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It is shown that by the use of 3-dimensional Feynman diagrams an equal-time two-particle wave equation
can be written down. The procedure is the same one as Bethe and Salpeter used in deriving the 4-dimensional
two-body equation. In this way all the terms of the new Tamm-Dancoff method of Dyson, in the form of the
Levy-Klein expansion of the interaction function, can easily be recorded.

The connection between the Bethe-Salpeter and Dyson equations is discussed. The spurious energy
denominators of the fourth order interaction, in the adiabatic limit, can be eliminated by including all the
contributions to the fourth order term arising from the 4- and 5-particle amplitudes that are coupled back
to the two-particle amplitudes. The potential derived in the adiabatic limit to the fourth order term of the
interaction operator is the same as the Levy-Klein potential derived from the old Tamm-DancoA' method.

The Appendix contains a discussion of the Bethe-Salpeter equation and a simple method of derivation
of equal-time equations from the 4-dimensional theories.

I. INTRODUCTION

HE field-theoretical investigations of the nature
of nuclear forces received great impetus as a

result of Levy's' extension of the Tamm-Dancoff
method to include nucleon pair sects in the inter-
mediate states and higher order meson-exchange
processes. The theory as used by Levy was not fully
relativistic. This had the consequence that renormali-
zation was, in effect, not possible within his formulation
of the theory. Furthermore, the use of the non-inter-
acting vacuum state, in the definition of the Tamm-
DancoG amplitudes, introduced additional difficulties
connected with the vacuum self-energy. It has been
pointed out by Gell-Mann and Low, ' and more recently
by Dyson, ' that most of the difFiculties encountered in
the old Tamm-Dancoff method can be avoided by
defining the amplitudes with respect to the interacting
vacuum state.

The observation that no vacuum self-energy appears
when the amplitudes are defined with respect to the
interacting vacuum state was, essentially, the starting
point of Dyson4 in his formulation of the new Tamm-
DancoG method.

In Dyson's formulation of the new Tamm-Dancoff
method, just as in the 4-dimensional Bethe-Salpeter
formalism, the wave function contains positive as well

. as negative energy parts. Actually, the statement of
"negative energy" in the Bethe-Salpeter formalism has
quite a different meaning: it is the energy of the "pair"
which is positive. In Dyson s equal-time formalism
pairs are mixed with the negative energies, which is a
consequence of dealing with the equal-time amplitudes
right at the starting point of the theory.
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In the adiabatic limit the weak-coupling forms of the
new and old Tamm-Dancoff methods do not differ
substantially; the adiabatic limit of the new Tamm-
DancoG method is understood to include the statemt;nt
that all the components of the two-particle wave func-
tion not referring to positive energy states of the par-
ticles vanish. It is hard to justify such an approxima-
tion, -but the rejection of those components of the wave
function referring to negative energies seems to be a
necessity. It is known that there are some difficulties
involved in the use of the interacting vacuum state as
a boundary condition, but with the aforementioned
approximation the vacuum difhculty does not arise.
The vanishing of f+, lb~, and f components of the
wave function is not meant to be connected with the
fact that the vacuum should be the state of lowest
energy. The cancellation of the so-called spurious diver-
gences in the second and fourth order interactions takes
place only in the adiabatic limit. In the nonadiabatic
form of the interactions they are not cancelled.

In this paper we have extended Dyson's formulation
of the new Tamm-DancoG method to include higher
order amplitudes. In principle, it corresponds to Levy's
method of including the effects of the higher order
amplitudes on the lower ones, as applied to the new
Tamm-DancoG method. Theoretically one considers an
infinite number of linear integral equations for all the
particle amplitudes. The use of the infinite set of equa-
tions in the elimination of all the Tamm-DancoG am-
plitudes, except the amplitude for the two-particle
state, if carried to completion, leads to a linear integral
equation for the two-particle wave function.

Ke have carried out this procedure to the fourth
order in the coupling constant 6 by assuming that the
amplitudes of all states involving 5 or more particles
should vanish. In Sec. II the most general form of the
two-nucleon equation is first written down from the
analogies using the methods of Bethe-Salpeter' and
Levy-Klein in the derivation of the 4-dimensional and

' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
e A. Klein, Phys. Rev. 90, 1101 (1953).
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the old Tamm-Dancoff equations, respectively. The
relation between the Dyson and Bethe-Salpeter wave
functions is discussed brieQy. Section III contains a
derivation of the fourth order interaction operator
together with its adiabatic limit leading to the deriva-
tion of the fourth order potential. The Tamm-Dancoff
equations are given in Appendix A, and in Appendix B,
we give a simple method of derivation of the old Tamm-
Dancoff equation for two nucleons from the Bethe-
Salpeter formalism.

Fzo. 2. Labels used in
writing the matrix element
for the first diagram of Fig.
1. The arrow indicates the
time direction of the inter-
action.
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II. THE SECOND ORDER INTERACTION

In this section we discuss the most general form of a
3-dimensional covariant equation for two nucleons. For
this purpose it is convenient to represent the kernel of
the equation in terms of 3-dimensional Feynman
diagrams. In such a diagram a nucleon line will repre-
sent (initial and final states included) both positive
and negative energy states. A second order graph, e.g.,
can be considered as the sum of 4 sub-graphs consisting
of minus and plus particle states. There will be a single
time-co-ordinate for any number of nucleon lines. If
one of the nucleons emits a meson to be absorbed by
the other nucleon or by itself, then, in the intermediate
state, the energy of the emitted or absorbed meson is
to be added to the energy of that nucleon with which
it later interacts. The resulting expression can assume
both positive and negative signs, according as they are
plus or minus particles, respectively. By using this
prescription we can write down all the terms of the
interaction operator in the form of an infinite series in
powers of the coupling constant G. We have verified
the above rule by actual calculation with the new
Tamm-Dancoff equations given in the Appendix A.

