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Fourth Order Corrections to Meson-Nucleon Scattering in Pseudoscalar Meson Theory*t
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The low-energy S- and P-wave phase shifts for meson-nucleon scattering in the relativistic pseudoscalar
coupling theory are calculated in perturbation theory to fourth order in the coupling constant. A comparison
is made of the complete relativistic theory and the nonrelativistic approximation to it, obtained by use of
the Foldy-Wouthuysen transformation, via a comparison of the low-energy scattering predicted by both
theories. It is concluded that the S-wave scattering is similar in the two theories but that the P-wave scat-
tering is very different in the two theories in fourth order. An analysis of the sources of the differences between
the two theories is made by calculating the fourth order scattering in a version of the relativistic theory in
which all effects due to the production of pairs are eliminated.

An investigation is made of the nature and possible validity of the Tamm-Dancoff approximation. Two
possible viewpoints with respect to this approximation are developed, and the extent to which the Tamm-
Dancoff method is applicable to the pseudoscalar coupling theory according to these two points of view is
determined, insofar as the low-energy calculations of this paper allow.

I. INTRODUCTION

' 'N recent years considerable .experimental evidence
- - has accumulated on the nature of the m meson and
the character of its interaction with nucleons. The
experiments indicate that the m. meson is a pseudoscalar
particle and that the interaction is, to a good approxi-
mation, charge independent. In addition to these simple
facts, a large amount of detailed information on the
nature of the interaction is now available.

A great deal of e8ort has gone into attempts to under-
stand this meson nucleon interaction on the basis of
meson theory. In this approach one starts with a free
meson field P and a free nucleon field P and then couples
the two with an interaction term consistent with the
pseudoscalar character of P and the charge inde-
pendence of the interaction. Two simple types of
coupling have been suggested and extensively studied.
In the pseudoscalar coupling theory the interaction
term in the Lagrangian density is

Zr= iggysr, g f—,

renormalization. This has led some physicists to believe
that the interaction (1) is much more likely to be
correct than the interaction (2), although this point is
still in dispute. In any event, with the help of the
renormalization procedure calculations based on the
interaction (1) can be performed in an. unambiguous
manner, at least in perturbation theory. On the other
hand, if one wishes to go beyond the lowest order in
perturbation theory in calculating with the interaction
(2), one must introduce some sort of cutoff procedure
in order to get finite results.

In order to simplify the mathematical problem of
computing with these theories, use has frequently been
made of the so-called static approximation, in which all
sects of nucleon recoil and all effects due to pair
production are eliminated at the outset, so that the
nucleon is simply regarded as a source of the meson
6eld. In the case of the pseudovector interaction (2)
this leads to a Hamiltonian,

H=tis+IIe+ (g/2m)e Vr„rf„(x),
and in the pseudovector coupling theory the inter-
action term is

Z, = —(sg/2vis)A, v„.(ay./a&„)y. (2)

Here nz is the nucleon mass, and g is the dimensionless

coupling constant, the value of which determines the
strength of the interaction. If the interactions are
written as in Eqs. (1) and (2), then in a certain very
approximate sense to be explained below, g in Eq. (1)
can be taken to be equivalent to g in Eq. (2). The
interaction (1) leads to a theory from which all di-

vergences can be removed by renormalization, while Eq.
(2) leads to a theory which is still divergent after
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for a problem with only one nucleon at the point x.
B~ is the Hamiltonian of the free meson field.

If one makes the static approximation to the pseudo-
scalar coupling theory, the entire interaction term goes
to zero. One can, however, perform a series of unitary
transformations on the Hamiltonian according to the
method of Foldy and Wouthuysen' to eliminate from
the Hamiltonian, to successive orders in 1/ns, terms in
which the "large" components of the field P are coupled
to the "small" components. The static approximation
is then obtained by carrying out the Foldy-Wouthuysen
transformation to order m only. To get any interaction
term at all for the pseudoscalar coupling theory, one
must carry out the transformation to order 1/m. Up

' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);
see also L. L. Foldy, Phys. Rev. 84, 168 (1951)and G. Wentsel,
Phys. Rev. 86, 802 (1952).
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to terms of order 1/m one finds

V'q
H=Hp+ fd'xPt(x)~ m — ~P(x)

2m)

+ td'zltt(x)o Vr y (x)P(x)
2m~

g+ ds+t(x)p '(x)p(x). (4)
2'~

Here the "small" components of P(x) have been
dropped, so that P(x) has two spin components. Ex-
amination of this Hamiltonian indicates that the uni-

tary transformation has eGectively made a non-rela-
tivistic approximation to the nucleon motion and at
the same time approximated by the last term in Eq. (4)
that part of the interaction in which one virtual pair
is produced. The third term in Eq. (4) is essentially
equivalent to the interaction term in Eq. (3). Note in
particular that the coupling constants have been chosen
in such a way that the coefficients of these two terms
are the same. In this sense only g from Eq. (1) and

g from Eq. (2) are equivalent. The Hamiltonian (4),
as it stands, contains a nuc1eon recoil term. This term
helps to make calculations based on Eq. (4) more
convergent than they otherwise would be, but the recoil
term does not provide enough convergence factors to
make a theory based on Eq. (4) Rnite after renormaliza-
tion. Furthermore, the cuto8 factors provided by the
recoil term in the Hamiltonian (4) are not like those
provided by the relativistic theory. For these reasons
we prefer to simplify Eq. (4) still further by ignoring
the nucleon recoil term. This gives us a Hamiltonian,

fourth order predicted by the complete relativistic
pseudoscalar coupling theory is given.

As will be seen, these two theories, while very similar
in second order in g, are quite different in fourth order.
In order to facilitate the analysis of the differences
between the two theories, it will be convenient to
develop some approximations to the full relativistic
theory which are less drastic than the Hamiltonian (5).
First we shall eliminate from the complete relativistic
theory all pair production phenomena. This gives us a
theory which is a relativistic generalization of the
theory studied by Chew, i.e., the Hamiltonian (3).
If we write the Hamiltonian of our theory as

H=Hp+Hr=Hp+Hp+Hr, (6)

where Hq and B~ are the Hamiltonians of the free
meson field and the free nucleon field respectively, and
Hg is the interaction Hamiltonian,

HI ig~fd'——xg(x)ypr Q (x)f(x),

then our problem is

(E—H p)% =Hi+.

Let 0'p„be a vector in Fock space' representing a
single nucleon with momentum p in spin state s and
isotopic spin state i. We introduce the wave function,

Note that 4'„(p) is still a state vector with respect to
the meson occupation numbers. Ke now take the scalar
product of Eq. (8) with 4'p„. Ignoring completely the
production of pairs, we get

H=nl+Hp+ e V'r @,(x)+ P '(x).28$2m
One must of course use a cuto8 in calculating with either
Eq. (3) or (5). The interaction term in Eq. (3) couples
only I' state mesons with the nucleon. The interaction
term (g'/2m)P '(x) in Eq. (5) couples only S state
mesons with the nucleon.

One of the objectives of this paper is a comparison
of the full relativistic pseudoscalar coupling theory,
the interaction term of which is given in Eq. (1), and
the approximation to the full relativistic theory em-
bodied in Eq. (5). This comparison is made by calcu-
lating the low-energy meson nucleon scattering to
fourth order in the coupling constant for the full rela-
tivistic theory and comparing with the calculations of
the fourth order scattering for the Hamiltonian (3)
already published by Blair and Chew. ' The results of
Blair and Chew to fourth order and the S state scatter-
ing to fourth order as given by the Hamiltonian (5)
are reviewed in Sec. II. In Sec. III the scattering to

P J. S. Blair and G. F. Chew, Phys Rev. 90, 1065. (1953).

=P g(e,.;,H&e, , ; )e, ; (y'), (10)
e'2 p'

where' Ep= (p'+trP)
'

and we use discrete normalization
in momentum space. It is not difFicu1t to work out the
matrix element (%'p„,Hpl p, , ), and if this is done one:
gets, in matrix notation for the spin and isotopic spin
indexes,

1
(E—E —H )y(y)= —,Z sgV (p y')

V: p'

Here U is the normalization volume and

Vs(y, y') =
(»p-p )'

(E +rip)e y —(E +vs)o y'

2LEpEp (Ep+m) (Ep +nz) jl
s V. Fock, Z. Physik 75, 622 (1932).
4 We use always units such that A=c= 1.
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where coy= (y'+/t')&, p being the meson mass. Except
for the factor (2tpp p.)&, v5(y, y') is the matrix element
of the Dirac matrix ps between two positive energy
nucleon states. ap p, and a~„„, are destruction and
creation operators for mesons. If we neglect recoil in
Eq. (12), we find

v~(y, y') ~—
(2~P-p ')'

~ (y—y')
(13)

With this approximation for vt (y, y ) Eq. (11) is
identical with the corresponding Schrodinger equation
derived from Eq. (3). Equation (11) is just the rela-
tivistic generalization of Chew's theory or the P state
scattering part of the Hamiltonian (5).

