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B.A. CHARTREs AND H. MEssEL
F. B.S. Fulkiner ENcleur Research und Adolph Busser Computing Luborutories, School of Physics, *

The University of Sydney, Sydney, Australia

(Received Septetnber 13, 1954)

A new simple and straightforward formulation of a general three-dimensional cascade is given. The
resultant integral equations include those derived by Blatt as a special case. The equations have a number
of interesting features which distinguish them from those commonly used in cascade theory. They also
lead to a simple moment recursion relation which is valid for all energies and which includes various
processes such as Compton effect and ionization loss. The paper greatly simpli6es previous work on the
subject.

I. INTRODUCTION the mixed atmospheric cascade,"with electron-photon
showers as a special case. In addition, the equations
take into account such processes as the Compton effect,
ionization loss, etc. This leads to simple moment recur-
sion relation in which all these processes are taken into
account in the average numbers. This vastly simplifies
all previous work on the subject.

The general equations are derived using the so-called
"first collision" or "regeneration point" method de-
veloped in recent work on cascade fluctuation theory. ' '

2. DEFINITIONS

Let p; &(Ep, tp, E,r,H, t)dEdrd8 be the average number
of particles of type j(j=1,2, , n) of energy in the
range E to E+dE, at a distance from the shower axis
in the range r to r+dr, and travelling in a direction
making an angle t) to tl+d8 to the shower axis at depth
t in a cascade initiated at depth tp by a particle of type
i of energy Ep travelling along the shower axis. The
fact that we allow the cascade to be initiated at depth
3p makes allowance for the inhomogeneity of the
atmosphere; Let pr;, &(Ep, tp', E,t) dE be the corresponding
average number integrated over all 0 and r. We assume
that the x;, ; are known functions; that is, we shall
assume that the problem of the longitudinal develop-
ment of whatever cascade (including ionization loss, etc.)
is under consideration has been solved.

Let st;, , (Ep, t; E,O)dEd0 be the probability that an i
particle of energy Ep suffers a collision at depth t from
which arise any number of any type of secondary par-
ticles, but one of them is a j particle of energy 8
travelling in a direction at an angle 8 to the primary i
particle.

The probability x;, ; is completely general and can
include all known cascade phenomena. It may for
instance include terms representing collisions which are
not contributory to the development of the cascade,
that is collisions producing only one secondary which
can be identi6ed with the primary. The eGect of such
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N integral equation for the projected lateral dis-
tribution function of a cascade shower developing

in a uniform medium has recently been obtained by
Blatt. ' This equation is unique in that the angular
distribution does not appear in it; neither do the details
of the cascade process, such as the bremsstrahlung and
pair production cross sections. The only information
necessary about the cascade is the average numbers; it
is this which takes into account the details of the
cascade process. As a consequence a moment recurrence
formula can be written down for the lateral distribution
which does not include the angular and mixed moments.
It should be noted that in all previous work equations
for the angular distribution could be written down
which are independent of the lateral distribution, but
not vice versa.

In his derivation Blatt makes the following assump-
tions: (1) Only one type of particle involved in the
cascade suffers appreciable angular deviations. (2) The
multiplicative processes involved in the cascade do not
lead to appreciable angular deviations. In other words,
the cascading process and the lateral spreading of the
shower are due to diGerent types of collisions.

In addition the following two assumptions, which
are not necessary for the validity of the final equation,
were made to simplify the argument: (a) The medium
is of uniform composition. (b) The cascade is initiated
by a particle of the type that suffers angular deQections.
His derivation is presented in a general form without
reference to the particular nature of the cascade in-
volved, but it should be voted that the striegeet require-
ments oj asstemptions (1) and (Z) efjectively limit the

applicution o& Blatt's equation to the electron photon-
cgscad8.

It is the purpose of this paper to present an alter-
native, straightforward derivation which is so general
in its application that it enables us to dispense com-
pletely with all four of the above-mentioned assump-
tions. This means that we have here a powerful method
of tackling the general problem of the lateral spread of
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a collision is to reduce the energy of the primary par-
ticle and/or deviate its direction of motion. There are
two examples which are worth noting.

