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Gravitation and Electromagnetism

SURAJ N. GUPTA
Department of Physics, Purdue University, lafayette, Indiana

(Received May 10, 1954; revised manuscript received September 10, 1954)

Einstein's theory of gravitation is compared with Maxwell's theory of the electromagnetic field, and some
common features of the two theories are pointed out. It is also shown that the well-known peculiarities of
Einstein's theory are a necessary consequence of the fact that Einstein's field corresponds to particles of
spin 2.

l. INTRODUCTION

A LTHOUGH Einstein's theory of the gravitational
field is the most widely accepted theory of gravita-

tion, it is rather disconcerting to note that Einstein's
theory appears to be strikingly diGerent from the
present theories of the electromagnetic field and the
meson fields. In fact, in the formulation of fundamental
physical laws we always seek for harmony in nature, and
we intuitively expect that there shouM be some uni-
formity in the description of various fields in nature.
Therefore, Einstein himself and others' have tried to
construct a unified theory of the gravitational and the
electromagnetic fields, while some other authors' have
tried to find a linear theory of the gravitational field in
flat (Minkowskian) space analogous to other existing
field theories. All such attempts, however, are still in a
speculative stage.

The aim of the present paper is to compare Einstein's
theory of the. gravitational field with Maxwell's theory
of the electromagnetic field, and to show that the two
theories have many features in common. Ke shall also
see that the main differences between the two theories
can be attributed to the fact that while the Maxwell
field corresponds to particles of spin 1, the Einstein
field corresponds to particles of spin 2. This shows that
Maxwell's theory of electromagnetism and Einstein's
theory of gravitation provide us with a fairly uniform
description of nature, and therefore there is no philo-
sophic necessity for trying to alter any of these theories.

2. REMARKS ON EINSTEIN'S THEORY OF
GRAVITATION

Einstein's gravitational field is described by the field
equation

press the gravitational field equation in a diferent form,
which will be more suitable for the present purpose.

As is well known, the Lagrangian density for Ein-
stein's gravitational field may be taken as
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where ef'" is a set of quantities given by
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Then, the symmetrical energy-momentum pseudotensor
density of the gravitational field will be

where

8
epv —spat&v r (fpv, p+fpp, v+fpv, p)

Bxf'
(6)

which gives for the canonical energy-momentum pseudo-
tensor density of the gravitational field

ggeP —& vpP. .
it(itg s/itxp) its"

We can further obtain the symmetrical energy-mo-
mentum pseudotensor density of the gravitational field

by Belinfante's method. ' For this, we consider an
infinitesimal linear transformation

$g~ = —el'~Scud, x" with Ro)„=—Sco,),

where the symbols g&", El"" and R have the usual mean-
ing, I(: is a constant, and TI"" is the energy-momentum
tensor of the "matter" field, which includes everything
except the gravitational field. We shall, however, ex-

' For an account of the unified field theories, see P. G. Bergmann,
INtrodttetiovt to the Theory of Relativity (Prentice-Hall, Inc. , New
York, 1942), and A. Einstein, The Meavtirtg of Retati sty (Princeton
University Press, Princeton, 1950}.

s F. J. Belinfante and J. C. Swihart, Phys. Rev. 90, 357 (1953)
and, 91, 500 (1953);G. D. BirkhoKv Proc. Natl. Acad, Sci. 29, 231
(1943).

Adding the symmetrical energy-momentum tensor den-
sity of the matter field ep"Pzv to (6), we obtain for the
total energy-momentum pseudotensor density Op" of
the system

8
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e F.J. Belinfante, Physica 6, 88'7 (1939),
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which is an alternative form of Einstein's gravitational
6eld equation. It is interesting to note that the lef t-hand
side of (9) is linear in g"", which is due to the fact that all
the nonlinear terms of the field equation are contained
within the quantity 0""on the right-hand side of (9).

Since neither c t' nor 0»" transforms as a tensor under
arbitrary coordinate transformations, the field Eq. (9)
is not manifestly covariant. Nevertheless, Einstein s
field equation can be expressed in the form (9) in any
arbitrary frame of reference. Moreover, if we confine
ourselves only to those frames of reference in which the
coordinate condition

8A""/Bx"=0

is satisfied, then (9) reduces to

e r)'g, ""/Bs rlx =Ir'0""

(10)

Further, we can regard the Aat space as the zeroth
order approximation to the Riemannian space. It can
then be shown4 that the field quantities, occurring in
Einstein's theory, can be expressed as infinite series in
the Rat space. Therefore, keeping Einstein's theory
mathematically unchanged, we can pass over from the
Riemannian space to the Rat space. After passing over
to the Qat space, the general covariance of the theory is
no longer apparent, but the theory still remains mani-
festly Lorentz covariant. In this way Einstein's theory
can also be regarded as a theory of gravitation in Bat
space with a Lagrangian density containing an in6nite
number of terms.

3. COMPARISON OF EINSTEIN'S THEORY OF
GRAVITATION AND MAXWELL'S THEORY

OF ELECTROMAGNETISM

We shall now compare some aspects of Einstein's
theory of the gravitational 6eld and Maxwell's theory
of the electromagnetic field, and show that the two
theories have many features in common. In this section
and the subsequent ones, we shall follow the usual
simplified Rat space notation, taking the space-time
coordinates as x~, x2, x3 and x4=ict.

Field Equations

According to Maxwell and Lorentz, the electro-
magnetic field is described by the 6eld equation

Substituting (7) in (8), we get after some simplification4
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where 3„is the electromagnetic potential, and j„is the
current four-vector. It is evident that (12) and (13)
have a remarkable similarity to (11) and (10). In
fact, the only difference between the two sets of
equations is that in place of the four-vectors 3„and j„
in the electromagnetic field equations, we have the
symmetrical quantities g"" and 0'"" in the gravitational
6eld equations.