The two-nucleon equation used in this paper can be
written as

(which is repeated with labels in Fig. 2) represents the
matrix element:

This matrix element can easily be understood in terms
of the prescription outlined at the beginning of this
section.

We have not succeeded in deriving Eq. (II.1) from
the Bethe-Salpeter equation. However, we shall now
discuss its relation to the Bethe-Salpeter theory. In
Dyson's theory, for a state 0' of one proton and one
neutron in interaction, we singled out the 3-dimensional
two-particle wave function f(p) satisfying Eq. (II.1).
The function ip(p) is the lowest component of the
Tamm-Dancoff wave functions. The 4-dimensional
wave function g(p„) satisfies the Bethe-Salpeter equa-
tion. In Bethe-Salpeter theory one also de6nes an
equal-time wave function p(p) by

~(y) = x(y,po)dpo (II.2)

G'
I',"Ln.(p)(E + )+q (—p')E '—E$ 'F",

(2~)' 2a)~„

where

LII.(p)+II (-y)-E)a(y)

where H(p) =e p+PM, E is the total energy in the
center-of-mass system, and f(p) is the two-nucleon
component of the Tamm-Dancoff wave functions. The
word wave function is not used in the strict sense of a
probability amplitude.

The first term I2(y, y', E) of the interaction operator
I(p, y'; E), which was already given by Dyson, consists
of the four diagrams shown in Fig. 1. The first diagram

r'
/

/
/

/
/

r

FzG. 1.Three-dimensional Feynman diagrams contributing to the
second-order interaction of two nucleons.

If any relation exists between the Dyson and the Bethe-
Salpeter theories it should be one that relates the func-
tions f(p) and p(p). Originally the function p(p) was
not de6ned as a Tamm-Dancoff wave function, but it
is reasonable to hope for the possibility of deriving the
Bethe-Salpeter equation from a 4-dimensional for-
malism analogous to the Tamm-Dancoff method. In
this case it is natural to expect a correlation between
the functions f(p) and y(p). We have been able to
verify that P(p) and p(p) satisfy the same equation if
only one fermion's second order interaction is taken
into account. In the fourth order we obtain different
equations. For the two-particle case we do not know
whether further transformations of the interaction and
the equations would bring the two expressions into
agreement. The similarity is, certainly, not apparent
in the present form of Dyson's theory. The investiga-
tions were made for both one- and two-nucleon systems.
Especially in the former case, the result may be con-
siderably modified by renormalization which is not
obvious for the 3-dimensional equation.
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To show the connection between g (p) and q (p), let
us first consider the one-particle Bethe-Salpeter equa-
tion for a particle interacting with itself, which in
momentum space is

x(p~) = — Sp(p„) year;SI:(p„p„'—)
(2~)4

&&~".~.(p.')d'p'x(p. )

6' 1
I

1.

r.
(2~)' &(p)—Po " H(p —p') —po+Po'

d'P'x(P. )xr, . (II.3)
CO&~

—
0 CO&~ 0

Now, a one-particle, 4-dimensional wave function in
momentum space can be defined by

x(P.) =x(p)&(PO —&), (II 4)

where E is the energy of a proton of momentum y,
including self-energy. On substituting (II.4) in (II.3)
and integrating both sides of the resulting equation
with respect to po, we get

G2 ~ dsp~

LII(p)-~3x(p) =
8X' ~ 2M&&

Xr, l g(p —p')(Z „.+, )—Zj- r,x(p). (II.S)

It was not possible to find a suitable ansatz for the
function x (p', po') on the right-hand side of the equation,
so the integration over po' had to be left as it is.
The comparison with Dyson's theory shows some
similarities, but they disappear in the fourth order
where some curious energy denominators of the form
(E~+Z~.+~~„) 'sh—ow up which are independent of
po'. The energy denominators of that form also arose in
the derivation' of the old Tamm-DancoQ' two-nucleon
equations' from the Bethe-Salpeter theory and were
among the diHerences between the original Tamm-
Dancoff method used by Levy and the one derived from
the Bethe-Salpeter equation. There is, however, one un-
expected result that can be obtained from (II.7). If we
use the ansatz (5) of Appendix A with the total energy
E having a small negative imaginary part, in Eq. (II.7)
we obtain, after the po' integration, Dyson's second
order equation for two-nucleons. This is a mixture of
hole and one-particle theories. It is not possible to
derive a general conclusion from this result, but it
certainly is not accidental. '

A complete correspondence, to the second order,
between the positive energy parts of the wave functions

f(p) and p(p) can be established if we assume that
(i) the po-dependence of the Bethe-Salpeter wave
function has the form (see Appendix B)

1

.LS'.(l&.+p.)~.+S (l&.—p.)O j+(p)
27ri

This equation is identical with the one Dyson derived
from his new Tamm-Danco6' method.