1. The angular deviations of electrons in an electron-
photon cascade by Rutherford scattering. If the scat-
tering cross section is taken as o, (E,t; 8)d8 this can be
included in our x;, , as

8;, ;8(Ep—E)o;(E,t; 8). (2.1)

2. The continuous loss of energy of a charged particle
through ionization of the medium. If the energy lost is

P units of energy per unit distance travelled, this efFect
can be included by incorporating the following term in
x;, ;(Ep,tp,' E,8):

We note that P and ~ satisfy the initial condition,

P(Eo,to; E,r,8, to) =5(r)8(8)8(Ep —E)I,
po(Ep, tp', E,t )p=8(Ep —E)I,

where I is the unit matrix.

(2.6)

3. THE FIRST COLLISION EQUATION

Consider a cascade initiated by a particle of type i
which is known to have the energy Eo at depth to in
the medium. The probability g, (Eo,t ) that this particle
will reach a depth t' without suGering any type of
collision, and therefore still having its original energy
Eo, is given by

8; i8(8) LimP/e 8(Ep—E—e).
a-+0

(2 2)6, 7
g;(Ep, t') =exp — n;(Ep, r)dr .

to

(3.1)

Define the cross section w;, (Ep, t; E)dE by the
equation,

A collision giving rise to a k particle of energy E'
travelling at an angle 8' to the initiating particle may
then occur. The probability of this is

w;, ;(Ep,t; E)= x;, , (Ep, t; E,8)d8. (2.3)
x,, s(Ep, t'; E',8') dE'd8'dt'. (3.2)

Then zv;, , is the analog of x;, , in the theory of the purely
longitudinal development of the cascade.

Let cr;(Ep, t) be the total probability that an s particle
of energy Eo will suGer a collision of any type in travel-
ling unit distance at depth $. Then in general,

(2.4)

The right-hand side of (2.4) is the average number of
secondary particles produced by an i particle of energy
Ep in travelling unit distance, while n;(Ep, t) is the
average number of collisions suffered by that particle
in the same distance. Events of the type defined in (2.1)
and (2.2) contribute equal amounts to both sides of
(2.4).

The functions defined above can conveniently be
grouped in the following matrices:

P= (p, ,), op= (z.;, ,), X= (x;, ;), W= (w, ,),
A= (a,, ;), where a;, ,=8;, ;n, ,

Y(E,,t; E,8) =X(Eo,t; E,8) 8(E Eo)8 (8)A(E—o,t), —
(2.5)

V (E.,~; E)=, d8Y(E„~;E,8)

=W(E„t; E)—8(E—E,)A(Eo,t).

' Ionization loss is usually treated as a continuous deterministic
process (see reference 7) whereas a cross section like x;; defines
a statistical process with resultant fluctuations. Sy defining ioni-
zation loss as in (2.2) we are expressing a deterministic process as
a limit of a statistical one.' H. J.Bhabha and S.K. Chakrabarty, Proc. Roy. Soc. (London)
A1S1, 267 (1943).

The cascade initiated by this secondary particle then
has, for its distribution function at depth t,

Ps, , (E', t'; E, r—8'(l —t'), 8—8', t). (3.3)

The contribution to the total cascade arising from
the probability of this particular event occurring first
is therefore given by the product of expressions (3.1),
(3.2), and (3.3). By now summing over the contribu-
tions of all possible first collisions we should recover
the distribution function of the total cascade. This
procedure yields the "first collision integral equation":

p;;(Ep, to, E,r,8,t)
pt

=8(E—Eo)8(r)8(8)8;,Jg;(Eo,t)+ di'g;(Ep, i')

dE') d8'x;, k(Ep, t', E',8')
k=1 dg

&&p„;(E', ~', E, r 8'(t t'), 8 8', —i). (—3.4)—
The first term on the right-hand side of (3.4) covers the
possibility of no collision at all occurring. By using the
matrix notation (2.5) the first collision equation becomes

