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and will therefore not appear in Eq. (3.10). If expression
(2.1) is used for the Coulomb scattering of the electrons
Eq. (3.10) becomes

s, J'(EOJO 5 E,Tﬂ,t) =9 (0)6 (r)"'i. j(E0>t0; Eat)
t Ey 0
+ dt'f dE’f d0'7r,-, 1(Eo,lo; E,,t,)
to E —0

X Lo (B ' 6")— 80" )m (E"¥') ]

Xp, AE, U E,r—0'(1—1"),0—0",1). (5.2)

This is also a generalization of Blatt’s equation! in
that it also treats the case of an incident photon (3=2).
It should be noted that for this case it yields an im-

A. CHARTRES AND H. MESSEL

mediate solution for p, ; in terms of the equivalent
expression for a primary electron.

It should be noted that ;1 may contain such proc-
esses as ionization loss, Compton effect, etc., and hence
(5.2) is valid for any energy range for which we have
the average numbers. It is obvious that this leads to a
simple recursion relation for the moments which greatly
simplifies previous work. See for instance Chartres and
Messel.?

One of us (B.A.C.) wishes to thank Commonwealth
Scientific and Industrial Research Organization for the
grant of a studentship.

8 B. A. Chartres and H. Messel, Proc. Phys. Soc. (London) A67,
158 (1954).
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Triple-scattering experiments may be used to get additional information about the spin-dependence of the
scattering matrix of the second scatterer. In general two new parameters describing the scattering may be
determined by means of two distinct experiments, one in which the successive scattering planes are parallel
and one in which the successive scattering planes are at right angles to each other. The relation between these
parameters and the scattering matrix is given for the cases of protons scattered from a spin-zero target and of
proton-proton scattering. For the former case the magnitude of the left-right asymmetry in the third scatter-
ing is calculated on the basis of a phenomenological model due to Fermi in the Born approximation. Further
experimental possibilities for p-p scattering are discussed.

1. GENERAL FORMULATION

ECENT successful experiments' on the double
scattering of high-energy protons make it of
interest to note that further information may be
obtained by means of triple-scattering experiments.
Such experiments would be designed to determine how
the second scatterer changes the direction and/or
magnitude of the polarization of the proton; thus, the
first scatterer serves simply as a polarizer and the final
scatterer as an analyzer.
To describe the geometry of a triple-scattering experi-
ment we first define for each scattering the unit vector

n
n= (kxk)/|kxk|, (1.1)

where k and k’ are unit vectors in the incident and
outgoing laboratory directions, respectively. The beam
incident on the second scatterer is polarized along the

bl

* Work supported in part by U. S. Atomic Energy Commission.

1 Oxley, Cartwright, and Rouvina, Phys. Rev. 93, 806 (1954);
Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis, Phys. Rev.
93, 1430 (1954); Marshall, Marshall, and Carvalho, Phys. Rev.
93, 1431 (1954); J. M. Dickson and D. C. Salter, Nature 173, 946
(1954) ; Kane, Stallwood, Sutton, Fields, and Fox, Phys. Rev. 95,
1694 (1954).

direction n;. For a given scattering angle 6, the second
scattering is completely defined by an azimuthal angle
¢, here defined by

COosS=Mn;"Ny sin¢=n1><n2-k2. (1.2)

In the third scattering a left-right asymmetry is
measured relative to a direction ns; since polarization
along the direction of motion cannot be detected, two
“settings” of the analyzer are sufficient; that is, two
directions for n;. Therefore we need only consider the
cases when n; is parallel to n, and when n; is along the
direction

S= n2><k2'. (13)

Thus the third scattering may be chosen to determine
either {o)2-nz or {¢)s-s, where (o) is the expectation
value of the spin vector after the second scattering; the
corresponding asymmetries in triple scattering will be
designated e3, and es,.2 The discussion throughout is
nonrelativistic.