Ke can also find a relativistic generalization of the S
state scattering term in the Hamiltonian (5). To do
this we take account only of the production of one pair
at a time. We introduce in addition to +p„another
vector in Fock space describing one nucleon and one
pair. Let 4'ppj, p q$;p t represent a state with two
nucleons in states designated by p'rj and p"ql and an
antinucleon in a state designated by p"'tns. We now
take the scalar product of Eq. (8) with 4'„; and
+p'p j, p//q$; p"'t~. Taking account only of the production
of one pair at a time, we 6nd

(E IIP Ep)+—-(y)—=2 2
~qt jIIm p/ p// p///

(E +4 Ep' Ep" Ep"') (+p'r1 , p"al;p"'tmt+)'

=Q 2(+p'rj, p"pt;p'"tm &r+tp"e't')+ t'(yt'") ~ (15)
g/ / pgt/

Eliminating the one nucleon, one pair amplitude be-
tween Eqs. (14) and (15) we get

(E—Ep—&p)+.*(y)

=2 Z(y»l& I
y'""i')+"' (y*'), («)

s/a/ p»

where

(ysi l
Hr

l
y'"s'i')

(+p-»r+p"t, p"pt;p" t )
r, q, t p, l,m, p', p",p//

4

E—E —E"—E "—Hpp p p

X (0 p'rj, p''pt; p'"tmt+ryp' t'2) (17)

The matrix elements in Eq. (17) can be worked out
without great difficulty. As it stands (ysilP/ly"s'i')
contains terms which correspond to the formation of
closed loops, in Feynman language. We drop these

X (y patt+/'Itp't jp" l; pP,"'tna) (y p'rjp" ql; p'', 'tm)'y), (14)

and

E

terms. Then Eq. (16) becomes, in matrix notation, .

1 1
(E—Ep —Hp)y(y) =—P —P igvp'(y, y')

p/ tIt g p//

X gv& (y ~y ) 2 ( y"—p' ~+tt p' —p" ~)

vs'(y, y') =
(2(pp y )l

(Ep+ttt)(Ep+m)+tp yty y'
X . (19)

2l EPEP (Ep+ttt)(Ep +ttt))*'

Except for the factor (2rpp p)t, v&'(y, y') is the matrix
element of the Dirac matrix ys between a positive
energy nucleon state and a negative energy nucleon
state. If we drop all recoil terms in Eq. (19), we find

v~'(y, y') 1/(2~p-p )'.

If, in addition, we make the crude approximation,

8—E —E —E —Hp —+ —2mp p p

(20)

(21)

in the energy denominator in Eq. (18), we obtain an
equation which is precisely the same as what would be
obtained from the Hamiltonian (5) if only the pair term
in the interaction were kept. So the interaction term
of Eq. (18) is just the relativistic generalization of the
S state scattering part of the Hamiltonian (5). At this
point it becomes apparent that the factors Ep, Ep, etc.,
which appear in the denominators of vy(y, y') and
v, '(y, y') provide the cutoff which makes calculations
based on the interaction (1) 6nite after renormalization.
Since Ep begins to become appreciably larger than m
in the neighborhood of

l yl =ttt, the relativistic theory
is cut off in the neighborhood of

l yl =ttt. Thus insofar
as we wish to simulate the complete relativistic theory
by the simplified Hamiltonian (5), we should use a
cutoff of the order of ttt in calculating with Eq. (5). In
Sec. IV of this paper the differences between the fourth
order scattering in the complete relativistic theory and
the fourth order scattering according to the Hamil-
tonian (5) will be analyzed with the help of Eqs. (11)
and (18).

It is a well known fact that the coupling constant g
of meson theory is su%ciently large so that perturbation
theory, or the weak coupling approximation, cannot be
used in calculations which are intended to be compared
with experimental results. In view of this failure of
perturbation theory, a new method of calculation known

X
E—E —E —E —Hpp p p

X(&p-p-, -+~ p"-p, -) +(y'), (18)

where



H. W. WYLD, JR.
r

as the Tamm-Dancoff (TD) approximations has been
seriously investigated recently. The nature of this
approximation can be explained in various ways.
Dance, for example, takes the following point of
view. Let us write the true state vector of the meson-
nucleon system as a superposition of vectors in Pock
space referring to various numbers of particles in
various free-particle momentum states. For the meson-
nucleons scattering problem we can write

p&t p, k, t, cl

p, kl, k2, t, rx, P

Pl r P2& P3r &
&

&&)t

dc, &; X(pl&p2 j P3)pp» p&r;p»

fr, r;k;a(pl&psj psj k)
Pl&P2rP3&k& &&1~&~& X

X Pp, p;pA;k + ' ' ' (22)

(a) (b)

Cc)

FIG. 1. Second- and
fourth-order Feynman
diagrams for meson
nucleon scattering.

(e)

' S. M. DancoG, Phys. Rev. 78, 382 (1950);I. Tamm, J. Phys.
(U.S.S.R.) 9, 449 (1945); see also M. M. Levy, Phys. Rev. 88,
72 (1952).

Here +p, is a vector in Fock space describing a single
nucleon in a momentum state p and spin and isotopic
spin state ~; 0'p, ,-k describes a nucleon in state pc and
a meson in state kn; %'p„,p,„,p,q, lr describes two nu-
cleons in state p~~ and p2~, an antinucleon in state p3)L,

and a meson in state kn. The TD approximation con-
sists of keeping in this expansion of 0 only a certain
set of the simpler terms, the terms kept depending to
a certain extent on which processes one deems to be

important. Once this approximation has been made, an
attempt is made to solve to the remainder of the prob-
lem rigorously. The approximate expansion of 0' is
substituted into Schrodinger s equation, yielding a set
of integral equations for the amplitudes a, (p) b, (p; k),

~ . For the scattering problem the amplitudes other
than b, , (p; k) would be eliminated by substitution
from the integral equations to yield an integral equa-
tion for b, , (p,k).

In the case of the scattering problem the amplitudes
usually retained are those describing two, one, or no
mesons. Amplitudes referring to states with three or
more mesons are arbitrarily dropped. What is done
with the pair terms depends to a large extent on which
theory is used. For the static pseudovector coupling
theory, Eq. (3), there are no pairs. If a relativistic but
non-covariant approach, e.g. , Eq. (22), is used, one
might restrict oneself to terms obtainable from the one
meson, one nucleon state by a single action of the
interaction Hamiltonian (l). The TD approximation
can also be written out in covariant Feynman notation.
In this case one obtains equations of the form of the
Bethe-Salpeter' equation. If this is done, all of the pair
terms with the exception of the closed loops are taken
care of by a one nucleon amplitude, since the one nu-
cleon can go "backward in time. "

Proceeding from a certain point of view, we have
dined the TD approximation mathematically. Let us
now see what physical significance we can attach to
this point of view. Keeping only those terms involving
two or fewer mesons in the 6eld at a time will evidently
be a good approximation if processes involving the
emission of more than two virtual mesons are strongly
inhibited. We have a qualitative reason for supposing
that this might actually be the case. Terms associated
with the emission of many virtual mesons will neces-
sarily involve large energy denominators, which will
tend to make the contributions from these terms smaller
than the contributions from those terms involving the
emission of only one or two virtual mesons. More
physically, a'ccording to the Heisenberg uncertainty
relation for time and energy, the system will spend
only short periods of time in those states involving
many virtual mesons.

Let us now consider the meson-nucleon scattering
problem and compare the TD method with a straight-
forward perturbation theory approach. In Fig. 1 the
second and fourth order Feynman diagrams for meson-
nucleon scattering are enumerated, It is apparent that
the approximation of keeping only terms referring to
states with two or fewer mesons in the held will include
both second order diagrams and all iterations and cross
iterations of them, so that diagrams (c), (d), (e), (f)
will be included. Diagrams (g), (b), (i), (j), however,
will not be included, because they involve three mesons
at a time in the field. Note that some of the energy

' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
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denominators in diagrams (c), (d), (s), (f) may vanish
for certain values of the momenta of the virtual mesons,
whereas for diagrams (g), (k), (i), (j) the energy de-
nominators are always at least as large as p, , the meson
mass. One can hope to test the validity of the TD
approximation according to the ideas we have de-
veloped simply by calculating the contributions to the
fourth order scattering from diagrams (g), (k), (i), (j)
and comparing with the contributions from diagrams
(c), (d), (e), (f). If the contributions of diagrams (g),
(k), (s), (j) should turn out to be small compared to the
contributions of diagrams (c), (d), (e), (f), one would
have some confidence in the validity of the TD method.
Blair and Chew' have attempted to justify the use of
the TD approximation for the static pseudovector
coupling theory on the basis of the sort of argument
outlined here. The results of the calculations of the
fourth order scattering in the relativistic pseudoscalar
coupling theory, given in Sec. III of this paper, show
very definitely that this sort of argument cannot be
used to justify the use of the TD method for the pseudo-
scalar coupling theory.