The two-particle Bethe-Salpeter wave function is not
separable according to (II.4) and, therefore, the above
method cannot be carried through. It is of interest,
however, to record the result that can be obtained for
the second order interaction. The Bethe-Salpeter equa-
tion for the one-meson interaction of two nucleons in
the centimeter system is given by

Q2

x(p„)= S,.(-',z„+p„)S„(-',K„P„)p.J3,r,-r, —
(2m)4

~ (P. P.')x(P.')d'P' —(II6).
The integration of both sides of (II.6) over the relative
energy variable po can be effected in accordance with
the hole theory (see Appendix B), giving the result

Ã.(p)+»(—p) —~1~(p)

G'
t d'p'dpo'

(r"tv. (p)(~.+~ n)
Sx' & 2(o~„

——;z—p, 3- r,'+r,'b, (-p) (z„+,.)
—k~+Po'3 'r"&x(p'Po') (II 7)

(ii) all components of the Dyson wave function vanish
which do not refer to positive energy states.

Under these assumptions one easily obtains the
relation

4++(p) =c~(p),
where the function f++(p) satis6es the old Tamm-
DancoG equation of second order. The approximation
(ii) eliminates, to second order, the complications re-
lated to the vacuum being used as a boundary condi-
tion. For higher order terms of the interaction operator,
the condition (ii) is not enough to eliminate the spurious
energy denominators, but in the adiabatic limit to the
interaction it is a sufhcient condition. The last state-
ment has been verified only for the fourth order inter-
action. A general method of elimination of the spurious
denominators of the two-nucleon equation is not
known; if this can be done consistently, then one
expects to get the results of the old Tamm-DancoG
except for small deviations.

III. THE FOURTH ORDER INTERACTION

It has been observed by Bethe, on the basis of the
perturbation theory, that the fourth order interaction

A simpler derivation is given in Appendix A.
We were not able to explain this curious result, but one thing

is clear: it does not arise in the derivation of the old Yamm-
Danco6 equation from the Bethe-Salpeter equation.
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term needs to be included in the ps —ps theory. There
are, at present, no definite conclusions concerning the
behavior of the whole series of interactions. The con-
vergence of the adiabatic nuclear potential, without
renormalization terms, has been discussed by Klein. ' In
the following we discuss the fourth order term in the
interaction operator of Eq. (II.1). The aim of this
investigation is to see in what way the qualitative
features of the y~-interaction are altered in the fourth
order, by a 3-dimensional covariant theory. The fourth
order terms which are radiative corrections to the
second order interactions will not be included. There
exist about 30 of these corrections that may con-
tribute significantly, even in the adiabatic limit. The 12
no-pair terms of the old Tamm-DancoG method, with
a diGerent interpretation, constitute part of the inter-
action kernel. In the new Tamm-DancoG method only
12 of the 24 one-pair terms of the old Tamm-DancoG
method appear and the 12 two-pair terms of the old
method do not arise; this is a consequence of the use of
the interacting vacuum state and the covariance of the
theory. In this case the creation of three particles out
of the vacuum, proceeding in the same time direction
at a given vertex, is not allowed. This is the reason for
the non-appearance of the aforementioned terms in

/
/

/X
/

FIG. 4. Labels used in
writing the matrix element
)Eq. (III.1)j for diagram
(~a) of Fig. 3.
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the new Tamm-DancoG method and precisely this has
been verified by actual calculation. Altogether one is
left with 24 interaction terms. A detailed discussion of
these points for the one-particle case is given by Klein',
and therefore they will not be elaborated in this paper.

First, we shall consider the 8 irreducible interactions
and those that follow from the iteration of the second.
order interaction LFigs. 3 (A), (8), and (C)j. Of the
set shown in Fig. 3(C) we shall include only those con-
tributions arising from the pair processes in the inter-
mediate states. The argument for the contribution from
positive-energy intermediate states is the same as given
by Klein. '

The prescription given in Sec. II is not complete for
writing down the matrix elements corresponding to the
set shown in Fig. 3 (C). It has to be amended for those
interactions which contain one or two mesons in the
intermediate states and also for those in which one of
the nucl. eon lines is bent. In this case we can state the
rules for writing down the interaction terms as follows:

(i) If the emission (absorption) of a meson is the
earliest event in the diagram, then the latest absorbed
(emitted) meson is either in the state 4 or in the state
4'& and is absorbed (emitted) by the second (first)
nucleon in a positive (negative) energy state, respec-
tively.

(ii) The energy of the remaining meson is to be
added to that nucleon energy with which it interacts
later. The sum can take both positive and negative
signs. In the above, for convenience, we assume that
the mesons are always emitted and absorbed by the
first and second nucleon, respectively.

As an example we give the matrix element corre-
sponding to the diagram (1a) of Fig. 3(A) (see also
Fig. 4):

FIG. 3. The set (A) of fourth order diagrams contain the main
spurious divergences in Dyson's new Tamm-Dancoff method. The
sets (B),and (C) do not contain terms proportional to (2M)~.
Because of the time ordering of the interaction, all the diagrams
in the Tamm-DancoR method can be divided into pairs. Of the
above 12 interaction terms one need only calculate the 6 cor-
responding matrix elements. The remaining six can be obtained
by a re6ection of time. As an example, we give in Eq, (III.1) the
matrix element that corresponds to the diagram labeled (la).

' A. Klein, Phys. Rev. 92, 1017 (1953).