2 The asymmetry es, (or e3,) is defined as [Is(4)—1. 3(—)]/
[Zs(+)+13(—)] where I3(=) refers to scattering such that n; is
parallel to ==n, (or =£s).
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It may be shown? that Is(s)» depends at most linearly
on (o)1, where I, is the differential scattering cross
section of the second scatterer and {¢); is the expecta-
tion value of the spin vector before the second scatter-
ing. Using this fact and noticing that (o), n, is a scalar
while (o);-s is a pseudoscalar, we determine the most
general dependence of these quantities on ks, ky/, and

(0‘)13
12<0'>2'n2= IU(P2+D<0'>1'112) (14&)
Iz<0>2‘ S=I()[A <0'>1 ‘k2+R<0>1 . (n2><k2)]. ) (14b)

Here P,, D, A, and R are arbitrary functions of kq-k2’,
that is, of the scattering angle 8; for convenience we
have factored out I, the differential cross section for an
unpolarized beam, which is a function of 6 alone.t If
the beam entering the second scatterer is unpolarized it
leaves with a polarization given by P., which is there-
fore just the familiar polarization function determined
in double-scattering experiments. For later purposes we
also write the expression for the undetectable component
of <0'>2:

12<0)2'k2,=10[A/<0'>1 ‘kg"f“‘R/((r)l' (Ilszg):l. (14C)

In the appendix it is shown that only three of the four
parameters 4, R, A’, and R’ are independent at any
angle 6.

Substituting Pin; for {(o); and recalling that

Iz=Io(1+P1P2 COS(p) (15)

as is well known from discussions of double scattering,
we find for the asymmetry in the triple-scattering
experiments:

esn=P3(Py+DP; cosp)/(1+P1P; cosp), (1.6)
e3:= P3P 1R sing/ (14 P,P; cosp), 1.7

where Pj; characterizes the third scatterer. Since {o);
must be perpendicular to the direction of motion, ks,
after a single scattering, the function 4 cannot be
determined in a triple-scattering experiment. (See Sec.
4.)

Thus there exist in general two new parameters D and
R that may be determined from two distinct triple-
scattering experiments. The first of these consists of
measuring es, with ¢ equal to 0 or 180°; this means that
all three scattering planes are parallel. For either value
of ¢, one can then determine D from Eq. (1.6), assuming
P3P,, P3Py, and PP, have been determined from
double-scattering experiments. Alternatively one can
use both values of ¢; assuming that the first scattering
is to the left, one then has four possible scattered

3L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).
This reference will be referred to hereafter as A. Equation (5) of
this reference shows in general the linear relation between the
expectation value of operators before and after collision.

4 We omit the subscript 2 on some of the scattering parameters
(such as D, A, R, I,, 6, ¢) where this will cause no ambiguity.
All, the scattering parameters, of course, may depend on the
energy. .
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intensities LL, LR, RL, and RR, where LR is the inten-
sity when second and third scatterings are to the left
and right, respectively, etc. Using Egs. (1.6) and (1.5)
and noting that es, is defined relative to n; we find that

LL+RL—LR—RR
" (LL+RL+LR+RR)P;P;

(1.8)

Use of this procedure eliminates the most obvious
intrinsic experimental asymmetry in the combination of
second and third scatterings and uses only one result
(P3P1) from a double-scattering experiment.

The parameter D may be considered as giving the
extent to which the second scattering depolarizes an
initially polarized beam. This may be seen by looking at
(o)2 for the case P; equals unity and cose equals =+=1;
from Egs. (1.4) and (1.5) we find

(@)2=ny(Py£D)/ (1 Py). (1.9)

It follows that a necessary and sufficient condition that
there be no depolarization of a beam initially completely
polarized normal to the scattering plane is that D equals
unity. Looking at Eq. (1.9) one notes that if D equals
P2, (o) has the same value as if the original beam were
unpolarized ; however, in general D may be less than
this so that D may not represent a depolarization but
actually a reversal of the initial spin. Equation (1.9)
together with the condition |{e)2|<1 yield the following
limits on D:

—1+42|P,| <DL, (1.10)

The second triple scattering experiment consists of
measuring ez, with ¢ around 3=90°. This means that the
successive scattering planes are at right angles. For
either value of ¢ the parameter R is determined from
Eq. (1.7) using the experimental value of P.P;. To
maximize e3, the second scattering actually should be
somewhat to the low cross-section side of ‘“up” or
“down” rather than at ¢=90°; from Eq. (1.7) this
maximum is given by

cosgp= — P P,. (1.11)