Covariance

The 6eld equation (12) is covariant not only under
Lorentz transformations but also under all those gauge
transformations which leave the supplementary condi-
tion (13) invariant. Similarly, the gravitational equa-
tion (11) is covariant not only under Lorentz transfor-
mation but also under all those general coordinate trans-
formations which leave the coordinate condition (10)
invariant. Thus, the two theories share the common
property that they are both covariant under groups of
transformations, which are more general than the
Lorentz transformations. This property not only en-
hances the mathematical beauty of Maxwell's and Ein-
stein s theories, but it is also very helpful in the investi-
gation of the interaction of electromagnetic and gravi-
tational 6elds with other 6elds.

Quantization

In the quantization of the electromagnetic field the
supplementary condition gives rise to certain difBculties, '
which can be overcome by using a generalized vector
space with an indefinite metric. ' When we try to
quantize the gravitational 6eld, similar dBBculties ap-
pear, and they can again be overcome by means of an
indefinite metric. 7 It is then found that the quantized
gravitational field corresponds to gravitational quanta
or gravitons of spin 2, while it is well known that the
quantized electromagnetic field corresponds to photons
of spin 1.However, on quantization the electromagnetic
and the gravitational fields have several properties in
common. Both of these fields correspond to neutral
particles of integral spin and vanishing rest-mass, and
both photons and gravitons have two states of polariza-
tion with their spin axes parallel or antiparallel to their
directions of motion.

Although there are several interesting analogies be-
tween the electromagnetic and the gravitational fields,
there are also some dissimilarities between the two
fields, which will be discussed in the next section.

4. PECULIARITIES OF EINSTEI¹S GRAVITATIONAL
FIELD

O'A „=—(1/c) j„,
with the supplementary condition

(12) The most striking difference between the gravitational
and the electromagnetic fields is that the gravitational
field is nonlinear and its Lagrangian density in Rat space

r)A „/rim„=0, (13)
4 For details see S. N. Gupta, Proc. Phys. Soc. (London) A65,

608 (1952).

s F. J. Belinfante, Phys. Rev. 76, 226 (1949).' S. N. Gupta, Proc. Phys. Soc. (London) A65, 681 (1950).' S. N. Gupta, Proc. Phys. Soc. (London) A65, 161, 608 (1952).
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consists of an infinite number of terms. We shall now
show that these peculiarities of the gravitational field
are a necessary consequence of the fact that the
gravitational field corresponds to particles of spin 2.

If we assume that the gravitational field corresponds
to neutral particles of zero rest-mass and spin 2, its field
equation in the absence of interaction will be'

Let us first choose the Lagrangian density as

aU„„BU„,J— 2

which gives the field equation

Q2U P

(20)

(21)
(14)

and the energy-momentum tensor
~2U P

with the supplementary condition

8U„,jr)x„=0,
BU)pgU), p BU),pBU), p1
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where U„„is a real symmetrical tensor.
In the presence of interaction, the field equation (14)

will be modified as

(16)Cl'U„„=440„„,

We now have to modify (20) in such a way that in the
resulting equation the quantity (22) appears on the
right-hand side of (21). For this it is evident that we
must take a Lagrangian density of the form

where i4 is a constant, and O~„„ is some symmetrical
tensor. Then, differentiating (16) with respect to x„,and
using (15), we get

BU„„BU„„
+f3,

Bxy Bsy
(23)

where t„„ is the energy-momentum tensor of the
gravitational field, and T„„ is the energy-momentum
tensor of all other fields. Hence, in the absence of all
other fields, a pure gravitational field of spin 2 will be
described by the field equation

Q'U„„=at„„. (19)

According to the present ideas of the field theory, the
field Eq. (19) must be derived from a Lagrangian den-

sity by means of a variational principle. We shall, there-
fore, try to find the required Lagrangian density for the
pure gravitational field by successive approximations.

8 M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211
(1939).

80„./4)x„=0.

The only known physical quantity, which is described
by a symmetrical tensor of vanishing divergence, is the
total energy-momentum tensor of a closed system of
fields. This suggests that the quantity 0'„„in (16) should
represent the total energy-momentum tensor due to the
gravitational field as well as other fields. It should be
noted that the gravitational radiation has not yet been
experimentally observed. Therefore, from the experi-
mental point of view it is conceivable to have a theory of
gravitation in which the divergence of the non-
gravitational energy-momentum tensor alone vanishes.
However, it is mathematically impossible to construct
such a theory in a consistent way, except in the trivial
case when there is no interaction between the gravi-
tational field and other fields.

Now, we can write the total energy-momentum tensor
O„„as

0„„=1„,+T„„

where f3 consists of one or more terms such that each
term is a product of three factors, each factor being
either U„„or its derivative. However, then the energy-
momentum tensor becomes

(r)U),.p BUi, p 4)U)„BUi p)
I+a, (24)

& ax„ ax„ ax. ax. )
where g3 also consists of one or more terms such that
each term is a product of three factors, each factor
being either U„„or its derivative. Again, we have to
modify (23) in such a way that in the resulting field
equation the quantity (24) appears on the right-hand
side of (21). For this we must choose a Lagrangian
density of the form

BU„„BU„,
+f8+f4,

Bsy Bxy
(25)

where f4 consists of one or more terms such that each
term is a product of fogr factors, each factor being
either U„„orits derivative. In this way it follows that in
order to obtain the field equation (19) we shall have to
introduce an infinite number of terms in the Lagrangian
density.

Hence, not only do Maxwell's theory of the electro-
magnetic field and Einstein's theory of the gravitational
field have many similarities, but the dissimilarities be-
tween these fields are a necessary consequence of the
difference in their spins.
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