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HE exact mean occupation numbers for an ideal
Fermi-Dirac or Bose-Einstein gas on the basis of

a canonical ensemble are respectively given by' '

N(N, j)=1
ZN+l rt(N+1, j)

exprt (j')a1
ZN ss(N, j)

(all j, all N, T&0). (1)

st(j) is the energy divided by rtT of the jth quantum state
and Z~ is the partition function if Ã particles are in the
volume V. It has been shown' 4 that these expressions

go over into those which are obtained on the basis of a
grand canonical ensemble under those limiting condi-
tions for which

rt(N+1, j)/N(N, j)-1 (all j, T&0), (2)

where ~ denotes an equality for the limiting case. It has
been pointed out'4 that condition (2) should hold if the
system is infinitely large, but has a finite and nonzero
volume density of particles (the "limit I.").The proof
of this statement was made to depend on the inequalities

not be stressed unduly. Nevertheless, while maintaining
strong reservations of judgement because of our very
literal application of the nearly free electron model, we
are inclined to view the results of Elec and Witte as
providing an experimental demonstration of the great
strength of band-band interaction in influencing the
magnetic properties of electrons in metals.

*This research was supported in part by the United States Air
Force.' H. Elec and H. Witte, Z. Phys. Chem. 202, 352 (1954).

e E. N. Adams, II, Phys. Rev. 89, 633 (1953).' R. Peieris, Z. Physik. 80, /63 (1933).

(5) does not ensure that (2) holds for all quantum
states, though this now becomes a reasonable con-
jecture. The argument which was previously used
fails now because the inequality rt(N+1, j)/rt(N, j)
Piss(N+1, k)/Qsrt(N, k) does not necessarily hold for
all states j.

We therefore consider it worth while to give an in-
dependent and rigorous argument which leads to (2)
in the limit I.. In the Fermi-Dirac case we use (3) and
the result'

n(N+» j)= (ZNIZN+l) C& rt(N j)3 expt 'st (j)j. (6)

Replacing first ss(N+1, j) by rt(N, j) on the left, and
then rt(N, j) by rt(N+1, j) on the right, we find

~ "&rt(N+1,j)&t (N', j)&rt(N, j)
»(N —»j)& " (7)

tt(»j) =1/L1+(ZN+l/ZN) expst(j) j.
For all limiting processes for which ZN+l/ZN ZN/ZN l
we must have rt(Nj) ts(Nj). Comparison of (8) and
(1) shows then that (2) holds.

In the Bose-Einstein case no relation of type (7) can
be found which has equal generality, and one must
proceed in a diferent way. The basic recurrence relation
is in this case'

xN+letN+1 rtN+ 1 (1/xN) (9)

where xN =rt(N j)/—rt(N 1,j), aN
' —= (ZN/ZN l) exprt(j).

For all limiting processes for which aN+l aN( a say)
and xN+l xN (~x say), one finds that x must be a
solution of ax' —(a+1)x+1 0, whence x~1 or 1/a.
The last possibility is ruled out since x»1, a»1 for
all j and finite N. Hence (2) must hold again in these
cases. It remains to discuss the various limiting rela-
tions whose existence has beeri assumed in the above
argument.

For Fermi-Dirae systems the relation ZN+i/ZN
~ZN/ZN l is valid in the limit I. (and possibly for
other limiting processes). Let

I'= I' 'Z t (»j), —()=—I' 'Z t (N —1,j),

rt(IV+1, j)/rt(N, j)&1 (all j, finite N, T&0), (3)

which hold for Fermi-Dirac' and Bose-Einstein
systems. But the argum'ent employed was not rigorous. '

In fact, let

rt(N+1, j)/n(N, j)= 1+n(N, j),
n(Nj)&0 (all j, all N); (4) Then

then
g,n(Nj)rt(N, j)=1.

andIt is easy to see from (5) that n&1/N for some (or
possibly all) quantum states, so that (2) may hold as
3T—& ~, whatever the volume V of the system, However,

ZN+ 1/ZN
e =—1—,0&~ &&&1,

ZN/ZN l

e(ZN/ZN l) expst(j)
Cg=

1+(ZN/ZN l) expst(j)

)~1
1—c

eZN/ZN l

1+(1—e)ZN/ZN i

VI'=p;$1+(ZN/ZN l) exprt(j)g 'L1—e;$ ',
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Now by (7), (»+1)/V&P)»/V)Q) (» 1—)/V, so
that Q= (»—n)/V, 0&n&1. These relations give rise
to

(1V—n) eZiv/Z~ i
&Q+~

V ~ 1+(1—e)Ziv/Ziv i

iV—1
(10)

(1+1/») (Ziv~, /Ziv) )Z /ivZ iv,)Z~+i/Z~. (11)

Thus for all limiting processes for which E tends to
inflnity Ziv+i/Ziv Ziv/Ziv i, and therefore relations
aN+& aN hold.