Considering once again the case P; equal to unity and
setting ¢ equal to 90°, we find from Egs. (1.4) and (1.5):

(0)2= P+ Rs+R'’ky’. (1.12)
It follows from Eq. (1.12) that
|R] <(1—-P2)4 (1.13)

2. SPIN-ZERO TARGET

If the target has zero spin and the incident particle is
completely polarized, the particle after scattering will
still be represented by a pure wave function and so will
still be completely polarized. From our previous dis-
cussion, therefore, D is equal to unity. We may also
give a physical picture of the parameter R for the case
¢=90°. From Eq. (1.12) we see that the original spin
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F16. 1. Directions of vectors in the scattering plane for ¢=90°.

vector n; is bent out of the scattering plane so that its
component along the normal n, is P, and therefore since
(o), must equal unity its projection in the plane has a
magnitude (1—P2*)?%. The projected vector o, (Fig. 1)
may be rotated by an angle B about the n, axis from the
direction n;. It follows that

R=(1—P2)} cos(6—p),

where O is the laboratory scattering angle.

The scattering amplitude may be written as a matrix
M operating on the initial spinor. An arbitrary matrix
may be written

(2.1)

M=g+a-h,
and invariance arguments® restrict us to the form
M=g(©)+0e-nk(6). (2.2b)

In this notation the unpolarized differential cross sec-
tion is clearly given by

To=lgl*+ ]2 (2.3)

while the left-right asymmetry in the single scattering
of a completely polarized beam is given by

P=2Re(g*n)/(|gl*+|2]?).

By applying Eq. (2.2b) to an arbitrary spinor, we find
that 8 in Eq. (2.1) is given by

sinB=2 Im(g*h)/I,(1— P?)?}
cosB= (|g|>— | A|»/Lo(1— PP

A few general features of 8 as a function of the scatter-
ing angle may be predicted. The relatively large values
of polarization P at certain angles show that the
absolute values of g and % are of the same order of
magnitude. Since % must contain a factor sin®, g(0) and
#(0) should behave quite differently as functions of 6,
and so these two curves might be expected to cross
somewhere near the angle of maximum polarization;
at smaller angles |g| is larger than | %|. If this is so, then
it follows from Eq. (2.5) that 8 increases in absolute
value as a function of O starting at 0 at 0° and passing
through £90° somewhere near the polarization maxi-
mum. For angles around the expected diffraction mini-
mum, B might exhibit some large variations with ©.
Further predictions can be made by employing a model

(2.2a)

(2.4)

(2.5)

5 L. Wolfenstein, Phys. Rev. 75, 1664 (1949).
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proposed by Fermi and others® consisting of a complex
potential supplemented by a real spin-orbit coupling
term. In the Born approximation one finds immediately :

sinf= (B/B.){P/(1- P}, (2.6)

where B and B, are proportional to the magnitudes of
the real and imaginary parts of the central potential,
and the result is independent of the form of the spin-
orbit coupling chosen. Values of 8 and the asymmetry
ess shown in Table I have been calculated by using
Egs. (1.7), (1.11), (2.1), and (2.6), the value of 27/16
for (B/B.) and the values for P;(6) given by Fermi, and
by assuming P;= P3=0.65. For comparison, values of
e3, from Eq. (1.6) (with D=1) obtained with the same
value of ¢ are also shown.