The TD method can also be considered from a some-
what different point of view. We shall explain this new
point of view in terms of the relativistic TD or Bethe-
Salpeter approximation. We consider only the meson
nucleon scattering problem. The treatment of the
meson-nucleon scattering problem in terms of covariant
integral equations was first considered by Gell-Mann
and Goldberger~ and has recently been discussed in
detail by Levy. ' All conceivable Feynman diagrams for
meson-nucleon scattering can be divided into two
classes. In class one are all diagrams in which the in-
coming nucleon line appears completely bare of virtual
or real mesons at some point in the middle of the dia-
gram. Diagrams (a), (c), (d), (e), of Fig. 1 are diagrams
of this class. In class two are all other scattering dia-
grams. All diagrams of class one are represented in the
contribution,

S,=igF, (P—k', P)r S '(P)igI', (P, P k)rp, (23)—

to the S matrix. Here k, k' are the initial and final
meson four-momenta, and I' is the total four-momen-
tum of the system. F5 is the modified vertex operator,
and S~' is the modified nucleon propagation function.
Note that S& contributes to the scattering only for
states in which both the isotopic spin and the angular
momentum are 1/2. The second class of Feynman dia-
grams describing scattering can be generated by an
integral equation of the form,

f (k) =P,(k)+Dp'(k')Sp'(P —k)

X Q d4qG p(k, q)Pp(q). (24)
(2m)4 e

' M. Gell-Mann and M. L. Goldberger (unpublished).
s M. M. Levy, Phys. Rev. 94, 460 (1954).

@;(k) in Eq. (24) represents the incoming plane wave.
Dp' is the modified meson propagation function. The
kernel G p(k, q) contains a term for each Feynman dia-
gram of class two which is not itself the iteration or
cross iteration of simpler diagrams of class two. The
iteration of simple scattering diagrams is taken care of
by the integral Eq. (24) itself. In terms of the solution
of Eq. (24), a matrix element of that part of the S
matrix coming from diagrams of class two is given by

(Ss)r;—— d'O'P. g (k')s(p'+ ks)

X(iv (P—k')+m]p (k'), (25)

where P ~(k') is the final plane wave state.
All of the diagrams contributing to G s(k, q) can be

generated from irreducible scattering diagrams by sub-
stituting for the bare nucleon and meson 1ines and
simple vertices the complete nucleon and meson self
energy parts and the complete vertex parts. The same
division of effects can of course be made in the terms of
G ~(k,q) themselves, so that the operators S~', Dp' and
I's can be clearly separated out in G s(k, q). Renormali-
zation of these equations is now an easy matter, at
least symbolically. One simply replaces Sp', Dp', and I'5,
wherever they occur in Eqs. (24) and (25), by the
renormalized propagation functions and vertex opera-
tors and at the same time changes the coupling con-
stant g to the renormalized coupling constant. The
division of diagrams into two classes is necessary if the
equations are to be renormalized in a simple fashion.

G p(k, q) is known only as a power series in g. To
second order in g we have

G p(k, q) =igysrp — igysr, (26)
iy (P—k —. q)+m

corresponding to the second order diagram (b) of
Fig. 1. The fourth order corrections to G,p(k, q) are
represented by the fourth order diagrams (g), (k), (i),
(j). Now, Eq. (24) is a sort of Schrodinger equation in
momentum space for the wave function P (k), and
G p(k, q) is the potential energy of this Schrodinger
equation. It is a complicated energy- and momentum-
dependent potential energy, but still, in a formal way
at least, it can be thought of as a potential energy. It
is not dificult to see that the TD approximation essen-
tially amounts to cutting off the power series develop-
ment of G s(k, q) at some arbitrary power of g. This
definition of the TD approximation is not quite identical
with the definition previously given. But certainly the
spirit of the two approximations is the same. From this
point of view we see that the TD approximation will be
a good approximation when the coupling constant is suf-
ficiently small so that only the first term in Eq. (26) of
the power series development of G s(k, q) need be kept.
Weak-coupling theory will be a valid approximation
when g is sufFiciently smaller still so that the potential
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where

8ii =—4y(1—4D —2h+),

8&p=8pi ———y(1—6 +6+),

8» ——2y(1+26 +6+),

(27)

1 (g I (&11
6n. &4pr) Em) m&p ppp' pp, +p

(28)

We shall always use the notation 6~~ for S-wave phase
shifts and 821, 2g for P-wave phase shifts, I and J being
the isotopic spin and angular momentum respectively.
Here we have restricted ourselves to very low energies
and expanded the phase shifts in powers of the mo-

mentum k, keeping only the lowest order term. E is the
cutoff momentum. We indicated in the Introduction
that we should take E=m if we wish to regard the
Hamiltonian (3) as an approximation to the P-state
scattering part of the pseudoscalar coupling theory.
Actually, the calculations of Sec. IV will indicate that

G e(k, i7) can be treated in Born approximation. A test
of the validity of the TD approximation according to
this point of view would be quite complicated. The
fourth order potential would have to be calculated and
compared with the second order potential in Eq. (26) for
the whole range of the variables k and q, g being taken as
whatever value was found necessary to B.t the experi-
mental data. To carry out this calculation completely
would be an extremely laborious job. In this paper the
fourth order scattering has been computed only for
very low energies, where the S-wave phase shifts vary
as the 6.rst power of the momentum and the P-wave

phase shifts as the third power of the momentum.
These calculations will enable us to compare the zero-

energy matrix element of the fourth order potential
with the zero-energy matrix element of the second order
potential. This is done for Chew's theory in Sec. II and
for the relativistic pseudoscalar coupling theory in

Sec. III.
II. CHEW'S THEORY

Recently, Chew has investigated in great detail the
predictions of a theory based on the Hamiltonian (3).
We shall be interested in Chew's results for the scatter-
ing problem as an approximation to the P-wave scatter-
ing of the relativistic pseudoscalar coupling theory. It
must be emphasized that Chew has never considered

his theory as an approximation to the relativistic
theory. He regards his theory as an independent non-

relativistic form of meson theory. For the sake of con-

venience, however, we shall often refer to Chew's

theory as an approximation to the relativistic theory in
this paper. Blair and Chew' have calculated the second
and fourth order scattering with the Hamiltonian (3).
They 6nd for the phase shifts

the effective value of E is somewhat smaller than m.
For future reference the contributions to the phase
shifts from the various fourth order diagrams for the
case E=m have been evaluated numerically and are
given in Table I.

The integral 6 comes from the TD diagrams (c),
(d), (e), (f) in Fig. 1.6+ comes from the diagrams which
are ignored in the TD approximation, (g), (h), (i), (j).
Because of the vanishing energy denominator in 6, 6
is always larger than 6+. How much larger it is depends
on the cutoG E. As E increases, the signi6cance of the
vanishing denominator in 6 decreases, and 6 ap-
proaches 6+. For E=m, p/m=0. 147, we find

6+/6 =0.54, E=m. (29)

If the cutoff E is decreased, 6+/6 decreases. For
E=p we find

6+/5 =0.11, E=IJ,.

Note also that to lowest, order in p/m for E=m,
(30)

(31)

(32)

The first term in the curly bracket here comes from
the pair term in Eq. (5). The last term is a charge
renormalization term, which must be put in if the

Thus the diGerence between 6+ and 6 is a p,)'m cor-
rection, a large one, however, according to Eq. (29).
For small cutoG then, X&m, the TD approximation
can be justified for the Hamiltonian (3) simply on the
basis that the contribution of the TD terms to the
fourth order scattering is considerably larger than the
contribution of the terms ignored in the TD method.
Precisely this argument has been used by Blair and
Chew, who at the time their paper was written were
investigating the Hamiltonian (3) with a small cutoff.
For E=m this sort of argument is considerably weaker
as can be seen from Eq. (29).

Consider now the Hamiltonian (5), which is supposed
to be a rough approximation to the complete relativistic
pseudoscalar coupling theory. This Hami1tonian con-
tains, in addition to the terms of the static pseudovector
coupling theory, a new term, which gives rise to S-wave
scattering. Examination of the diagrams involved shows
that to fourth order in g the pair term in Eq. (5) con-
tributes nothing to the P-state scattering, so that the
P-state scattering due to the 3amiltonian (5) is
identical with that in Chew s theory, as given in Eqs.
(27) and Table I. The S wave scattering to fourth order
with the Hamiltonian (5) turns out to be
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TABLE I. Fourth order phase shifts in Chew's theory with E=m. The letters in the erst column
refer to the diagrams in Fig. 1.