To establish relations of the type xN+& xN for Bose-
Kinstein systems, one can use an argument of the type
given in Sec. 4 of Fraser's paper. If M be a positive
integer smaller than S, one hrst notes that

ZN —r
R(1V M)—= Q aiv "—

x=M+1 r=M+1 gN
exp (—rr);)

Hence

&aiv™(aiv—1). (12)

~(»,j)& f ~(1—uiv )/(aiv —1),

where bsr =(»—1)(»——2) . (»—M+1)» "+'. Since
xiv+i ——(1/aiv+i) {1+|1/e(», j))), it follows that

1 CN —1
aiv/a~+i &x~+i & 1+— . (13)

~N+1 - ~M I ~N

The flrst inequality follows immediately from (9). Let
3' go to infinity with», but more slowly than QN, so
that' bsr +1 It n—ow . follows from (13) that for all
limiting processes for which»~Do, xiv+i~a~/a~+i
whether aiv-+1 or aiba�&1.By (11),aiv/a++i = 1+y/»
where 0&y&1. Hence relations xN xN+i hold for all
limiting processes of this type, and, in particular, for the
limit I.. Fraser's restrictions on the nature of the single-
particle energy spectrum are not required.

For T=O the mean occupation numbers can be
calculated exactly from (1) by evaluating (Ziv+i/Ziv)
Xexpr)(j) directly. The results agree with those obtained
from the grand canonical ensemble.

' T. Sakai, Proc. Phys. Math. Soc. (Japan) 22, 193 (1940).' F. Ansbacher and W. Ehrenberg, Phil. Mag. 40, 626 (1949).
'P. T. Landsberg, Proc. Cambridge Phil. Soc. 50, 65 (1954).' P. T. Lsndsberg, Phys. Rev. 93, 1170 (1954).
~ A. R. Fraser, Phil. Mag. 42, 165 (1951).
6 We are grateful to Dr. R. Nozawa of the Tokyo Institute of

Technology for drawing our attention to this fact.

It follows that in the limit I., eZiv/ZN i~0. This proves
our statement.

For Bose-Einstein systems, we use'
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~ 'HE recent discovery' that silicon P-e junction
photovoltaic cells possess a nearly tenfold

higher efficiency for solar energy conversion than photo-
cells previously available has reawakened interest in
this type of device. Cummerow' has presented a theory
of the photovoltaic effect in a P njunctio-n cell with
monochromatic radiation incident in a direction normal
to the plane of the junction and has also made as esti-
mate of the efficiency to be expected from the use of a
silicon cell in solar energy conversion. Similar calcula-
tions by the writer' lead to conclusions substantially
identical to those arrived at by Cummerow with one
exception. For maximum power conversion efficiency we
propose the use of a semiconductor with an energy
separation in the neighborhood of 1.5—1.6 ev in prefer-
ence to Cummerow's choice of a "gap energy somewhere
near the photon energy characteristic of the peak of the
solar spectrum, i.e., 2 ev."

The basis for this conclusion may be found in Fig. 1
which shows a plot of conversion efliciency (neglecting
surface reflection losses and ohmic losses within the cell,
and assuming that the depth of the junction below the
illuminated surface is small compared to a diffusion
length) as a function of band separation for several
values of donor and acceptor densities (»s——»,=10",
10", 10"/cm'). The plot is based upon computations
performed for germanium (DE= 0.7 ev), silicon (1.0 ev),
aluminum antimonide (1.6 ev) and for a hypothetical
substance with a band separation of 2.0 ev. The values
taken for the diffusion constants and lifetimes in ger-
manium and silicon are the same as those employed by
Cummerow" and values equal to those of silicon have
been assumed for the remaining substances. Fortunately
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FIG. 1. Computed conversion ef6ciency es band separation for
several values of donor and acceptor density. Load resistance
chosen for maximum power output.