Although at each angle © the measurements of 7o, P,
and 8 are quite independent, the functions 74(0), P(0),
and B(0) must be interrelated. This is clear from the
possibility of a phase-shift analysis of the scattering. In
principle the (2L+1) complex phase shifts should be
determined by the (2L+-1) coefficients in Io(6), the 2L
coefficients’ in P(f), when these are expanded in powers
of cosf, and the total absorption cross section (including
inelastic scattering). In practice such a phase shift
analysis is hopeless for these cases, where many partial
waves are involved. Furthermore, as a matter of prin-
ciple, if L is the maximum orbital angular momentum to
be considered it is of doubtful validity to analyze terms
in the expansion of I,(f) much beyond the first (L+41)
terms since there may be significant contributions to the
remaining terms from the interference of partial waves
beyond the Lth with low-order partial waves. Therefore
it seems likely that determination of 8() would add
significant information about the scattering.®

TABLE I. Asymmetry es, in triple scattering for P;=P3=0.65
as a function of scattering angle 6 in the second scattering, ob-
tained by using Fermi’s theory. ¢ is chosen to maximize e3,. For
comparison, the value of e3, for the same value of ¢ is shown. The
value e, is the value of es, predicted by Fermi’s theory with a
change in sign of the spin-orbit interaction.

[ P2 B8 ] €3s e3n e’

5 0.4 47 105 0.25 0.16 0.21
10 0.51 90 109 0.06 0.21 —0.06
15 0.49 108 109 —0.02 0.20 —0.18
20 0.42 129 106 —0.11 0.17 —0.29
30 0.33 144 102 —0.14 0.13 —0.35

6 E. Fermi, Nuovo cimento 11, 407 (1954); W. Heckrotte and J.
Lepore, Phys. Rev. 94, 500 (1954); Snow, Sternheimer, and Yang,
Phys. Rev. 94, 1073 (1954); R. Sternheimer, Phys. Rev. 95, 588
(1954). Dr. Sternheimer has kindly communicated to me a few
calculations of 8 on the basis of the same model previously used to
calculate P. These calculations seem to bear out the general
remarks made above.

7 Theorem 3(b) of reference 5. For this discussion results are
expressed in terms of the c.m. angle @ rather than the lab angle 6.

8 This should be contrasted with the simpler case of protons of
1 to 4 Mev scattered from helium, C. L. Critchfield and D. C.
Dodder, Phys. Rev. 76, 602 (1949); M. Heusinkveld and G. Freier,
Phys. Rev. 85, 80 (1952). In this case the phase shifts are real and
only s and p waves need be considered ; then I, alone limited one to
two possible sets of phase shifts and the measurement of P resolved
this ambiguity.
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Even if the complex phase shifts could be determined
from I4(6) and P(6) it is likely the determination would
not be unique and measurements of 3(f) would help
resolve ambiguities. The most common and most inter-
esting ambiguity in analyses of this kind is the un-
certainty as to the sign of the spin-orbit coupling. In
the Born approximation the only effect of a change of
sign of the spin-orbit interaction is to reverse the sign of
£ and thus change both the sign of P and of 3. When
many partial waves are involved in a phase-shift
analysis, there should exist two very similar solutions
obtained from each other by exchanging the phase
shifts for J=1I4% and J=1—1, and these two will differ

-essentially only in the sign of P and of 8. While no
direct method seems to exist for determining the
absolute value of the sign of P, [L. Marshall and ]J.
Marshall have recently made a measurement of the
sign of P (private communication)] it is clear from Eq.
(2.1) that the triple scattering asymmetry es;; depends on
the sign of 8. Such a measurement may thus give a key
to the sign of the spin-orbit coupling. It must be noted
however that for a given scattering angle O it is impos-
sible to distinguish between a value 3; and a value (—g;
+20). In the last column of Table I values of e3, are
given, which are the values predicted by Fermi’s theory,
with a reversal of the sign of the spin-orbit coupling.

3. PROTON-PROTON SCATTERING

The scattering in the case of proton scattering from a
target with spin can again be described by a matrix of
the form (2.2a), but in this case g and h are operators in
the spin space of the target nucleus. The unpolarized
differential cross section is now expressed

To=Tr(gg'+h-h")/2(2s+1), 3.1)

where s is the spin of the target and Tr stands for the
trace of the matrix in the composite spin space of proton
plus target. P can be calculated from M° and is given by

Tr(¢h'+gth)-n
p Treh'+eh)

= ' (3.2)
Tr(gg'+h-ht)

The expectation value of the spin after the second
scattering!® may be found from Eq. (5) of 4:

Io)e={Tr(Me- (o) Mie)+Tr(MM'o)}/2(2s+1)
={Tr[(gg'—h-h"){o)
+i(g'h—gh") X (0)1+(0)1-hh'+hh'- (o) ]
4 PIon}/2(2s+1).