(c)
(d) = (e)

U)
(c)

(&)= (&)

(J)

1/7r (gs/4m)' (»4/1n) s (k/p, )'

0.58—0.064
0.0072
0.034—0.0038
0.096

1/~ (gs/47r)'(p, /m) s (k/»t) '

0.0288—0.068
0.0076
0.038

1/~(g'/4~)'(» /m) s(k/» )'

0.0288—0.068
0.0076
0.038

Bss

1/8 (g'/47r)'(p/77S) '(k/»4) '

0.115
0.136—0.0152
0.015

coupling constant g of Eq. (32) is to be the same as the
coupling constant used by Chew in Eqs. (27). If we
evaluate the integral only to lowest order in p/222, we
find for K=m,

(g''t ff 't (&l 4 g'

(4~) &222) &12& 3~4'
(33)

We can also test the TD method for Chew's theory
according to point of view that the TD method repre-
sents an expansion of the potential energy in powers
of g. To do this we simply find the ratio of the sum of
the contributions of the diagrams (g), (k), (i), (j) of
Fig. 1 to the contribution of diagram (b) in the formulas
(27). The contribution of diagram (b) to Stt is y/2, so
we find for the ratios of the matrix elements of the
fourth order potentials to the second order potentials
the values,

Recent indications are that g2/42r is of the order of 10.
Using this value we 6nd 6+=0.043 for E=m. With
this value of 6+, Eq. (34) tells us that the fourth order
potential is small compared to the second order poten-
tial for the states (13), (31), and (33). For the (11)
state the fourth order potential is not very small

compared to the second order potential. ' Note that the
figures given here are for zero energy only. As the
energy increases 6+ increases according to the formula

1 t'g2) (orsq 1 r.xq'dq 1
~.(&)=—

I

—
II

—
I

— (»a)
62r &42r) (222) 222~2 cs,s (v,+(os

There is one more point worth mentioning in con-
nection with the non-relativistic Hamiltonian (5) .
Examination of Eqs. (27), (31), and (33) shows that
for S states the ratio of the fourth order contributions
to the second order contributions is of order gs/42r,

~ It should be noted that if we were to count the sum of the con-
tributions of diagrams (a) and (b) as the second order potential,
we would get (V4/Vs)u= —2n+ instead of the value given in
Eq. (34).

(V4q t'V4q (V4q
I
—

I =16~+, I
—

I
=I —

I
=~+,

(V2I 11 ( V2) 13 (V2) 21

rV&
I

—
I

=4~+. (34)

while for I' states it is of order (g2/42r)(l2/222). This
might lead one to hope that for P-wave scattering there
is an effective coupling constant, i.e., that the expansion
parameter of perturbation theory is eGectively (g2/42r)

(12/222) rather than g2/42r. Actually this is not the case.
The factor p/222 appears only once, in going from second
order to fourth order. Except for certain special cases,
the ratio of a sixth order contribution to a fourth order
contribution is gs/42r rather than (g2/42r)(p/222). The
situation is best described by saying that the second
order contributions to the phase shifts are anomalously
large by one power of 2N/)2. This has the interesting
consequence that for very small p/ns perturbation
theory would become valid at low energies, all of the
radiative corrections becoming small compared to the
contributions of diagrams (u) and (b). These remarks
also have some bearing on our test of the validity of the
TD method according to the idea that this method
represents an expansion of the potential energy as a
power series in g. The anomalous factor p/ns, which
appears in the ratio of the fourth order scattering to the
second order scattering, also appears in 6+, which deter-
mines the ratio of the fourth and second order poten-
tials according to Eq. (34). This factor will not appear,
however, in the ratio of the sixth order potential to the
fourth order potential. So the rate of convergence of
the potential series which one would estimate from
Eq. (34) is entirely false. Note also that, according to
Eq. (28a), the factor l2/n in 6+ disappears as the
energy increases.

It is not dificult to show that for low energies the
radiative corrections are smaller by one power of 72/ns

than the contributions of the diagrams (a) and (b) of
Fig. 1. Consider 6rst the set of diagrams which we called
class one diagrams in the Introduction. The contribu-
tion of these diagrams to the transition or reaction
matrices is given in Chew's theory by an equation of
the same form as Eq. (23). For these diagrams our
theorem follows directly from the general theory of
renormalization developed by Chew for his theory. '
Chew has renormalized the nucleon propagation func-
tions and vertex operators in such a way that for zero-

energy scattering the contributions from all the radia-
tive corrections in Eq. (23) are smaller by one power

'2 G. F. Chew, Phys. Rev. 94, 1748 (1954).
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of )a/m than the contribution of the irreducible diagram

(a). Note, however, that, except for certain special

cases, the higher order radiative corrections are not
smaller by successive powers of (g'/4m)(p/m). The
factor p/m comes in only once in going from second
order to fourth order. In considering the diagrams of
class two, one cannot prove anything from the re-
normalization procedure alone. However, the de-

pendence on m of the integral representing an arbitrary
eth order radiative correction of class two can be ascer-
tained simply by counting the powers of the integration
variables in the numerator and denominator of the
integrand and using the fact that the cuto8 is of order
m. One concludes in this way that for zero energy scat-
tering all of the radiative corrections of class two are
smaller by one power of )a/m than the contribution of
the second order diagram (b) of Fig. 1. This happens

simply because for the second order diagram the energy
denominator has the value p, while for the higher order
diagrams the energy denominators depend on momenta
which are integrated over up to a value of the order of
m for cutoff E=m. For the 5-wave scattering this is
not the case, because the energy denominator for the
second order scattering is 2m, because of the formation
of the pair.

III. THE RELATIVISTIC PSEUDOSCALAR
COUPI ING THEORY

In an attempt to understand something about the
nature of the complete relativistic pseudoscalar coupling
theory and the possible validity of the Tamm-Danco6'
approximation as applied to it, the low-energy 5- and
P-wave phase shifts have been calculated rigorously to
fourth order in this theory using the Feynman Dysoo
techniques" and the renormalization theory developed

by Dyson, %ard, " et al. The interaction term in this
theory is given by Eq. (1).

The phase shift for the state of total angular mo-
mentum J, parity (—1)~+«, and isotopic spin I at
momentum k in the center-of-mass system is given by
the formula

for a spin 1/2 particle:

«t'z, m, (—1) ~ (k)

n—k+pm+E), fJ+m) «()
«(k)

[2E,(E,+m)]-: ~ ZJ ) '
0

.0.
ep&

(J—my
'* 1

+ [ [ I, ;-+-:(k)E2J) *
0

«|'z, m, (—r) ~'«(k)
.Og .

—n k+Pm+E), J+1—m '* 0
,m—«(k)

[2E),(Es+m)]«2 (J'+1)

.Og

0

JJ= —n k+Pm. (37)

The minus sign comes in because we have regarded k
as the meson momentum in the center-of-mass system.
After integration over the angles of k and k' in Eq.
(35) we set [k[ = [k'[ = k. 5 is the S matrix calculated
according to the Feynman-Dyson methods with meson
propagation function,

Dp (k') = 1/i (ps+ Is')

nucleon propagation function

5s (p) =1/(iy p+m),

and interaction operator

(3g)

(39)

J+1+m '*

I'g+*, +«(k) . (36)
2(J+1) 0

0. .
These are eigenfunctions of J' and J, and positive-
energy eigenfunctions of the Dirac Hamiltonian,

exp[2i8r, z, ( a) "«(&)$—1
Ig+5 T rx. (40)

2i-

XQ I, n)p J, m, (—1) + (k )p~)pJ, m, (—1) (k)4'I, n (35)

Here ()«r, „is the isotopic spin function for total isotopic
spin I and s component )s; and the )P~, , ( ))~+«are the
normalized relativistic angular momentum functions

"R.P. Feynman, Phys. Rev. 76, 749 (1949)and 76, 769 (1949);
F. J. Dyson, Phys. Rev. 75, 486 (1949) and 75, 1'736 (1949)."F.J. Dyson, Phys. Rev. 75, 1736 (1949);J. C. Ward, Phys.
Rev. 84, 897 (2931).

In order to calculate diagrams (c) and (g) of Fig. 1,
one must first find the renormalized nucleon propaga-
tion function to second order. This has been done by
Brueckner, Gell-Mann, and Goldberger. "The result of
their calculation is that to second order in g the re-
normalized propagation function is

5'~.'(p) = +. Z.(p) . —, (41)
z'7'p+m zy'p+m 1'y'p+m

"Srueckner, Gell-Mann, and Goldberger, Phys. Rev. 90, 476
(1933).
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where

3g2
plQ, (p)= dx ((iy p+m)(1 —x)+mx}

16m'~ (}

where

A(x,y) =li'(1—x)+m'x+P'xy(1 —x)

+P"x(1—x) (1—y)+ (P—P')' x'y(1 —y).

r, (p,p') =&,+y, (p,p ) (43)

On grounds of covariance Vs(p, p') can be written in
the form'4

I' (PP )=P{p' P' P P)7 +G(P' P' O'P)i&'P&

+&(O' P" P P')»&~ P'

+K(O' P" P P')&v Pv«v P' (44)

Ke renormalize by taking

I' s.(P P') =vs+ I's(p P')

-I'.(P,p')
I =, , ', .=,', .—(45)

The symbol Fs(p,p')
l ~~, ;~.~, ;~.~. means

& (p,p')l „„,,=,;,„=P(. m', —m', ——m')~,

+G( m'& —m—', —m')( —m)ys+H( —m', —m', m')—
Xys( m)+K—( m', ——m', —ms)( —m)7s( —m). {46)

Note carefully that iy p is commuted through to the
left of ys and iy p' to the right of ps before they are
evaluated at (—m)."By using this procedure the re-
normalized vertex operator given below was calculated:

g2 pi piI', (P,P')=y+ y dx ' xdy {„'(1—)
16~

+m'(1+x) iy Pip p—'(1 . x)+m( —iy p+iy—p')}

p'(1 —x)
X

A(x,y) m'x'+y, '(1—x)
A(x,y)—2 log —, (47)

m'x'+ii'(1 —x)
"The invariance of the theory with respect to charge conjuga-

tion implies that F(P', P", P P')=F(P", P', P' P), K(P', P's, P P')
=K(p' p p' p), G('p p' p p')=&(p' 'p p"p). ~vie will not
need these relations for our purposes, however.

