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The tensor virial equations for an aggregate of particles are developed. They are tensor equations of
second rank, and on contraction yield the familiar virial equation. To illustrate their application, the
diffusion of molecules through a gas is considered and a kinetic derivation of the Navier-Stokes equations
is worked out. The latter may here be carried out in more general terms than is usual, the generalization
leading to results that are of interest in turbulence theory. In anisotropic systems the use of the tensor in
place of the scalar virial becomes imperative. An astrophysical example of this (anisotropic star cluster) is
given in outline.
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1. INTRODUCTION

HE.use of the virial theorem in kinetic theory is
well known. It seems to have escaped general

attention that the usual virial equation is the con-
traction of a second-order tensor equation which is
essentially the equation of motion of the moment-of-
inertia tensor of an aggregate of particles. Lord
Rayleigh, ' who wrote down the o8-diagonal terms of
the tensor equations, remarked that they should have
application to problems in viscosity. Moreover, one
readily finds that the diagonal terms apply to aniso-
tropic systems in the same way in which the usual scalar
virial theorem applies to isotropic systems.

Consider a system of particles in a space with Car-
tesian coordinates x;. A particle of mass m on which
there is a net force Ii; has the equation of motion'

F;= rrtd'x;/dt'.

We multiply by x, and rearrange to obtain

by Euler's theorem. For electrostatic and gravitational
interactions, rt= —1. We shall call C;; the poterttt'al

tensor.
It is of interest to separate (4) into its symmetric and

antisymmetric parts. The moment of inertia tensor I;,
of the system is the symmetric part of J;;.Thus,

—&,t=-', (f;t+Jt;)=—Q rrtx, x;.
dt

(6)

The first equation is the equation of motion for the
moment of inertia tensor; the second gives us the rate
of change of the angular momentum. We shall concern
ourselves primarily with the equation for I;;; its con-
traction gives the familiar scalar virial equation.

2. DIFFUSION

We denote the antisymmetric part. of J;;by E;; so that

2K;;=J;;—J;,=Q rN(x, dx;/dt x,dx;/d—t) (7).
2E;; is obviously the angular momentum of the system.
The kinetic tensor, T,;, is clearly symmetrical. H,
finally, we split the potential tensor, C;;, into its sym-
metrical and antisymmetrical parts,

2M' =ebs'+C jr) '2Xrj =Cjj

Itive

Eq. (4) decomposes into the two equations:

d I;,/dt =2T;,+M;;, dK;~/dt=N;;. (9)

we obtain the tensor ~irial eqlatioe: Consider a space filled with a homogeneous distribu-

dJ,;/dt=2T, ,+e;;. (4) tion of particles. At time ts we mark every particle
within the rectangle with sides x,=+a;(ts). We ask how

To interPret T;; and C;; we note that the total these marked particles wi]& spread out with time.
kinetic energy, T, of the system is just the spur of T;,. The tensor virial equations do not determine the
Accordingly we shall call T;; the kinetic terIsor. If I" form of the spatial distribution: If we assume a distri-
is expressible in terms of a potential energy V which is bution described by certain characteristic lengths, then
a homogeneous function of degree st of the x;, then the from (9) we can compute how these lengths vary with
spur of C;; is time. Thus our solution has the disadvantage of being

C =@,,= —p x, (rip'/clx, ) = —rtp', (5) an approximate one but the related advantage that the
computation will be easy.*This work was in part supported by the Once of Naval

Let us characterize the distribution of the particles
'Lord RayleiSh, Phil. Nag. 50, 210 (1900). This reference was at time t by' three moments, say sa, (t). At time tv the

pointed out to us by Professor Chandrasekhar. a; represent the initial rectangular step functions; as'We con6ne ourselves here to the Newtonian formalism. The
Lagrangian generalization is straightforward. time goes on, the steP functions will sPread out. into
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Gaussians; isa;(I) will then approximately represent the
standard deviation. The tensor virial equations reduce
to

rearranging of terms (4) may be rewritten as

1
M =PG;+—P mg,as;+P P;f;— P—mP,as; .

dt y; dt—a;(t)—a;(t) =0.
dt dt

The solution of (10) is

(10)
However, since for the center of mass

Mdwy/dt=Q G;,

(21)

(22)

ai(l) =ai(&o) (&/&o) q dui(&)/d&= a;(ls)/(2lp) (/e/$)I. (11) Eq. (21) reduces to

Comparing (12) with (11), we find that

lo=t '(Io) j'/(« ')"),
and (11) becomes

(13)

a;(I) = (L(e,)A,l)&, da;(I)/Ck= t L(e,),„/(4t)i'. (14)

3. MOTION OF A FIUID

I et us next use the tensor virial equation to derive
the equation of motion of a finile region of fluid. We let
the boundaries of the region move with the Quid. If y,
is the center of mass of the region, we set for each
particle

x;=y;+ P;. (15)

De6ning m; as the velocity of the center of mass, we
write the velocity v; of a particle as