For the case of proton-proton scattering the most
general form of M is given by Eq. (9) of A with D=0,

3.3)

9 Equation (7a) of A. In some of the equations in the present
paper the obvious generalization to a target of spin s is made. In
place of the notation @; and 03, in the present paper @ and @; are
used.

10 This result Eq. (3.3) is the same as Eq. (15) of reference 5,
except that there the trace is omitted; it is essential to take the
trace when the scattering depends on the target spin.
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and this may be rewritten in the form:

M=BS+C(o+0:) -n+iG(o-Ko;- K+o-Po,-P)T
+3H(0-Ko;-K—o-Po;-P)T+No-no;-n7T, (3.4)

where K and P are unit vectors in the directions
(p’—p) and (p'+p), respectively, p’ and p are outgoing
and incident momenta in the c.m. system, and S and T
are singlet and triplet projection operators, respectively.
From parity considerations it follows that B and H are
even functions of cosf, G and N are odd functions, and
C is an even function times sinf. Comparing Eq. (3.4)
with Eq. (2.2a) we find the operators g and h and then
using Egs. (3.1) through (3.3) we obtain

Lo=3|B[*+2[C*+{|G—-N|?

+3 N[ +3[H|?, (3.52)

IoP=2 Re(C*N), (3.5b)

Iy(1—D)=1|G—N—B|*+|H|?, (3.5¢)
I\R=73 Re[ (G—N)*(N+H)+B*(N—H)]

Xcos(0/2)+Im[C*(G—N+B)]sin(6/2). (3.5d)

In finding the expression for R in terms of the c.m.
angle 0 we have used the fact that the vector s defined
in the lab system by Eq. (1.3) becomes the vector K in
the present case.

The value of D for 6=90° may be particularly re-
vealing; there is then no interference term in D and the
three possible terms B, C, and H give by themselves
values of D of 0, 1, and —1, respectively. Experiments!!
suggest a value of D at 90° of about 0.7, from which it
would follow that at least 70 percent of the 90° cross
section is due to the C term and at most 15 percent is

- due to the H term; thus at most 30 percent of the 90°

cross section could be caused by singlet scattering.
Further information on the singlet scattering at 90°
may be obtained from the value of R at 90° since this is
determined completely by singlet-triplet interference:
a nonzero value of R sets a lower limit on the singlet
scattering. If we take the value of D at 90° as 0.7 the
maximum possible absolute value of R is close to 0.5,
and if this were the actual value of R it would fix the
singlet scattering at about 30 percent. Of course there is
no simple converse conclusion from a zero value of R. It
may also be noted that D(f) may contain odd terms as
a function of cosé due to the contribution of singlet-
triplet interference so that a measurement of the triple
scattering asymmetry es, on both sides of 90° could
yield information on the singlet scattering at other
angles.

Once again we may ask the extent to which I, P, D,
and R are independent as functions of the scattering
angle 6. If we assume the phase shifts are real? and

1t Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis (private
communication). More recent results suggest a value of D around
0.5. It must be emphasized that these are preliminary results and
may be subject to large corrections. ’

12 The imaginary part of the phase shifts can be estimated from
the analysis of data on meson production.
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ignore the mixing of different partial waves due to
tensor forces there are then 2(Z+-1) real numbers to be
determined where L is the maximum orbital angular
momentum (assumed for convenience to be odd).
Since I(0) contains (L4 1) coefficients when expanded
in powers of cos® and P(§) contains L coefficients there
remains a one-parameter family of phase shifts fitting
this data.’® Thus D(f) or R(6) could reduce these
possibilities. Actually for the energies for which such a
phase-shift analysis is most feasible, a study of Coulomb
interference effects'* may be a simpler method for re-
ducing the possibilities. However, at higher energies
where Coulomb interference is hard to measure and the
number of partial waves increases the measurement of
D(0) and R(f) should be of real value in determining
the scattering matrix M.