'~ This is the same renormalization prescription as used by
N. Kroll and M. Rnderman, Phys. Rev. 93, 233 (1934).

p'x(1 —x)+m'x+li'(1 —x)
X»g

m'x'+ p,'(1—x)

2m'x'(1 —x)—
—(i~ P+m) (42)

m'x'+lr'{1 —x)

In order to calculate diagrams (d), (e), (Ir), (i), one
must renormalize the vertex operator to second order
in g. This has been done in the foHowing way: If p, p'
are the nucleon four-momenta to the left and right. of
the vertex, the vertex operator has the form

The renormalization procedure given by Eqs. (45)
and (46) is not the only possible one. It was chosen for
a definite reason. Brueckner, Gell-Mann, and Gold-
berger showed in their paper" that at low energies for
P~ states the second order correction in Eq. (41) is of
order (g'/4x) (p/m) times the unmodi6ed nucleon pro-
pagation function for terms of the form of Eq. (23).
For 5; states, on the other hand, the second order
correction in Eq. (41) is of order g'/4s times the un-
modified nucleon propagation function. For other states
the scattering due to terms of the form of Eq. (23)
vanishes. These statements can be generalized. It can
be shown by an argument similar to that to be given
below for the vertex operator that for I'g states all of
the radiative corrections in the complete renormalized
nucleon propagation function are smaller by one power
of p/m than the unmodified propagation function for
terms of the form of Eq. (23). The same situation ob-
tains for the vertex operator with the form of renormali-
zation defined by Eqs. (45) and (46). This is not difficult
to see in general. Suppose we consider the vertex opera-
tor I's, (P, P—k) of Eq. (23). Then P—k is a free
nucleon momentum, so that iy (P—k) = —m, (P—P)'

ms. For scatt—ering at zero energy, P=t0, 0, 0,
i(m+li) j in the center-of-mass system. At low energies
Eq. (36) gives for the S; and P~ wave functions:

0
4si(k) =

(4s.)& 0

.0.
0

rt k )s —q 1 0
4p;(k)=l — +

2m) (4s)& 1

0.

For the part of the S matrix in Eq. (23) the term in-
volving e k drops out on integration over the angles
of k to get a phase shift. Using these facts, we get for
the I'g state

I' s, (P, P—ir) ~ ys+F( (m+p)', —m'—, m(m+p—))ys

+G(—(m+p)', —m', —m(m+p))( —(m+p))y,
+H( (m+li)', —m', m—(m+li)—)ys( m)—
+K(—(m+p)', —m', m(m+li))—( (m+li))—

Xv (— ) —&.(P,P')l=. , ', =-, ', .=, (4&)

where the last term is given by Eq. (46). If we expand
Eq. (49) in powers of p/m, it becomes apparent that
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the correction term to y~ is of order (p/m)yn. For the
Sy state iy I'-+ m+p, instead of —(m+p), and the
correction term to y5 is of order y5. So the renormaliza-
tion procedure defined by Eqs. (45) and (46) is a good
one for P~ states in the sense that it tends to make the
radiative corrections small. Note that with the form
of renormalization used here the whole term Eq. (23)
reduces to lowest order in p/m to just the second order
contribution represented by diagram (a) of Fig. 1 for
P-state scattering. This is exactly the same situation
as we encountered in Chew's theory.

The phase shift calculations have been done only
for very low energies. Only the lowest order terms in
an expansion in powers of k have been kept, so that the
5-wave phase shifts vary as k and the P-wave phase
shifts as O'. We shall signify the contributions of various
diagrams by symbols such as 8»(a). Here the (a) refers
to diagram (a) in Fig. 1. Also we let +=p/m, the ratio
of the mass of the meson to the mass of the nucleon.
The second order phase shifts for diagram (a) are

g' n
bg(u) =-3—

4~ (1+a)(2+o.) 4p$
(50)

1 g' a'(4 —3n') (kq '
&»(&) =——

12 4~ (1+n)(2—n)' i@~

1 g~ n~(4 3n2) (k$ 8—

hsa(b) = --—
«(1+ )(2—)'~I &

(51)

4 g2 ~2 ($)8
~~(b) =

3 4s. (1++)(2—a)' E p,)

All other phase shifts vanish for diagram (a). For
diagram (b) we find

g' n (k)
s, (b) =—

4s. (1+n) (2—n) E p)

g'
83(b) = —2—

4~ (1+a.)(2—n) Ep)

0

b0
~ ~
C4

0
O

05

0

C4

CP

0

0
Q

0
~R

0

V

+M

0

c5

~ M

EI

0

Kl

4.

R
I

bD0

I

I

0bQ hQ0

j

I

bG0

j

I

bQ
O

I

bO0

I

b0

I

I

j
hQ0

j

I

bO0

j

I

ev

Cl

I

0

I

bg)0

I

j

hQ0

I

jW ~ j~

oo~j~~ f~Mjco~j&~jW

The fourth order phase shifts have been calculated
analytically also, but the formulas are much too long
to reproduce here. In Table II are given the lowest
order terms in an expansion in powers of p/m of the
analytical formulas. In Table III the formulas in Table
II have been evaluated numerically for 0.=0.147. In
Table IV the results of evaluating the complete analyti-
cal formulas for the phase shifts for 0,=0.147 are tabu-
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1 (g') ' (p ) (k)
~ "'=-I —

11
—

I I

—1(0.02+0.77),
~ 44~i Ensi &pi

—1(1.27—0.01),
1(g')'(» (&l

7r E4~] Emi Ep)

1(g')'(p ) '(k)'
~»"'=-I —

11 —11
—

1 (o 24o —o 753),
&~i L„i

1(g ) (Ii ~ (k)
11 —

11
—

1 (o.103—0.249),
~ (4m i (m) &pi

(52)

1(g & f~&'(&l'
~»"'=-I —

11 —11 —
1 (0.027—0.330),

~ ~4~& & m) Ep, i

1 fg ) (p) (0)'»"'=-1 —
11 —11 —

1 (o »8—0»».
x 44mi Em) &pi

lated. Comparison of Tables III and IV indicates that
for P states the approximation of expanding in powers
of p/m and keeping only the lowest order terms is a
very bad approximation. Note that the phase shifts

8»(g), 8»(g), 8»(h) =8»(i), and 8»(h) =8»(i) actually
change sign in going from Table III to Table IV. For
the 5 states the agreement between Tables III and IV
is considerably better. Observe that the phase shift
B»(d) =8ii(e) shows a somewhat anomalous behavior in
Table II, being smaller by one power of n than the
other phase shifts. An analysis of the diGerences be-
tween the results of the relativistic theory given in
Tables II, III, and IV and the results of Chew's theory
will be given in Sec. IV.

Examination of Tables II, III, and IV reveals a
number of interesting points with respect to the pos-
sible validity of the TD approximation applied to the
relativistic theory. Table II shows that for P states
the diagrams with three meson in the field at a time,
i.e., the diagrams which are not included in the TD
approximation, all contain to lowest order in n terms
varying as log(1/n). On the other hand, the TD
diagrams have no logarithmic terms to lowest order
in 0.. If n were very very small, the diagrams ignored
by the TD approximation would make much larger
contributions to the phase shifts than the diagrams
retained. Of course 0.=0.147 is not very small. Consider
then Table IV, which gives the rigourous results of the
pseudoscalar coupling theory with n=0.147. Except for
a few cases in the 5-state scattering, the terms ignored
by the TD approximation are as large as or larger than
the corresponding terms kept. If one adds up the figures
in the columns of Table IV to get the total fourth order
contributions to the phase shifts, one finds

1pg'q')kq
~i"'=-I —11 —1(—o 14+o o4),

ir E4si

a, & & =-1 —
11

—
I (1.72—0.20),

1p g' y'phd

ir (4ir) ( p,)
1(g'~' f»'

~»"' =-I —
1 I

—
1 (0.052 —0.247),

~&4~) &pi

1 / g' q'(ky '
~„«&=-1 —

11 —
1 (0.060—0.044),

~&4~) Ep&

(53)

~»"' =-I —11 —
1 (o 022—o o87),

~ 44gi Ep)

1(g2) 2 (I~ 3

a»&'& =-I —
11

—
1

(0.088+0.020),
~ (47r) (pi

where the same conventions are used as in Eq. (52).
Comparison of Eqs. (52) and (53) indicates that in-
creasing the value of n tends to make the three meson
terms less important, although the e6'ect is certainly
not as pronounced as in Chew's theory.