To evaluate the integration constant to, we note that
at time to the expansion of,the rectangular region of
marked particles is brought about by only those par-
ticles within a distance I of each face, where I. is the
mean free path; of all the particles in the region, only a
fraction L/a;(t) are contained in a slab of thickness I
and normal to the i direction. Half of these particles
are moving outward across the face with velocity (v, )A, .
Thus, a, (l) must at time t= le increase at the rate,

da, (l)/dt =—',(v, )A„L/a;(l) . (12)

—P mPpc;=P mg,~;+P g;f; (23)

dVp~;I;= dVpl, e;+ dVo;;+ dV); oi",
J J

(24)

We see that the tensor eirial equation referred lo the
cenler of mass of o', region is invariant with resPect lo

translocaL acceLerations.
Now f; in the purely hydrodynamic case results only

from collisional forces. Thus, it cancels out over the
interior of the region where both members of each pair
of colliding particles enter into the summation; only
the collisions at the surface of the region contribute. It
becomes convenient to introduce' the usual stress
tensor r;; interpreted as the force per unit area in the
i direction across an element of area normal to the j
direction. Ke choose our signs so that 0;; represents the
force exerted by the matter on the positive side of the
area on the matter on the negative side. This is the
customary definition in elasticity4 and electrodynamics.
Remembering that all forces other than collisional are
assumed to be zero, we may express P )~f; as the surface
integral J'dS&$;aj& Replacin. g the summation by a
volume integral in the other terms of (23) and using
Gauss's theorem, we obtain

e;=w;+is;, w; =dy;/dt, I;= d&,/dt.

Obviously,

P mg;=P mg, =o.

(16) where summation convention is used with respect to k.
Let us now introduce the assumption that

F;=G;+f;.
With these definitions we may rewrite (3) as

(19)

J,;=My,w;+P mP, ts;, 2T;; =Mw, w,+P mice;,'"
(20)

C" =y'ZG+Z 4f,
where M is the total mass of the region. After some

We shall refer to I; as the local velocity field and w, as
the translocal field; the local field is the portion of the
velocity composed of Quctuations of smaller scale than
the region. Finally, defining G, as the average force on
the region so that

G,= mdw, /Ch,

we write

3 The introductioii of a stress tensor and the associated processes
and parameters such as integration, differentiation, pressure, vis-
cosity, etc. require a limited form of continuity in our hitherto
unrestricted system. Our notion of in6nitesimal becomes that of the
physical inhnitesimal, Jim. , that the smallest elements of volume
d V which we consider must be suKciently large so as to contain
many particles. If n represents the number of particles in dV,
then the iiuctuation of e is of the order of gn. We must require
that

in order that our averaging process over d V have a smoothing
eBect. To be treated as an infinitesimal, d V, of course, must be of
smaller scale than the phenomena in which we are interested. The
alternative to these restrictions on dV is to consider an ensemble
of systems, so that the average may be carried out over the given
d V in all the member systems rather than just in a single system.

4A. Sommerfield, The Mechanics of Deformable BoChes (Aca-
demic Press, ¹wYork, 1950), p. 61.
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0= dVpu, u,+ ~ dV0. ,;. (26)

Physically, this condition implies that the acceleration
of the rate of distortion of the region is small over
periods of time comparable to the time of local circu-
lation, P;/u;. This requires that the local forces Bo,I/8$&
do not vary too rapidly over the region, in which case
the last term of (24) is also small, and (24) reduces to

To write (31) in the conventional form of hydro-
dynamics, we introduce the usual argument that u;
and u, (i&j) will be correlated only if there is translocal
shearing present: If u; transports a particle an average
distance L; across a velocity gradient Bw;/By; without
collision, the particle will have a velocity L;—Bzv;/By;
in the i direction relative to the general velocity 6eld;
I; is essentially the mean free path, or mixing length.
We construct the relation, for nWP,

This is satisfied if
0;;=—pu, u~,

and we see that o.;; is the familiar Reynolds tensor.
It is of interest to note that if (26) were rigorously

true, rather than only in the approximation of (25),
then (24) would reduce to

(where we indicate by Greek indices that we do not
observe summation convention); a and b are numerical
constants. More generally,

1 Bmp Bm
(27) (pu up) =—— d Vpu up= —g(pu L, ) b(pupL—s)

V & ay. Byp

d
d Vpg,u;= d UP~f;.

dt &

(28)
BMp B78~

(pu-us) =p(n)Ls ~p(n) —bp—(P)
By Byp

(32)

Let us investigate under what circumstances this rela-
tion is valid.

The antisymmetric part of (28) is the angular mo-

mentum equation,

dVp(L' 4u*)=—) dV(&'f & f')—
dt~

and is rigorously true. The symmetric part, on the
other hand is 8 8

) dU (pu, uI,)= V (pu,u~),
ay& ay&

(33)

where V is the volume of the region. Thus (28) may be
rewritten as

where b s is the Kronecker delta and p(n) is the vis-
cosity,

p(n) = (pu L ).

p(n) is taken to be the average over the region of the
portion of pu u which is independent of the translocal
shear; p(n) is the pressure and is independent of n if
the local velocity 6eld is statistically isotropic.