4, FURTHER EXPERIMENTAL POSSIBILITIES

For the case of a spin-zero target the triple scattering
experiment coupled with the previously-measured P
and I, completely determines the scattering matrix
[Eq. (2.2b)] except for the phase of the scattered
amplitude, which we cannot expect to determine
directly by any reasonable experiment. For proton-
proton scattering, on the other hand Eq. (3.4) contains
nine real parameters at each angle 6, whereas the experi-
ments discussed here determine only four: Zo, P, D, and
R. It may be of interest to inquire whether it would be
possible to acquire any further information by succes-
sive scatterings without using a polarized target. The
triple scattering experiments considered here are not
the most general experiments of this type because they
are restricted by the fact that the initial polarization
and the part of the final polarization that is detected
must be at right angles to the direction of motion. In
general we might hope to determine all parameters
relating the final polarization vector to the initial. As
shown in the appendix there are five independent
parameters of this type, which are conveniently chosen
as P, D, R, A, and R’ of Eq. (1.4). While 4 and R’
might be determined from quadruple scattering experi-
ments, a more practical mothod would be to use a mag-
netic field directed at right angles both to the path of the
proton and the direction of its spin. Because of the
anomalous moment of the proton, the proton spin
precesses about this field with an angular frequency
larger than that of the proton’s motion. Such a magnet
placed between the first and second scatterers would
cause the proton to end up with a spin component along

13 A, Garren, Phys. Rev. 92, 213, 1587 (1953), gives an example
for s and p waves alone.

4R, M. Thaler and J. Bengston, Phys. Rev. 94, 679 (1954);
A. Garren, Phys. Rev. (to be published).
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the direction of motion and so would allow a determina-
tion of the parameter 4. If the magnet were placed
between the second and third scatterers it would
partially convert the undetectable ky-component of
spin to a component at right angles to the direction of
motion and so allow the determination of R’.

Even these do not exhaust the possibilities without
polarized targets. Additional information at any angle
6 may be obtained by a suggested experiment on the
polarization correlation of the scattered protons in
p— p scattering. Such an experiment involves analyzing
in coincidence the polarization states of the scattered
and recoil protons and would determine the expectation
values of operators such as (o-n)(e;-n). This would be
of interest even for the case in which the initial beam is
unpolarized.

APPENDIX. TIME-REVERSAL ARGUMENTS

When we take the trace of the factors involving g
and h in Eq. (3.3) these factors reduce to expressions
which depend only on the vectors p and p’. From rota-
tion and reflection invariance it follows that the first
term must reduce to form f1(8){e);, the second term to
f2(6)n{o), and the third term to

F5(6)(0)1-nn+ f4(6) (0)1- KK+ f5(6) (0)1- PP
+ f6(6)(0)1- PK+- f7(6) (@)1 KP.

The invariance of M under time-reversal requires that
in Eq. (2.2a) the operator g be even and h be odd under
time-reversal. Consequently the third term in Eq. (3.3)
is even under time-reversal so that the last two terms in
Eq. (A.1) must vanish by the arguments used in 4. By
combining f1(6){o); with the remaining terms in Eq.
(A.1) we reduce Eq. (3.3) to the form

_72(0)2:To(Pn—f—]nX<o>1+D((r)1-nn
+X(0)1-KK+4-Y{0):-PP).

Since the quantities 4, R, A’, and R’ can be derived
directly from Eq. (A.2) and (1.4) in terms of J, X, and
YV it follows that only three of these four are independent.

A direct calculation also gives in Eq. (3.3) a term
independent of {g): proportional to Tr(hXh); this
same term with opposite sign occurs in the direct cal-
culation of Eq. (3.2) from Eq. (7a) of 4. Now rotation-
reflection invariance tells us this term must be propor-
tional to n since it is a pseudovector, but the term must
be even under time inversion (since it involves h times
itself). However n is odd. Therefore this term vanishes.
Indeed it is just the vanishing of this term that guaran-
tees the validity of Eq. (8) of A. This paragraph is
essentially equivalent to Sec. 3 of 4.

(A.1)

(A.2)