The situation with respect to the validity of the
TD method looks somewhat better if we examine this
approximation from the point of view that it represents
an expansion of the potential energy in powers of g.
The ratios of the zero-energy matrix elements of the
fourth and second order potentials can be easily calcu-
lated from Eqs. (50), (51), and (52), and we obtain,

In each case here the erst number in parentheses gives
the sum of the contributions from the TD diagrams,
and the second number gives the sum of the contribu-
tion from the three meson diagrams.

Xt is quite apparent from Eqs. (52) that one cannot
justify the use of the TD approximation in the pseudo-
scalar coupling theory by the sort of argument Chew
has used to justify the TD method for the static
pseudovector coupling theory with a small cuto8.
Comparison of Tables I and IV and Eqs. (27) and (52)
indicates that the three meson diagrams make a rela-
tively much larger contribution to the fourth order
phase shifts in the pseudoscalar coupling theory than
in the static pseudovector coupling theory, even when
a large cutoG E=m is used in the latter.

It will be recalled that in Chew's theory the TD
approximation could be regarded as a large p/m
approximation, i.e., an approximation which became
better and better as p/m= p/K increased. In order to
ascertain whether or not this was also the case for the
relativistic pseudoscalar coupling theory, the fourth
order phase shifts were computed for the relativistic
theory in the case a=IJ/tn= 1. We find
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for gs/4~= 10,
(V4/Vs) i= 5.2,

(V4/ Vs) s
——0.034,

(V4/Vs) ii = —4.2,"
(V4/Vs) si=0.73,

(V4/Vs) is ——0.91,

(U4/Us) ss ———0.14.

(54)

Comparison of these figures with Eqs. (34) indicates
that the ratios (V4/Vs) are larger for the relativistic
theory than they are for Chew's theory. Even so, the
figures given in Eqs. (54), taken by themselves, are
rather encouraging for the prospects of the TD method
for P-wave scattering, especially for the most important
state (33). However, it should be recalled that in
Chew's theory the ratios (V4/Vs) were increasing func-
tions of the energy, and this may well be the case for
the relativistic theory also. Moreover, as we shall show
below, the ratios of the sixth order potentials to the
fourth order potentials must be expected to be larger
than the ratios V4/Vs by one power of m/fi.

Comparison of Eqs. (50) and (51) with Table II
indicates that for P states the ratio of the fourth order
phase shifts to the second order phase shifts is of
order (g'/4m)()i/m) except for the log(1/n) terms. For
S states this ratio is of order g'/47r. The situation here
is almost identical with that in the non-relativistic
approximation to the pseudoscalar coupling theory
discussed in Sec. II. We have already proved quite
generally —see the discussion following Eq. (47)—that
for all class one diagrams, represented in Eq. (23), the
radiative corrections are smaller by one power of li/m
than the irreducible diagram (a) of Fig. 1. Actually,
according to Table II, the second order correction to
the vertex operator of diagrams (d) and (e) is a some-
what anomalous case in that it is smaller than the
primitive vertex operator ys by a factor (p/m)'. It is
not easy to see how to prove generally and rigorously a
corresponding theorem for the diagrams of class two,
although the fourth order results of Table II indicate
that among the diagrams of class two the radiative
corrections are smaller except for logarithmic factors
by one power of fi/m than the contribution of the second
order diagram (b) of Fig. 1. Just as for Chew's theory,
comparison of the second and fourth order results
might lead one to hope that the expansion parameter
of perturbation theory is (g'/4m)(p/m) rather gs/4ir
for. P states, i.e., that there is an effective coupling
constant (gs/4ir)(p/m). This point was checked by
calculating the sixth-order iteration of diagram (b)
of Fig. 1 to lowest order in fi/m for a P*, state. The

~ phase shift turned out to have the form

8=X(g'/4s) srrs(k/p)',

"If the sum of the contributions of diagrams (a) and (b) is
used to determine the second order potential energy instead of
just the contribution of diagram (b) alone, we find (U4/Us)ii=0.53, instead of the value given in Eq. (54).

where S was a nonvanishing number independent of n.
Comparison with Table II indicates that there is no
eGective coupling constant. It would seem that, just
as for the non-relativistic theory, the second order
diagrams make anomalously large contributions by
one power of m/)i for P-wave scattering at low energies.
These remarks have the same implications for our test
of the TD method according to the idea that this method
is an expansion of the potential in powers of g as they
did in the case of Chew's theory. The ratios in Kq.
(54) must be regarded as anomalously small by one
power of fi/m, since they contain the factor )J/nz which
appears only in going from second order to fourth order.

Gell-Mann and Goldberger" have proved an inter-
esting theorem in connection with the S-state scattering.
They have shown that to lowest order in expansion in
powers of fj/nz the low-energy S-state scattering is
isotopic spin independent to all orders in the coupling
constant g. That this is true to fourth order can be
seen from Eqs. (50), (51), and Table II. We find, to
lowest order in fi/m,

(a') (f ) t'&'l 5 a'

E4~j &~3 4&)
(55)

The effect on this theorem to fourth order in g of the
fi/m corrections can be determined from Eqs. (50), (51),
and Table IV. We find including the fi/m corrections

t'g') (p) ('k) 0.79 g'

E4~) &rm) &p& ~ 4n.

)g'q f')i~ fbi 1.26 g'
gs= —

I

—
II

—
II

—
I

o94-
&4 3&m&&„) 4

(56)

"M. Gell-Mann and M. I,. Goldberger (unpublished).

The ii/m corrections lead to a slight isotopic spin de-
pendence. However, to fourth order at least the fi/m
corrections are not anomalously large. Compare, for
example, the small ii/m corrections in going from Eq.
(55) to Eq. (56) with the large li/m corrections in going
from the P wave scattering in Table III to the P wave
scattering in Table IV. This would seem to indicate
that the theorem of Gell-Mann and Goldberger is a
meaningful theorem, which must be taken seriously
even though it has been proved only to lowest order in
fi/res. The indications are that the low-energy S-wave
scattering is approximately isotopic-spin-independent.
Gell-Mann and Goldberger's theorem is proved by
balancing the contribution of a given diagram in which
the incoming and outgoing meson lines are not crossed
against the contribution of the corresponding diagram
in which the external meson lines are crossed. Referring
to Table II, we see that diagrams (c) and (g) taken
together give an isotopic-spin-independent contribu-
tion, and similarly for diagrams (d) and (h), etc. If
the TD approximation is used, this isotopic spin inde-
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pendence of the theory will be destroyed. The total
contribution of all the TD diagrams in Table II, for
example, is not isotopic-spin-independent. Since the
indications are that the pseudoscalar coupling theory
gives an S-state scattering which is approximately
isotopic-spin-independent, while on the other hand the
TD approximation destroys this isotopic spin inde-
pendence, there would seem to be very little justification
for using this approximation to discuss the 5-state
scattering E.quations (52) and (54) also indicate that
there is little hope for the TD approximation in the
case of the 5-wave scattering.

IV. INTERPRETATION OF RESULTS

Since the Hamiltonian (5) was derived, using the
Foldy-Kouthuysen transformation, as an approxima-
tion to the Hamiltonian of the complete relativistic
pseudoscalar coupling theory, we would expect a priori
that the results of the calculations in Sec. II based on
the Hamiltonian (5) should bear a close relationship
to the results of the calculations in Sec. III based on
the complete relativistic theory. It will be the purpose
of this section to analyze, partially at least, the simi-
larities and differences between these two sets of
calculations. Some of the differences between these two
theories arise from complicated eRects of one sort or
another which appear as higher order p/m corrections
in the calculations based on the relativistic theory. It
is to be expected that many of these effects would not
appear in the calculations based on the Hamiltonian
(5), because this Hamiltonian was obtained by a Foldy-
Wouthuysen transformation carried out only to order
1/m. On the other hand, some higher order IJ/m cor-
rections, e.g., the difference between 6+ and 6, are
retained in the transformed Hamiltonian (5). We shall
concentrate on trying to understand the differences
between these two theories to lowest order in p/m.

Consider erst the 5-wave scattering. The results of
the relativistic theory are given in Eq. (55). The re-
sults of the non-relativistic theory are given in Kq.
(33). Comparing Eq. (55) with Eq. (33), we see that
to second order in g the phase shifts are identical and
that in fourth order they diGer only very slightly. Since
the coefhcient of the fourth order correction in Eq. (33)
depends on the precise value of the cutoG, this was to
be expected. The simplified Hamiltonian (5) evidently
gives a pretty fair approximation to the S-wave scatter-
ing to fourth order in the relativistic theory. In the
relativistic theory the only isotopic spin dependence
arises from p/m corrections. In the nonrelativistic
theory the isotopic spin dependence can arise only from
higher order terms in the Foldy-Wouthuysen trans-
formation than those we have kept.