- G2 - 2

—2 I'"C~ n. (p) (~.+~s)—
87/ ~ 2Mk2caJ~&r

—~b( —p' —l )Z,.„)-ir,st Z —~.(p) (g,+,)
—qb( —p')Z„W~~ 1-'I';.LZ —gb( —p')Z„,

& (E;+i+&os)g 'Ap'(p'+k)I';~. (III.1)

In calculating the adiabatic limit we shall assume, as
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mentioned in (II), that the components f+ (y),
P~(y), P (y) of the wave function/(y) vanish. Thus,
the unit operators g, (y), qb( —y), g, (y') and gb( —y') in
the matrix elements, with the appropriate projection
operators, will be replaced by their +1 eigenvalues.
This corresponds to the fact that the nucleons in the
initial and 6nal states are in positive energy states. The
remaining q's can take both +1 and —1 eigenvalues.
In this way each graph corresponds to 4 terms according
as the two remaining g's in the interaction function take
the values +1or —1. In connection with the calculation
of the matrix elements of the sets (A), (3), and (C)
of Fig. 3 with respect to positive-energy free-particle

Dirac wave functions, we use the relations

n(y)W(y) =n(y) [-'+-'n(y) 7=&(y),

n(y)A-(y) =n(y) [2-2~(y)7= —A-(y),

and the identity

[A+(y)+~(y». [~(-q)+~(-q)7.
=A .(y)A '(-q)+A .(y)A-'( —q)

+A- (y)A"(-q)+A (y)A (-q)=1.
The matrix element of the integrand of (III.1) in the
adiabatic limit is given by

(p, —p I
I."'(y,y', ~) l y —q —k, —y+q+k&

1 1 1
-

(e qek)b (e qek).
=(3—2~ ~b)

l (2M) 4MbM&((0b —
co&) (2M) i 4Mbbl& (c0b —cv&) 4MgRb (Mb+07&)

where

(e qe" k) (e qe k)b (e qo" k),+(e.qe k)b —[e ye. (q+k)7.—[e ye (q+k)7b

(2M)' 4rub'(o, '((ob+or, )

q= y—y' —k.

(III.2)

The terms associated with (2M) ' and higher are
neglected. The adiabatic limit includes also the ap-
proximation of replacing the terms [2M—re,7

' and
[2M+~b7 ' by [2M7 '. This is equivalent to cutting
og the high-energy contributions of the virtual mesons,
so that the resulting potential is not valid for all r. The
sets (3) and (C) do not contain terms proportional to
[2M7—'. The largest contributions come from the set
(A).

Apart from the sets (A), (8), and (C), we also have
to consider the coupling of the 4-fermion amplitudes
back to the 2-fermion wave function P(y). If one neg-
lects 5-particle amplitudes of the new Tamm-Dance
method, then there are only two more terms con-
tributing to the fourth order potential. They are shown

as the two upper diagrams [set (D)7 of Fig. 5. The
6rst diagram (1.3) in Fig. 5 represents the matrix

element:

G' '
r d'k

8& o 2' A2GO

+I' b[E—8 gb( y+—k)E—ba~b7'r, '
XA (y'+k)[Z —E,—E;—Z„.„
—gb( —y+k)E~b7 'I'p[E —E, —gb( —y+k)

X (Z b+~,}7 'I'; . (III.3)

In the adiabatic limit it contains a term that is infinite.
This is similar to the situation that arises in the study
of the terms (C), but in the present case such terms,
when combined algebraically before the adiabatic
limit is taken, cancel out. The remaining part con-
tributes a term of the form

/
//, r
rr

(o)
( p:&)

, r

+.

Fra. S. These diagrams
contain spurious interac-
tions with signs opposite to
those arising from the pre-
vious interactions. There

+ are 8 more of these diagrams
and they contribute in a
manner similar to the ones
shown here.

(3—2~. ~b)[(e ke q)b+(o qe k),7

(2M)'2cob'(u '

where the second term corresponds to the contribution
of the second diagram.

If we were to conine ourselves only to the 2-, 3-,
and 4-particle amplitudes, then the above 14 diagrams
are all that would need to be included. There are
actually other contributions to the fourth order poten-
tial arising from the coupling of the Gve-particle am-
plitudes back to the 2-fermion wave function. '

'~ This point was communicated to the author by A. Klein.
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We also have to include interactions of the type that
include 4 fermions and one meson in the intermediate
states. The new Tamm-DancoG equations in Appendix
A do not include 5-particle amplitudes, but the method
of writing down the matrix elements for any inter-
action term is now quite easy. The prescription given in

Sec. II can be generalized in all cases."
Two typical interactions involving 5 particles in the

intermediate state are shown in the two lower diagrams
of Fig. 5. There are altogether 10 diagrams of this type.
We shall write down the matrix element corresponding

to the fj.rst one as

G''
I

d'k

S'il 2GO&2&q

+F;b[E—8,—qb( —p+k)E„b+(obj 'I'p

y[z —z„—z„,— w, j-~r,'x .(y'+k)

Its contribution to the fourth order potential in the
adiabatic limit is

3—2&g &g 1 1

(2M) .4hlbMq((db+(dq) 4bobMq(cob Mq)

(e qe k)b(3 —2~, ~b)

. 4hlb M~(Mb+6)&) 4Mb G)~(cob —coq)

(3 2&.—&b) Le ye (q+k) j.+[e ye (q+k)jb —(e qe k),—(e qe k)b

(2M)' 4cobM& (Q&b+I&)

[e ye (q+k)),+[e.pe (q+k)]b —(e qe k),—(e qe k)b

4&b~q(&b &q)
(III.S)

The number of interaction terms contributing to the
fourth order potential are thus 24 in all. Each inter-
action consists of 4 terms so that one must include
altogether 96 interactions. When summed, the spurious
divergences of the type (&ub

—~,) ' cancel out and the
result is the same as the one obtained by Klein from
the old Tamm-DancoG method. The one-pair terms
also give a spin-orbit coupling term with the same
coeKcient as obtained by Klein from the old method.
We note that the cancellation of the spurious divergence
of the type (~b—

&o,) ' occurs only in the adiabatic
limit adopted in this paper. A nonadiabatic cancellation
of such interaction terms does not occur. In the sense
of the adiabatic approximation the role of the inter-
acting vacuum state in the definition of the new Tamm-
DancoG amplitudes is reduced to the one played by
the non-interacting vacuum state. The last statement
is, of course, verified only up to the fourth order interac-
tion. However, it is quite reasonable to conclude that
in the adiabatic limit the new Tamm-DancoG method
will not diGer from the old one in higher orders.