Now,

Assuming an incompressible flow, we may write (29) as
dW B B O'NI, B BR'

(p) = — p(n)+~ u(n) +b u(&), (34)
dt By By& By By& By&

where (p) =M/V. (34) is the equation for the translocal
6eld in the general case that the local velocity field is
anisotropic.

Assuming isotropy so that p(n) and p(n) are inde-
pendent of n, assuming that p(n) is independent of y, ,
and assuming that an isotropic dilatation of the region
produces no dissipation of energy, we obtain the
familiar Xavier-Stokes equations for a compressible
Quid.

YVe note how the tensor virial equations with the
assumption (24) lead quite naturally to the Reynolds
stress tensor. Equation (31) indicates that the trans-
local velocity field depends only on the statistical prop-
erties of the local field. Introducing Prandtl's mixing
length ideas, we 6nd that the statistical properties of
the local motions appear as an "eddy" viscosity, as was
assumed by Heisenberg5 in his theory of isotropic
turbulence.

Inasmuch as
pduy/dt = fp)

we may reduce the relation to

t dVpu, u, =0, (30)

which implies that u; and u; are uncorrelated over the
region. In (32) we shall assume that u; and u; are cor-
related by an amount proportional to Bw;/By, times
the mean free path. Thus, (30) leads one to assume

that this product be small, which is equivalent to (25).
Given that the hydrodynamic stresses are of the form

(27), we return to (22) and write the equation of motion
for the center of mass of the region as

1
I

1 t 8
= ——,dSIpu, ~~= ——~' dV (pu,m~). (31)

M4 M~ 8)y ~ W. Heisenberg, Z. Physik 124 628 (1948).

( duj du;)
"dVp~ 2u.+4 +4 I= dV(5'f +5f')'

dt dt )
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4. ISOLATED SYSTEMS

The tensor virial equation is of particular interest in
problems involving an anisotropic isolated system of
particles; for instance, an interstellar gas cloud or a
cluster of stars. One postulates some definite spatial dis-
tribution for the system; the di6erential Eq. (9) can
then be used to investigate how the scale of such a dis-
tribution varies with time.

Consider a star cluster, or another isolated dynamical
system, in which the velocities of the individual stars
are not statistically isotropic. In such a case one may
assume that the particles are distributed uniformly
throughout an ellipsoidal region of space. To compare
the calculations with an observed system, one interprets
the semi-axes of the ellipsoid as representing the scale
of the system, say the distance from the center out to
where the density has decreased by e. Choosing the
coordinate axes along the axes of the ellipsoid, one
computes the potential tensor to be

0 if n/P
(35)—(3/10)GM'(a )2E if n=P.

F(to,k) and E(to,k) are Legrendre's elliptic integrals of
the first and second kind, respectively.

If ((tt )') is the mean square velocity in the cr direc-
tion, the kinetic tensor is given by

((tt )')= (3/10)GM(a )2$ . (40)

Integration of (9) in the case of spherical symmetry
is elementary, and we but brieQy indicate the develop-
ment. We use the scalar virial equation, the contraction
of (9). For a homogeneous sphere it is readily shown
that

0 if nWp
2Tap (39)

M((N )')+(1/10)M(da /dt)2 if et= p

The complexity of the potential tensor prohibits our
giving a general integration of (9). Even in the some-
what more simple case when a~ ——u2 this does not seem
feasible. Thus, we investigate here only the equilibrium
configuration. Setting O2I, ,/dt2=0 in (9), we obtain a
relation for the mean velocities in terms of the anisot-
ropy:

(41)C;;=—3GM/(Sa) I;;=3Ma'/10,M is the total mass of the system; G is the gravitational
constant; a~ is the semi-axis in the o' direction. We where a is the radius of the sphere. The radial osci
arrange the axes so that at~&a2r a3 i the iV are given by lations contribute (3/10)M(da/ttt)' to the kinetic

X,=2L(a,)'—(a,)']-&k-'[.—E( k)], energy. If the internal motions follow a polytrope law,

E(ro, k)
&2= 2l (ar)' —(a2)'] '

k'(1 —k')

1 snv cnv v

(N') = (tt') (a/ao)"" "
where A is the effective y of the motions, then

(36)
2Tt;———',M(da/dt)'+M(N')e(ae/a)'&"-". (43)

(1—k') drtv

X2=2L(at)2 —(ae)']. &(1—k') 'Lsne dn%rtv E(&o,k)]-,
where

sin~ = snv= LI- (a,/a, )']&,

cnn =ae/at, dna =a2/at, (3'/)
and

k2
C

(a1)2 (a )2]/t (al)2 (a )2] tt —F(to k)
'

(3g)
e W. D. MacMillan, The Theory of the Potential (McGraw-Hill

Book Company, Inc. , New York, 1930), p. 60.

Putting (41) and (43) into the scalar virial equation,
we obtain the diGerential equation

d'g 5 a '& —') GM
=-(tt2) p

dt' 3 u' g2
(44)

which is readily integrated to give da/dt and finally a
as a function of time.
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