The similarity between the two theories does not
extend to the P-wave scattering. Indeed, to second
order in g the two theories agree according to Eqs.
(2/), (50), and (51). However, comparison of Tables

II, III, IV with Table I indicates that there are drastic
difII'erences between the predictions of the two theories
with respect to the fourth order P-wave scattering. The
most obvious difference is the appearance of the log (1/n)
terms in Table II. According to Eq. (31) there are no
logarithm terms in Chew's theory to lowest order in
p/m. Also, all of the P-wave phase shifts due to diagram

(j) of Fig. 1. are negative in the relativistic theory,
whereas they are positive in Chew's theory. According
to Table II the log(1/n) terms determine the signs of
these phase shifts, so that if we can find the origion of
these logarithmic terms, we will presumably understand
the reason for the sign change in going from Chew's
theory to the relativistic theory. Note that all of the
logarithmic terms in Table II are independent of
whether the state involved is P~ or Pg as long as the
isotopic spin is the same. This suggests that the loga-
rithmic terms come from a spin independent recoil
eRect.

In an attempt to understand some of these eGects,
some calculations were made with Eqs. (11) and (18)
derived in the Introduction. It will be recalled that the
interaction terms of Eqs. (11) and (18) are relativistic
generalizations of the interaction terms e Vr P and
@ '/2m of the Hamiltonian (5). With the non-covariant
approach of Eqs. (11) and (18) it is easier to separate
the calculations into terms which have a simple physical
significance than with the Feynman-Dyson methods
used in Sec. III. The phase shift 5z„g, r (k) at momentum
k for the state with orbital angular momentum I., total
angular momentum J, and isotopic spin I is related to
an element of the reaction matrix E calculated from
Eqs. (11) or (18) by the formula

Xk*r, ~f*r. z „(k')&fz, g, ~(k)41, n, (57)

where the Pr„~, are non-relativistic angular momentum
functions.

Consider 6rst the relativistic generalization of Chew's
theory, Eq. (11). Recall that this theory was derived
from the complete relativistic theory with the single
approximation that all terms involving the production
of pairs were dropped. The S-wave scattering vanishes
in this theory in the approximation that we keep only
terms proportional to k in the S-wave phase shifts.
The second order P-wave phase shifts agree to lowest
order in p/m with those given by the relativistic theory
in Eqs. (50) and (51).The fourth order P-wave scatter-
ing has been calculated to lowest order in ii/m and is
given in Table V. For comparison purposes the results
of Chew's theory to lowest order in ii/m are also given
in Table V. Table V should be compared with Tables II
and III, which give the results of the complete rela-
tivistic theory, which includes the effects of pair pro-
duction, It will be observed that the los(1/a) terr@,s
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TABLE V. The top numbers in each row give the fourth order P-wave scattering calculated to lowest order in p/m from Eq. (11).The
bottom numbers in each row are the results of Chew's theory to lowest order in y/m for cutoff E=m.

(c)

~/ (g3/4 )S(~/~)3(~/~)3

0.422
0.563

j/~(g'/4~)'(P/2')'(&lp)' /g (gS/4&) S (+/fg) 3 (p/+) 3

&33

&/~ (a'/4~)'(p/~) 3(&/p)'

(d) = (e}
—0.030—0.063

(h)= (l)

0.0041
0.0069

0.047
0.063

—0.0033—0.0069

0.073
0.174

0.0164
0.028

—0.094—0.125

0.0067
0.014

0.029
0.070

0.012
0.028

—C.094—0.125

0.0067
0.014

0.033
0,070

0.048
0.111

0.188
0.250

—0.0134—0.028

0.013
0.028

have all disappeared in Table V. These terms are
associated with pair production in the relativistic
theory. Examination of Table V indicates that that
part of the relativistic theory left when pair production
phenomena are eliminated shows much the same be-
havior as Chew's theory except that the results of the
calculations based on Eq. (11) seem to be smaller
than the results of Chew's theory by a factor of the
order of 2. As explained below, this factor of 2 arises
from the differences in the cutoA procedures in the two
theories. There has been some speculation recently,
based on the results of a calculation of the S-wave
scattering in the non-relativistic theory (5) by Wentzel, is

that the terms in the relativistic theory involving pair
production may be highly damped by higher order
radiative corrections. If this should turn out to be true,
the results of Table V would indicate that the rela-
tivistic theory and Chew's theory should show much
the same behavior for the P-wave scattering calculated
so as to include the radiative corrections. It must be
emphasized, however, that the proposed damping of the
effects of pair production can only be speculated at
present, particularly in the case of P-wave scattering.

The vertex operator ps(p, p'), Eq. (12), of this theory
from which the pair e8ects have been eliminated does
not in general have quite the same form as the vertex
operator of Chew's theory. However, examination of
the cases which arise in calculating the low-energy
P-wave scattering in fourth order shows that for these
cases the vertex operator ys(p, p') reduces approxi-
mately to an operator which does have the same form
as Chew's vertex operator except for the presence of
momentum-dependent cutoff factors. It is the differ-
ences between the cuto6 procedures in the two cases
which give rise to the almost constant ratio between
the results of calculations based on Eq. (11) and the
results of Chew's theory as given in Table V. If a cutoff

"G.Wentzel, Phys. Rev. 86, 802 (1952).

smaller than m were used in calculating with Chew's
theory, the results of his theory could be brought into
closer agreement with the calculations based on Eq.
(11).It is perhaps significant that Chew actually uses
a cutoff somewhat smaller than m in fitting his theory
to the experiments. "

The renormalization of the vertex operator and of
the nucleon propagation function which was necessary
in order to carry out the calculations reported in
Table V was done in almost exactly the same way as
Chew did the renormalization of his theory. "Only one

difhculty arises. On writing out Chew's renormalization
scheme for Eq. (11) it appears at first sight that the
self-mass and the renormalization constants Z~ and Z2
depend on the momenta. On closer examination it is
seen that these quantities are all given by divergent
integrals, the most divergent parts of which are inde-
pendent of the momenta. This is perhaps not very
satisfactory, but it is probably the best that can be
done in the way of renormalizing Eq. (11).

Ke have now come to the conclusion that the very
large differences between the low-energy P-wave scat-
tering in the relativistic pseudoscalar coupling theory
and in Chew's theory arise from the intrusion of eGects
due to the production of pairs. This situation is to be
contrasted with that in the non-relativistic theory based
on the Hamiltonian (5). There the pair term did not
enter at all in calculating the fourth-order P-wave
scattering. For illustrative purposes we shall now report
the results of some calculations with Eq. (18). It will
be recalled that the interaction term of Eq. (18) is a
relativistic generalization of the pair term P /2m of
the non-relativistic theory. In deriving Eq. (18) only
the effects due to the production of one pair at a time
were kept. No attempt was made to renormalize the
calculations based on Eq. (18), so only the results for
the finite diagrams will be reported in fourth order.

"G. F. Chew, Phys. Rev. 95, 285 (1954).



1676 H. W. WYLD, JR.

In second order the S-wave scattering calculated
from Eq. (11) agrees to lowest order in p/m with the
S-wave scattering calculated in the complete relativistic
theory, as given in Eqs. (50) and (51).The second order
P-wave phase shifts are smaller by one power of p/nz
than those calculated from Eq. (11). In fourth order,
however, the pair-forming part of the interaction con-
tributes to the P-wave scattering to the same order in

p/m as that part of the interaction in which no pairs
are formed. In Table VI will be found the results of
some fourth order phase shift calculations with Eq.
(18) for the finite diagrams. These calculations have
been done only to lowest order in p/m. The integrals
giving the contributions of diagram (l) in Fig. 2 were

very complicated, and only the coeKcients of the
log(1/n) terms were computed. A numerical term inde-
pendent of n must be added to the log(1/n) terms in
Table VI in order to get the whole contribution to
lowest order in p/m for diagram (l). Diagrams (nz) and

(n) in Fig. 2 represent a cross-product term between the
interaction terms of Eqs. (11) and (18). Comparison of
Tables V and VI shows that terms involving the pro-
duction of pairs make large contributions to the P-wave
scattering in fourth order and cannot be neglected
in a perturbation-theoretic calculation. Comparison of
Tables VI and II shows that the coeKcients of the
log(1/n) terms for diagram (f) in Table VI are the same
as the coefFicients of the log(1/n) terms for diagram (j)
in Table II. For the finite diagram (j) the log(1/n)
terms in the relativistic theory all come from that com-
ponent of the relativistic Feynman diagram (j) which

is represented by diagram (l) of Fig. 2.
If one writes down according to noncovariant methods

like those used in Eqs. (11) and (18) all the various
components which are collected together in the one
relativistic Feynman diagram (j), one can locate all of
the log (1/n) terms simply by investigating whether or
not the integrals diverge a's n —+ 0. An investigation of
this sort indicates that one can get a log(1/n) term
only from that component of diagram (j) which is
represented by diagram (f) of Fig. 2. Even in this term
the log(1/n) comes from a recoil effect. If the initial
and Anal mesons have momenta k, k' and the virtual

(n)

FIG. 2. Some scattering diagrams, the contributions of which
are given in Table VI. In this figure a nucleon line going backward
indict. t|;s the production of a pair,

meson has momentum q in diagram (l), the energy
denominator after the emission of the virtual meson is

~ k'
X 1+ + (58)

E,(E—E,—2p —(o,)

The term involving k k' in Eq. (58) leads to the log(1/n)
terms in the phase shifts. In diagram (k) of Fig. 2,
where the initial and 6nal meson lines are not crossed,
the k k' term of Eq. (58) is absent, and hence there are
no log(1/n) terms. Examination of the details of the
calculations shows that the virtual meson is emitted
and absorbed as an S-wave meson in the case of this
term which leads to the log(1/n) terms in the phase
shifts. Presumably the log(1/n) terms which appear in
the contributions from the fourth order diagrams which
must be renormalized arise from recoil eGects similar
to those which caused the appearance of the log(1/n)
terms in the finite diagram.