IV. CONCLUSION

An attempt to study the entire series of interactions
in the new Tamm-DancoG method, even without renor-
malizations, would certainly be an ambitious enterprise.
The inclusion of the renormalizations would make the
whole problem next to impossible. In any case, the

"More general rules of writing down the matrix elements for
the one-particle case has also been discussed by A. Klein, Phys.
Rev. 95, 1061 (1954).

problem of renormalization in this theory is not well
understood, and from this point of view the old Tamm-
DancoG method as derived. ",;"from the Bethe-Salpeter
equation is in a better situation.

It is very unlikely that in the near future we shall
know much about the complete series. We are, therefore
forced to base all our arguments on the fourth-order
interaction which, of course, does not do justice to the
theory. However, if we attribute a special place to the
fourth order interaction, then our results show that the
extreme nonrelativistic approximation to a relativistic
theory does not lead to sensible results. If the Tamm-
DancoG method of approximation is to be maintained,
then it is necessary to abandon the adiabatic approxi-
mation to the kernel of the equation. The same con-
clusion is implied by the work of Klein. '

An important problem is, now, the investigation of
the nonadiabatic terms. It may well be that the non-

adiabatic parts will contribute eGectively near the core
and change the sign of the interaction that was repulsive
in the nonrelativistic region without the nonadiabatic
terms. We have no reason for assuming that the non-

adiabatic terms in a ps —ps theory are small. This
aspect of the problem is being investigated for the
second order equation.

The author wishes to express his gratitude to Pro-
fessor H. A. Bethe and to the Laboratory of Nuclear
Studies for their kind hospitality. He would also like
to thank Professor Bethe and Dr. A. Klein, Dr. R. H.
Dalitz, Dr. K. Power, and Dr. S. S. Schweber for many
stimulating discussions on this and related topics.
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APPENDIX A

In this Appendix we give the coupled set of integral equations mentioned in the introduction to this paper, and
we shall use the notation of Dyson. ' The Schrodinger equation for the new Tamm-DancoR amplitudes was derived
by Dyson as

E(q o*C(1V)A (1V')«) = [II(X)11(x'))—~(q o*[C(1V)A (Ã'), Ho+H')+).

The new Tamm-DancoG equations for a state 4 representing two nucleons in interaction with, at most, four
fermions at a given time can be obtained by calculating the.commutators,

Lbn"de"&H 3) [b~& de*a»H 3) I
b~k"da'a s*)H'3i [bv & ." d—a"—'a&a,~H'3~ [b~& ~" da"'a &*a„H'3)

[b„ I, ,"'d,"'a
I,*a,*,H'), p~(b~~ d,"d,* dl,+,'),H'), pV(b~I, "b,* bl+, 'd, ",H').

In the last commutator, 3~ stands for the normal product of the 4 operators. We shall use the following definitions
in arranging the various commutators according to the number of particles that take part in the interaction:

where

g u*ygu=0, P„uu(p)8 =A+(y),

(b, "b,")o=(1—8 )5 .8, (b "b*")o=8j .5
I

1 for proton states
0„= ~

0 for anti-proton states.

The notation is the same as in Dyson s paper. We assume that all Tamm-Dancoff amplitudes which contain five
or more particles vanish. In the actual case this assumption was not made in calculating the fourth order potential.
Since our aim is to derive general rules for writing the matrix elements, there is no harm in the above assumption.
In this case one obtains equations that involve the wave functions f(p, q), f+(p —k, q, k), P (y —k, q, k),
p++(p —k, q —s, k, s), P-+(p k, q —s, k, s), P

—
(p—k, q —s, k, s), p&(p —k, —s, k+s, q), p~(p —k, q, —s, k+s),

for two and four fermions (in states 4 or 4'0) and one and two mesons in the states 4 and @o as plus or minus
particles. The four-fermion wave function is dined as

@'(p—k, —s, k+s, q)= P [4'0*X(b~~"b,* b,+,'d,")«)uvw*s,
uvzm+

P"(p—k, q, —s, k+s) = P [+0 1V(bv g dq"dg d/j~g')%)uv'N 8
evzur+

The integral equations satis6ed by the Qrst six wave functions are given by

LE—n. (P)E.—nb(q)E. )4 (p, q)

=Gr, .(2v~.) 'f~'[4+(P —s, q, s)+4 (P—s, q, )s)&+{7' 4[+( Pq —s, s)+4 (P q—s, s))).

