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concerned, it is more reasonable to attribute these
peaks to the electronic transition occurring at the donor
energy levels than to the excitons. On the other hand,
there are some reasons which make it dificult to consider
that these peaks are a structure-sensitive property as
was indicated by Sproull and Tyler; that is, large ab-
sorption constant and small temperature shift.

The author intends to continue this work. He wishes to
express his gratitude to Dr. Y. Ishikawa, Research
Laboratory of Nippon Electric Company, under whom
this work was undertaken.

* Now in the Department of Physics, University of Missouri,
Columbia, Missouri.
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' 'N previous papers, ' ' experimental results with
~ ~ activated CdS crystals were reported that could be
explained by the Brosser-Kallmann-Warminsky theory
of conduction.

Brosser, Kallmann, and Warminsky' suggest two
possible mechanisms which can explain conduction in
activated crystals: (a) They propose that the holes
formed by excitation are localized in the filled band and
cannot migrate to the electrodes; as long as this is the
case, electrons in the conduction band can be in thermal
potential equilibrium with the electrodes. This permits
a re-supply of electrons from the cathode. The conduc'-

tivity then depends on the number of bound holes and
on the length of time the holes are localized. (b) They
apply the Riehl-Schon model. Here it is assumed that
part of the excited electrons pass into a band which is
somewhere between the conduction band and the filled
band and in which the electrons can move freely. The
electron density in this band is in thermal potential
equilibrium with the electrodes and electrons remain
in this band for a relatively long time. As long as there
are sufFicient electrons in this band, additional electrons
can pass from the electrodes. During this period,
metallic conduction is possible.

Recent investigation of the spectral response of the
photovoltaic effect in activated CdS single crystals'
shows a response in the red portion of the spectrum.
Photoconductivity measurements as a function of wave-
length show two peaks: one at the absorption cutoG and
the other in the longer-wavelength region. When the
photoconductivity is measured from short wavelengths
toward long wavelengths and vice versa, ' a shift in the
position of the peaks is observed. When the photo-
conductivity is measured from short to long wave-
lengths, the peaks are shifted toward long wavelengths
because of long-lived electrons in the impurity band;
this also causes a tailing out in the long-wavelength region.
When the experiment is reversed, photocurrent is not
observed until sufFicient energy is available to excite
electrons to the impurity band; this diminishes the
long-wavelength tail.

The energy separation of the bands in CdS would not
give rise to the photovoltaic response in the red region
mentioned above. The excitation of electrons in im-

purity levels below the conduction band by light of
wavelengths in the red and near infrared could explain
the spectral response by allowing a two-step process
to the conduction band; however, this would not explain
the photoconductivity.

These long lifetimes cannot be explained by the
above-mentioned two-step excitation process unless we
assume that the holes are fixed. If this were the case,
the photovoltaic effect would not be observed. There-
fore, to be consistent with both photovoltaic and
photoconductivity effects, it appears that the inter-
mediate energy level must be a band. This conforms to
the Riehl-Schon model.

' Reynolds, Czyzak, Allen, and Reynolds (to be published).
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' 'N recent measurements of magnetic susceptibility ~s
~ ~ composition in the MgCus —Mgzn& system (Fig. 1),
Elec and Witte' have discovered some interesting fea-
tures in the dependence, of susceptibH. ity on electron
concentration, and have analyzed the experimental
results using the model of nearly free electrons moving
in a weak cosine potential. In particular they attribute
the two peaks on the left part of the experimental cuve
of Fig. 1 to anomalies in the orbital magnetism of the
valence electrons associated with the successive touch-
ing of the Fermi surface to the two kinds of faces of the
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Our formulas (2-4) indicate that in the very nearly
free electron model the ratio of the peak susceptibility
to the free electron susceptibility is independent of the
width of the energy gap. Putting X= 12 (for the large
zone faces), we get for this ratio a value of 4.5, in ex-
cellent agreement with the height of the 6rst observed
peak. Similarly, with %=4 (for the small faces), we get
a value 2.2 which agrees well with the height of the

Valence Electron Concentration

FxG. I. Valence electron contribution to room-temperature
magnetic susceptibility of MgCu&-MgZns system (after Fig. 5 of
Klee and Witte). xmas„, represents the susceptibility of a free elec-
tron gas.

higher Brillouin zone of Fig. 2. The purpose of this note
is to point out that if one takes such a treatment seri-
ously, the experimental curve actually provides direct

'

evidence of the strong eGect of band-band interaction
on the electron susceptibility.

For the simple model used by Elec and bitte, all
contributions to the orbital susceptibility can be cal-
culated to good accuracy. ' It is not dificult to show that
when the Fermi surface is near a single kind of zone face
the nearly free electron model yields (for cubic sym-
metry):

FIG. 2. Higher Brillouin zone formed from planes (3,1,1) and (2,2,2)
(after Klee and Witte).

= —,'1Vxp( ——,'prs —3+-s's') (—1&5&1).

X=Xp+Xi+Xs,

»= s&«(1—
t 1—(1/5')3'*} (5~& —1)

(—1&5&1),

Xp = -,'1lt Xp f5 sin '(1/5) —3+ (5/3) L1—(1/5') ]1
+s5'(1—L1—(1/5')3')) (5& —1) (3a)

(3b)
10

second peak, although actually our formulas would not
be expected to apply to parts of the curve very much to
the right of the first peak.