As one final point, note the excellent agreement be-
tween the S-wave scattering terms as far as they have
been calculated in Table VI and the corresponding
terms in Table II. Apparently the contributions to the
S-wave scattering of diagrams in which a second pair is
produced before the first pair is annihilated are quite
small. In other words, the contributions of the term
(P '/2m)', obtained when the Foldy-Wouthuysen trans-
formation is carried out to order 1/m', are negligibly
small.

V. CONCLUSIONS AND COMPARISON KITH
EXPERIMENT

In this section we want to summarize our arguments
and discuss the relation of our calculations to the ex-
periments on meson-nucleon scattering. When the
coupling constant g'/4~ is as large as 10, the results of a
perturbation theory calculation cannot be compared
directly with experiment. However, we can speculate
a little on what our fourth order results indicate about
the nature of a more complete calculation and how the
results of this more complete calculation might agree or
disagree with the experiments.

We consider first the S-wave scattering. We have
presented arguments in Sec. IV to the eGect that the
S-wave scattering in the complete relativistic pseudo-
scalar coupling theory is probably well approximated
by the non-relativistic approximation to the relativistic
theory obtained by performing the Foldy-Wouthuysen
transformation to order 1/nz only. In the non-relativistic
theory the S-wave scattering arises from a pair term

g '/2m in the Hamiltonian. A higher order term

(P '/2m)' in the Foldy-Wouthuysen transformed Hamil-
tonian seems to be negligible. The S-wave scattering in
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the non-relativistic theory is isotopic-spin-independent.
According to the arguments of Sec. III, this is probably
approximately true for the relativistic theory also.
Insofar as these arguments are valid, there is disagree-
ment between the theory and the experiments for S-
wave scattering. . Experimentally, at low energies 5& is
large and positive and b3 is very small and probably
negative according to the latest analysis. "The phase
shifts given by Wentzel's calculations' with the pair
term including the damping have about the right mag-
nitude, but the phase shifts are both negative and equal.
Furthermore, the energy dependence predicted by
Keg.tzel s calculations is in disagreement with the ex-
periments. It is conceivable that some queer effect due
to the p/m corrections in higher-order processes, per-
haps the meson-meson interaction, could lead to the
observed isotopic spin dependence, but there is no
indication of this to fourth order.

In any event the arguments given at the end of Sec.
III make it appear unlikely that the TD approximation
will be a useful one in discussing the S-wave scattering.

The situation for the P-wave scattering is somewhat
more complicated. The calculations of Secs. II and III
show that the nonrelativistic theory gives a very bad
approximation to the P-wave scattering of the rela-
tivistic theory in fourth order. One might be inclined
to infer from this that a rigorous calculation of the
P-wave scattering in the relativistic theory to all orders
in the coupling would show no relation to a correspond-
ing calculation in Chew's theory. However, we have
shown in Sec. IV that the differences between the rela-
tivistic theory and Chew's theory in fourth order arise
from the pair eGects which are present in the relativistic
theory. Kith a suitably chosen cutoff, Chew's theory
can be brought into quite good agreement with that
part of the relativistic theory left when the production
of pairs is eliminated. Now it may be, as we have men-
tioned before, that when the calculation is carried out
to all orders in g'/4m the effects due to the production
of pairs are highly damped. If this happens, Chew's

theory may give a reasonably good description of the
P-wave scattering in the relativistic theory.

As for the TD approximation, the calculations of
Sec. III indicate that this method is of somewhat
dubious validity as applied to the complete relativistic
theory. On the other hand, if the pair e8ects are damped
out by higher order processes, the relativistic theory is
reduced essentially to Chew's theory, for which the
TD method has a much greater chance of success. A
TD calculation in the relativistic theory including pair
effects might indeed show this damping of the pair
eGects if it exists.

Experimentally 8» is large and positive and may go
through 90' in the neighborhood of 200 Mev. The other

~ H. A. Bethe and F. de Hogan, 3fesoe Fields (Row, Peterson,
and Company, Evanston, to be published), Vol. II.
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8-wave phase shifts seem to be very small. "The fourth
order phase shifts in Chew s theory give some indica-
tion that this sort of behavior might be predicted by a
more complete calculation, the fourth order corrections
reinforcing the second order phase shift for 833 and de-
tracting from it for 8~~ and 8~3=83~. And, indeed, a TD
calculation by Chew" has succeeded in reproducing the
experimental phase shifts as far as they are known.
The results of the calculations for the relativistic theory
given in Eq. (52) are not nearly so encouraging. For
the relativistic theory the fourth order correction to 8»
is very very small. If we invoke the damping of the pair
effects again, the phase shifts in the relativistic theory

will reduce essentially to those given by Chew's theory,
and things will look more encouraging.

The chances both for the success of the TD method
as applied to the pseudoscalar coupling theory and for
the success of this theory in agreeing with experiment
would be considerably improved if it could be unam-
biguously shown that the sects due to pair production
are damped out by higher order radiative corrections.
Unfortunately, this has not been done as yet.

I would like to thank Dr. M. Gell-Mann and Dr.
M. L. Goldberger for suggesting to me some of the
problems treated in this paper and for much help
during the course of the investigation.
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A proof is given that the vector interaction of neutral vector mesons and fermions can be renormalized,
to replace a fallacious proof by Matthews. A new interaction representation, formally different from the
usual one, is used. The basic idea, not a new one, is that the objectionable part of the interaction can be
identified with a certain scalar meson interaction, known to be illusory.

1. INTRODUCTION
'

N general, vector and pseudovector meson theories
- - cannot be renormalized by present-day methods,
because derivatives of the 6 function in the free-field
commutation rules give rise to an unlimited number of
primitive divergent graphs in 5-matrix calculations.
One exception to this rule is the vector interaction of
neutral vector mesons with fermions. Matthews' has
given a fallacious proof for this, using the formulation
in the interaction representation of Miyamoto' and
Stiickelberg. 4

%e prove renormalizability by transforming to a
new interaction representation, formally diferent from
the usual one. The proof is based. essentially upon
identifying the objectionable part of the interaction
with a certain scalar meson interaction, which is known
to be illusory, and to this extent our work is simply a
refinement of that of Matthews.

The fallacy in Matthews' work lay in the mathe-
matical tools he used. He had previously proposed'
a generalization of the Tomonaga-Schwinger theory to
the Schrodinger representation,

' F. J. Dyson, Phys. Rev. 75, 1736 (1949).
s P. T. Matthews, Phys Rev. 76, 1254. (1949).
s Y. Miyamoto, Progr. Theoret. Phys. 3, 124 (1948).
4 E. C. G. Stiickelberg, Helv. Phys. Acta 11, 299 (1938).'P T. Matthew. s, Phys. Rev. 75, 1270 (1949).

starting from a generalized form of the Heisenberg 6eld
equations,

(1.2)

This generalization he assumed in his proof of re-
normalizability. However, it has been shown by the
author (in an unpubiished work) that Eq. (1.2) is not
integrable in cases of physical interest, and that a
direct transformation U[o) from the Heisenberg
representation to this generalized Schrodinger represen-
tation cannot be found, since it would be defined by

ih8U[o j/8o(x) = U/o. fH(x), (1.3).

(in the Heisenberg representation) which is not in-

tegrable either. Nor can an analogous transformation be
found from the interaction representation. Thus, even
if such a generalized formulation can be made in the
Schrodinger representation in a self-consistent way, it
cannot be equivalent to the usual theory.

2. STUCKELBERG'8 FORMULATION

Stuckelberg' has shown how to express the Proca 6eld
P„(x), with rest mass ks, in terms of a vector field

A„(x) and a scalar field C(x), using the Lagrangian,

1.= ', (A„,A„,+s'A„A„+—C-.C,+s'C')+l. ', (2.1)

where I.' describes any other fields, and their inter-
actions with the A„and C 6elds. C and the four com-
ponents A„are quantized in the usual way as inde-