[E—g.(p—k)E p
—gt, (q)E,—(op)P+(p —k, q, k)

=G(2'») &[A+'(p —k)pg(p, q)+A+'(q)y'P(y —k, q+k))+G P.(2v~,) &[y'(P++(p —k —s, q, s, k)

+&~(p—k—s, q, s, k))+p'(f~(y —k, q —s, s, k)+&~(y—k, q —s, s, k)))

(A.1)

+G(2mI) & P,[p qP(p —k, —s, k+s, q)+y~P" (p—k, q, —s, k+s)), (A.2)

[E—g.(p—k)E g
—rib(q)E, +(oI,Q-(p —k, q, k)

=G(2v~~) '[A- (P—k)7 (P q)+A-'(q)7'4 (P—k, «+k))+G Z.(2v~.) '[V'(4~(p —k—s, q, k, s)

[E g(p k r)E~~—, qb—(q)E—, ~~ u„—g~(p k r—, q, k, r)——

=G(2v(op)
—

&[A+ (p —k—r)y + b b +V (p r, q, r)+A+ (qh 4 (p «, q+k, r))

+G(2vor„) &[A+ (y —k—r)y'P+(y —k, q, k)+A+'(q)yQ+(p —k—r, q+r, k)), (A.4)

+f—(p—k—s, q, k, s))+p'(f~(p —k, q —s, k, s)+p—(p—k, q—s, k, s))) |
+G(2va») & g, [y'qP( —s, k+s, p —k, q)+p'P" (y —k, —s, k+s, q)), (A.3)
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[E—q, (p—k—r)E~b, gb—(q)Eq iq—b+i0,J&~(y k—r—, q, r, k)

=G(2v~ob) &[A+'(p —k —r)y p (p —r, q, r)+A+b(q)pbbs (p—k—r, q+k, r)j
+G(2v&0„) &[A s(p —k —r)y'p+(p —k, q, k)+A. b(q)pbbs+(p —k —r, q+r, k)). (A.5)

[E—g.(y —k —r)E b „—qb(q)E, +&qb+~q, )p (p—k—r, q, k, r)

=G(2v~qb) &[A (p —k —r)p p
—

(p —r, q, r)+A b(q)&bp (p—k—r, q+k, r)]
+G(2vco„) i[A (y —k—r)y'P (y—k, q, k)+A b(q)pbbs (y—k —r, q+r, k)$. (A.6)

The equation for the wave function p" (p —k, —s, k+s, q) follows from a careful study of the commutator,

[X(b~b" b,*"b b+, 'dq"), H')

=+G(2v~qb) &(s*ysvv) (1 0„)(—ab+a b*)bq b~dq" G(2v—iqb) &(s*y'w) (1 es)—(ub+a b*)bq b"dq"

+G(2Viqv b s) b(q—b 'r'W)0m(imp b s+a——v+bys)-bb+s'dq" G(2Vidv b s)—b—(qb 'r'ui)~ss(ibv b s+—i—J v+b+—s )bays'dq".

There are only 8 possibilities for the signs of the energies along the proton line. It is easy to see that if I, m, and
z represent positive or negative energy spinors simultaneously, the right-hand side of the above equation vanishes.
Therefore the p+++" and p " components of the wave function must vanish. The sum of the remaining six
components of the wave function satisfies the equation

p&(p —k, —s, k+s, q) =—G(2vbi ) &A (k+s)A (s)[E+q.(p—k)E„b—E,+Eb+,—qIb(q)E,] '

Xy (p+(p —k, q, k)+p (p —k, q, k))+G(2v~qb) &A+ (k+s)A+ (s)[E+g,(p —k)E„b+E,—Eb+,—gb(q)Eq)

xy (p+(p —k, q, k)+p (p—k, q, k)) —G(2vcq~b, ) *A+ (y—k)A+ (s)[E+g,(k+s)Eb+s —E~b+Es
—gb(q)Eq)

—'y (p+(k+s, q, p —k —s)+p—(k+s, q, p —k —s))+G(2vcq„&,)
—

bA (p—k)A. '(s)

X[E+q.(k+s)Eb+, +E„&—E.—qb(q)E, J 'y (p+(k+s, q, p —k—s)+p (k+s, q, p —k—s). (A.7)

In a similar way the function P~(p —k, q,
—s, k+s) satisfies the equation

@"(p —k, q, —s, k+s) =G(2v~qb)
—&A+b(k+s)A+b(s)[E —g.(p —k)E„b+E.—Eb+,+gb(q)E, )—'

Xpb(g+(p —k, q, k)+P )—G(2v~b) &A '(k+s)A '(s)[E—g. (y —k)E~&—Es+ E+b+sq b(q) EqJ
'

Xy (p+(p —k, q, k)+p (y —k, q, k))+G(2vbqq, ) &A '(q)A '(s)[E—q. (p—k)E~b —Es+Eq+gb(k+s)Eb+, j '

Xyb(p+(p —k, k+s, q —s)+p (p —k, k+s, q—s))—G(2v&q, ,) &Ai b(q)~b(s)[E —g, (p—k)E &+E,
—Eq+qb(k+s)Eb+, ) 'Q+(p —k, k+s, q —s)+P ). (A.8)

We have, thus, completed the derivation of the new Tamm-Dancofr' equations. In carrying out the first Born
approximation to these equations the radiative correction terms can easily be recognized and dropped from the
interaction. This leads to the sets (A), (B), and (D).

APPENDIX B

In connection with the elimination of spurious plane wave solutions of the Bethe-Salpeter (integro-differential)
equation we can introduce a transformation of the two-body wave function g(12):

1 f t

y (12)= SP,(11')P,g(1'2)d1'+ Sb b(22')Pbg(12') d2'
2+i ~

(B.1)

where the physical meaning of the spinor function p(12) is not directly obvious. A simple interpretation for the
function p(12) can, however, be found in some special cases.

