procedure. An application to ferromagnetism or anti-
ferromagnetism can be made and a quantum theory of
liquids can be derived along the lines of the classical
cell theory as developed by Richardson and Brinkley.?
In a discussion of helium II, however, one should expect
the correlation between different particle states to play
an important part, and this requires a modification of
the simple assumption of Eq. (11).

One of us (WMM) is indebted to Professor J. A.
Wheeler and Professor A. S. Wightman and to L. van
Hove for several interesting discussions of this paper.
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Lithium has been shown to migrate as a singly-charged positive ion in single crystals of both Ge and Si in
temperature ranges of 150-600°C and 360-860°C, respectively. The mobility of the Li* in crystalline Ge and
Si has been measured as a function of temperature. Through the use of the Einstein relation between diffusion
constant and mobility, values of the diffusion constants in cm?/sec of Li* in Ge and Si are obtained as
follows: D=25X10"* exp{(—11 800)/RT} for Ge and D=23X10"* exp{(—15200)/RT} for Si, in satis-
factory agreement with previously published results on the thermal diffusion of Li*. A curious reversion of
conductivity type of solid solutions of Li in Ge is discussed. Copper has likewise been found to move as a
positive ion in germanium in the temperature range 800°-900°C leading to diffusivities in agreement with

previously published results.

INTRODUCTION

ITHIUM has already been shown to diffuse rapidly
into crystalline germanium and silicon, behaving

as a donor element in these semiconductors,! and the
diffusion constants for these processes have been de-
termined by means of a method involving the measure-
ment of p-n junction positions.2 An alternative method,
capable of greater experimental accuracy, and based on
fewer assumptions consists of measuring the mobilities
of the Lit ions under an applied electric field. In theory,
the diffusivity D can then be determined from the
Einstein relationship between diffusion constant and
mobility. The sign of the ionic charge (positive in the
case of Li as required by its donor properties) can also be
ascertained by noting the direction the impurity ion
moves in the electric field. The activation energies for
diffusion can be obtained in the usual way from the
slopes of plots of the logarithm of the diffusion constant

* A brief report of this work first appeared as a Letter to the
Editor, Phys. Rev. 92, 1322 (1953).
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2 Fuller, Theuerer, and van Roosbroeck, Phys. Rev. 85, 678
(1952); C. S. Fuller, Phys. Rev. 86, 136 (1952).

against reciprocal of the absolute temperature. In the
present work this method has been applied successfully
to Li in solution in Ge and Si.

THEORY

The basic principle of the method (see Fig. 1) is the .
diffusion of a hemispherical cloud of impurity ions into
the semiconductor. We shall refer to such an ion cloud
as a “pulse” because of its similarity to the analogous
pulses employed in the measurement of electron and
hole mobilities by the Haynes-Shockley method.? The
impurity ion pulse is put in at a temperature chosen so
as to obtain a relatively high concentration of Li in
solution. The location of the diffusion region in the
semiconductor is then determined from the location of
the p-» junction. Thereupon the sample is subjected at
a given temperature to a dc electric field for a fixed time
after which the pulse, now less concentrated due to
thermal diffusion is again located from the new p-n
junction position. If the net drift motion of the center
of the pulse is x, then the mobility is obtained from the
relation u=ux/FE¢; where ¢ is the drift time in seconds and

3J. H. Haynes and W. Shockley, Phys. Rev. 81, 835 (1951).
This analogy was first pointed out to the authors by W. Shockley.