(2b) In view of the basic complexity of the susceptibility
problem the quantitative success of our theory should

Here xo is the susceptibility of a free electron gas of the
given electron concentration, X is the number of equiva-
lent pairs of zone faces, x~ and x3 are dined in refer-
ence 2, xp+x& gives the total electronic susceptibility
in the Peierls' approximation, y3 is the contribution to
y from the band-band interaction, and s is a dimension-
less parameter which measures the di6'erence between
the Fermi energy and the energy at the zone faces in
units of half the minimum energy gap between bands.
The Fermi surface touches the zone face for s= —1 and
overlaps it for 5=+1.

Figure 3 shows the behavior of the theoretical sus-
ceptibility as the Fermi surface is brought up to a zone
face. Curve (1) shows the susceptibility xp+x~, curve
(2) xs, and curve (3) the total susceptibility. It is
evident from Fig. 1 that the experimental behavior is
like that of curve (3) and not at all like that of curve (1),
so the susceptibility contribution pe is qualitatively
very important.
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FIG. 3. Theoretical valence electron susceptibility calculated on
nearly free electron model. The susceptibility is shown over a
range of concentrations about that for which the Fermi surface
touches a single zone face. s measures the deviation of the Fermi
energy from the midpoint of the energy gap.
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HE exact mean occupation numbers for an ideal
Fermi-Dirac or Bose-Einstein gas on the basis of

a canonical ensemble are respectively given by' '

N(N, j)=1
ZN+l rt(N+1, j)

exprt (j')a1
ZN ss(N, j)

(all j, all N, T&0). (1)

st(j) is the energy divided by rtT of the jth quantum state
and Z~ is the partition function if Ã particles are in the
volume V. It has been shown' 4 that these expressions

go over into those which are obtained on the basis of a
grand canonical ensemble under those limiting condi-
tions for which

rt(N+1, j)/N(N, j)-1 (all j, T&0), (2)

where ~ denotes an equality for the limiting case. It has
been pointed out'4 that condition (2) should hold if the
system is infinitely large, but has a finite and nonzero
volume density of particles (the "limit I.").The proof
of this statement was made to depend on the inequalities

not be stressed unduly. Nevertheless, while maintaining
strong reservations of judgement because of our very
literal application of the nearly free electron model, we
are inclined to view the results of Elec and Witte as
providing an experimental demonstration of the great
strength of band-band interaction in influencing the
magnetic properties of electrons in metals.

*This research was supported in part by the United States Air
Force.' H. Elec and H. Witte, Z. Phys. Chem. 202, 352 (1954).

e E. N. Adams, II, Phys. Rev. 89, 633 (1953).' R. Peieris, Z. Physik. 80, /63 (1933).

(5) does not ensure that (2) holds for all quantum
states, though this now becomes a reasonable con-
jecture. The argument which was previously used
fails now because the inequality rt(N+1, j)/rt(N, j)
Piss(N+1, k)/Qsrt(N, k) does not necessarily hold for
all states j.

We therefore consider it worth while to give an in-
dependent and rigorous argument which leads to (2)
in the limit I.. In the Fermi-Dirac case we use (3) and
the result'

n(N+» j)= (ZNIZN+l) C& rt(N j)3 expt 'st (j)j. (6)

Replacing first ss(N+1, j) by rt(N, j) on the left, and
then rt(N, j) by rt(N+1, j) on the right, we find

~ "&rt(N+1,j)&t (N', j)&rt(N, j)
»(N —»j)& " (7)

tt(»j) =1/L1+(ZN+l/ZN) expst(j) j.
For all limiting processes for which ZN+l/ZN ZN/ZN l
we must have rt(Nj) ts(Nj). Comparison of (8) and
(1) shows then that (2) holds.

In the Bose-Einstein case no relation of type (7) can
be found which has equal generality, and one must
proceed in a diferent way. The basic recurrence relation
is in this case'

xN+letN+1 rtN+ 1 (1/xN) (9)

where xN =rt(N j)/—rt(N 1,j), aN
' —= (ZN/ZN l) exprt(j).

For all limiting processes for which aN+l aN( a say)
and xN+l xN (~x say), one finds that x must be a
solution of ax' —(a+1)x+1 0, whence x~1 or 1/a.
The last possibility is ruled out since x»1, a»1 for
all j and finite N. Hence (2) must hold again in these
cases. It remains to discuss the various limiting rela-
tions whose existence has beeri assumed in the above
argument.

For Fermi-Dirae systems the relation ZN+i/ZN
~ZN/ZN l is valid in the limit I. (and possibly for
other limiting processes). Let

I'= I' 'Z t (»j), —()=—I' 'Z t (N —1,j),

rt(IV+1, j)/rt(N, j)&1 (all j, finite N, T&0), (3)

which hold for Fermi-Dirac' and Bose-Einstein
systems. But the argum'ent employed was not rigorous. '

In fact, let

rt(N+1, j)/n(N, j)= 1+n(N, j),
n(Nj)&0 (all j, all N); (4) Then

then
g,n(Nj)rt(N, j)=1.

andIt is easy to see from (5) that n&1/N for some (or
possibly all) quantum states, so that (2) may hold as
3T—& ~, whatever the volume V of the system, However,

ZN+ 1/ZN
e =—1—,0&~ &&&1,

ZN/ZN l

e(ZN/ZN l) expst(j)
Cg=

1+(ZN/ZN l) expst(j)

)~1
1—c

eZN/ZN l

1+(1—e)ZN/ZN i

VI'=p;$1+(ZN/ZN l) exprt(j)g 'L1—e;$ ',