Now, the momentum space transform of (8.1) in the center-of-mass system can be written as

x(p.)=, -+, ~(p.).
2qri H. (p) ',E pp —H-b( ——p) ,'E+pq—- (B 2)
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.In general there are two cases of interest: (a) we substitute the expression (B.2) in the Bethe-Salpeter equation
and obtain an equation for p(pu),

Q2 1 1
r,'r, b A, (p„p„'—) + y(p„')d'p'. (B.3)

(2or)' ~ II.(p') ——',E—po' IIb(—p') —oE+Pp'-

When the particles interact instantaneously (po ——pp in Au), the kernel of (B.3) is independent of po s«h« the
function P(Pu) does not dePend on the relative energy variable Po. Equation (B.3), after the PP-integration on the
right-hand side, reduces to

Go ) dop~

[II.(p)+»(—p) —E$8(y) = r,'r,'
~

A. "(p') (p') (B.4)

where a(p) is the wave function of two instantaneously interacting nucleons and

A-"(p) =A+'(p) A+'( —p) —A- (p)A-'( —p).

In the nonrelativistic limit, for the a++(p)-components, the wave equation (8.4) reduces to the usual Yukawa
form of the ps —ps theory. Thus, in the above special case the physical meaning of g(pu) is clear.

(b) Let us now assume that the system first propagates as two free particles and then the interaction takes
place in a time-ordered way. We use an equal-time wave function po(p) =J'x(p, Pp)dPp and the ansatz of replacing

p(pu) in (8.2) by a function p(p) independent of pp, viz

x(P.) = +, 4 (p).
2ori. II.(y) ——',E—

Pp IIb( p) —,'E+—Pp—

(B.S)

The function P(p) will not describe the system in a fully relativistic way, since its tf+ and P + components will

not appear in the resulting 3-dimensional equa, tion. This can be seen by integrating both sides of (B.5) with
respect to pp,

P (y) = X(P.)dpp=4~(y) —4—(i) (B.6)

so that
P+-(P)=q +(P)=0.

This is one of the reasons that the definition (B.5) cannot be used as an ansatz in the Bethe-Salpeter equation
to derive Dyson's equation.

In deriving an equal-time formalism from the Bethe-Salpeter equation the operation of integration over the
relative energy variables must precede the use of the ansatz (B.5); namely, we must first integrate both sides of
the Bethe-Salpeter equation with respect to pp to include the contributions from the free particle states. In this
case the function P++(y) can be identified as a Tamm-Dancoff wave function.

We now proceed to the discussion of the 3-dimensional wave function p++(p). The Bethe-Salpeter equation for
one-and-two meson interactions of two nucleons is

X(p.) = ~~.(2t"u+P.)~»—(oIcu —P.)P.Pb) P.Pb[Io(pu, p'; E:.)+I4(pu Pu" &.)jX(p')d'P' (B.7)

where Io(pu, pu', Eu) and I4(pu, pu'; Eu) represent the ladder and crossed diagrams given by

Q2

~.~ I.(p.,p.', E.)= r,'r"A. (P.-P.'),
(2' 4)

Q2 '2

pg, I,(p„,p„', Z„)= "A (p„—p„'—k„)A,(k„)
.. (2m-)'

(B.S)

Xr,-[II.(p'+1)—-',E—p, '—u,j-ir,-r b[»(—y+k) —-', E+pp —l o]-'r b&'&. (B.9)
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In order to derive an equation for p+~(p) we replace g(p„) in (B./) by the expressions

1 2A~
X~(P.)= . 4~(1),

2wi (A„—pp)(Av+pp)

leading to

(8.10)

1 2A„
4++(Ii)=-

2~i (A,—po)(Av+po)

N (u)~+'( —I)
~

PAbfI, (p„,p„;E )+I4(p„, p„'; E„))
(A. po)—(A.+po) ~

2A„
X @++(y')d'p'idPO'. (8.11)

2~i (A „p—0') (A;+po')

Because the po-integration has to precede the use of the ansatz, the factors (A„—po) ', (A„+pa) ' on both sides
of the equation (8.11) will not be cancelled out. The 3-dimensional equation can, now, be obtained by integrating
both sides of (8.11) with respect to pp,

2A„d'p'
4++(p) = —N'(p)N'( —v)

2mi(A„—po) (A„+pa)(A„—po') (A„+po')

XP4 P (P.,P'; &.)+I (P. P" I:.)34 (p')dPo dPo' (8 12)

In this equation the first term to be integrated with respect to po and po' is

G' 1 2A „dpodpo'
p .ap .5 (8.13)

(2~)' 2x ~ (A,—Po) (A,+Po) (A v
—Po') (A, +Po') (~~v —Po+Po') (~~;+Po Po')—

Usually one carries out the integration over po in the complex plane of po and the resulting expression can then
be integrated over pb' in the complex plane of po'. This is a long and tedious business. Actually, we can accomplish
both integrations simultaneously if we note that, because of the small negative imaginary parts in A„s and co~„,
the expression (8.13) can be written as

G2

Mq= (i)'F F,b dPodP0' dndpdydbdpdv2A„expt in(A„—Po) iP—(A„+—Po) iy(A —Po')—
(2 )b

i&(Av +Pp ) —iy(cov „P—p+Po') i v—(cov v'+P—o P))o—
(i)bF F; 2A „dndPdyd8dpdv expL —i (n+P)A„—i(r+8)A „—i(p+ v)~ )

"0
X~(P +I )&(—v &+a-), —(8.«)—

where n, P, p, 8, p, , and v are positive parameters. From the two 8-functions we have two linear algebraic equations,

P—n+p, —v=0, y —8+@,—v=0. (8.15)

The positive character of the parameters n, P, y, 5, p, and v does not allow an arbitrary elimination of two of them
from the integral in (8.14). Let

P—n= &a, y 8= +b, p——v= &c,

where a, b, and c are also positive. The signs for the set u, b, and c can be 6xed by considering the 8 possible signs
for the set a, b, and c. There are only two possible combinations that are consistent with the positive character of
the 6 parameters, namely the combinations (++—) and (——+).The two solutions of (8.15) are, therefore,

(i): P=n+a, V=&+a, v=~+a, (ii): n=P+a, 8=ad+a, p, =v+a. (8.16)

Other solutions are thus excluded. By using the solutions (i) and (ii) in (8.14), we obtain. the matrix elements

62 ~'oo

F; F;b(i) 2A dn'dP'dy'db' exp) in'(2A„) —iP'(2A„) —iy'(2 „—) Q'(A„+A—„'+o& „)).se' '
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Hence
62 2

Mg —— I; r;b
(2Ev E—) (2~~') (E E—. E—v ~. ')-

(8.17)

The second order equation is, therefore, given by

4~(f ')d'p'
(E—2E,)y (12)= A+ (12)A, (—12)r„'r,'

82rp " oo~v (E E„—Ev —01~v—)
(8.18)

For the fourth order case we use the Casimir projection operators in the second term of (8.11).We have alto-
gether 4 terms to be integrated in the integrand of the second term, the first one of which is

62 -2

2A O(p, p'; k)d'kdppdp, 'dk,
. (22r)4 22r ~

X
(A —Po)(AV+Po)(AV —Po )(Av +Po )(Av+2 —Po —ko)(AV —0+Po—ko)

where

1
X (8.19)

(-. k.)(-.+-k.)(-.;. p.+—p'+—k.)(-.;.+p. —p'—k.)—

O(y, 1'; k) =A (12)A„P(—1)(r,A+(P'+k)r, ),(I';A+( —P+k)r, ),.

As before, the integrations over pp, pp', kp can be effected in accordance with the hole theory, so that (8.19) can
be written as

Q2 "2 (i)10

(22r)4 22r ~
2A v O(p, p', k)d'kdPpdPp'dkp dndPdydhdpdXdpdvdpdo exp[ in(A—„Pp)—

0

or

iP (A „+P0) —iy (A, Po') —i 8 (A „+—P0') —i 0(A v ~o Po'—kp) —i X (A—~0+—P0 kp) ip(4—00 k—p)—
M (Mo+kp) 2p(opv-v' —2+pp pp kp) 'Lv (4pv v'—0+pp +kp pp) j

-Q2-2
M4&'& = (i)" 2Av. O(p, p' k)d'kdndP do exp.[ 2(n+P)Av i —(y+b)A„i—(p+o)1oo—82, JJ,

—$(p+v)ppv v~ 0
—

A20v~yp —pl%A V 1J5(—n+p+X+p —v)b( —r+b —0—p+v)

Xb(—0—X—p+ v —p+o). (8.20)

We have to eliminate 3 of the 10 parameters in the expression (8.20) by using the 3 linear algebraic equations
for 10 unknowns,

We put
0= 9—V)+(v —p), ~= (n —0)+ (v —p), (n P)+ (b V)+ (—p o)+ (—v p) =o— —

n —P=+a, b —y=&b, p —o=+c,

(8.21)

and then consider the 16 possible signs for the quantities a, b, c, and d. The only sets of signs consistent with the
positive character of n, I9, y, b, p, v, X, 0, p, and o are 6 in number and are given by the combinations (++—+),
(++——), (—+—+), (——++), (———+), and (+——+), leading to the solutions:

(1)

n =P+a,
b=y+b,
o =p+a+b+c, .

v= p+c,
0=b+c,
X=a+c;

(ii)
n=P+X+a,
8=y+ 0+a,
a=p+0+X+a,
p= v+a;

(iii)

n=P+a,
y=b+b,
o =p+ 0+aq
v= p+ 0+be
X= 0+a+b;

(iv)
P=n+a,
b=y+b,
o=p+h+b,
v= p+'A+a,
0=X+a+b;

(v)
P=n+0+a,
y= 8+X+a,
p=o+a,
v= p+

0+X+ate

(»)
P=n+a,
y=b+b,
o'= p+Cq
v= p,+a+b+c,
X=b+c,
0=a+c.
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On using these in (20), we obtain %4&'& as a sum of 6 matrix elements:

1 t 0(p,p', k)d'k

(E„+EJ a+~a E) (—E„+E„+a+~a E) (—E„+a+E„a+Ma+~~„' a E}—

X
(Ep+Ey'+ ~y p' a+-&a— E)(E—&+ED a+ &a— E)(E—y +

Ey'pa+�

&a E)—

(E,+E~a+~a E) (E—;+E, a+~, -; a E)(E—~a+E, +a+~a+~, , a
—E)

X-
(E +E +a+~ — -a—E)(E +E +a+~a E)(E —a+E +a+~ a+~a —-E)

(E,+E,+~~; a+~a —E) (E-,+E~a+~~, a
—E)(E;+-E~a+~, , a E)———

1
(B.22)

(Ep+Ey ~a+~~y+a E) (E~ +—E~a+~y p a E) (E-y -a+—Ey+a+—~a+~~y a E)-—
These are just the no-pair terms of the old Tamm-Dancoff method, so that each of the above solutions corresponds
to a Feynman diagram.

The remaining 3 terms of the second term of (8.10) can be treated in the same manner, each giving 6 matrix
elements. Altogether the crossed diagram corresponds to 24 Tamm-Dancoff diagrams. The method can be applied
to the iterated ladder and the results will come out in the form of reducible and irreducible terms. Finally, we
note that the above method of integration can be generalized to more complicated cases.