P(Eo,&o', E,r 8A
t

=8(Ep—E)3(r)8(8) exp —J" A(Eo, r)dr
to

t tl

1 t dt' exp —I A(Ep, r)dr
to 6 $P

Qp 00

~, dE' d8'X(Eo, t' E' 8')

y P(E', t', E, r 8'(t t'), 8—O', I) —(3.5)— .
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Differentiating Eq. (3.5) with respect to tp gives the
first collision integro-differential equation,

P—(Ep, tp, E,r,e,t)
BtP

ce'Y(E, ,h, ; E',8')

XP(E', t; E, r —8'(t —to), 8—8', t). (3.6)

Integrating the above equation through all r and 0
yields the equivalent equation for the average numbers
solution ~,

8 Ep—pp(Eptp Et)+ i dE'V(Eptp E')

X~(E',t„E,t) =0. (3.7)

Equation (3.6) can be put in a form closely resembling
(3.7) by the addition to both sides of the expression

By treating the term on the right-hand side of (3.9)
as a known 'inhomogeneity, a comparison of (3.9)
and (3.7) yields the following general integral equation
for P:

P (Ep tp' E r,e, t)

pt pEp

=e(8)8(r)~(E„t;,E,t)+ Ch' '

~tp

X CE" Ce'~(E p, h p, E',t')
J

x [X(E' h' E"8') 8(8')W—(E' h' E")j
XP(E", t'; E, r 8'(t —t'), 8——8', t). (3.10)

4. MOMENT RECURRENCE RELATIONS

The integral equation (3.10) enables us to write
down very simply the recurrence relations for the
moments, angular, radial and mixed if desired, of the
lateral distribution functions P. We are interested in
the eth radial moment defined by

dE' de'Y(E„t, ; E',8')P(E', t, ; E,r,e,t),

which on the left-hand side is put in the form

Qp

J
dE V (Ep, t p', E )P (E,tp,

' E,r,8,t),

and on the right-hand side in the form

Ep

dE' de'V(E„t, E')8(8')

(3.8)

(3.8a)

R„(Ep,tp, E,t) = de r"drP(Ep, tp,'E,r,e,t), (4.1)

and the neth angular moment,

Q (E„t,; E,t) = 8"Ce drP(E„t, ; E,r,e,t) (4.2).
We obtain the solutions:

R„(Ep,tp, E,t)

XP(E', t;, E, r —8'(t—to), 8—8', t). (3.8b)

Equation (3.6) then reads

8—P (Ep, tp, E,r,e,t)
Btp

Ep

+ dE'V(Ep, tp, E')P(E', tp, E,t)

deaf/

x~(E„t;,E', t')X (E',t', E")R (E",t'; E,t), (4.3)

Q„(E„t,; E,t)

f tlZ) f I' p f'
dt'

i

dE' dE"pp(Ep, hp, E',t')
p-&(q) ~~p

dE ce'[Y(Ep,t„E,8')

—8(e') V(E„h,; E')1

where
p

00

X„(E,h; E') = dee-X(E, h; E',8).
NI

(4.5)

xX,(E',h', E")Q,(E",t'; E,t), (4.4)

XP(E', t„E, r 8'(h t,), 8—8—', t)—
Ep OQ

= —
J dE

J
de [X(Ep,tp, E,e )

—8 (8')W (Ep, tp, E') J

5. ELECTRON-PHOTON SHOWERS

In the electron-photon cascade it is assumed that the
multiplicative processes, vis. , bremsstrahlung, pair pro-
duction and Compton scattering, do not contribute to
the lateral spread of the shower. Hence their differential
cross sections have the form,

XP(E', tp, E, r—8'(t —tp), 8—8', t) (3.9) ~;, ;(Ep,t; E,e) =8(8)w;, , (Ep,t, E);,,=i, p, (5.1)
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and will therefore not appear in Eq. (3.10).If expression
(2.1) is used for the Coulomb scattering of the electrons
Eq. (3.10) becomes

p;;(E„t,; E,r,e, t) =8(t))8(r)w;, ;(E„t;,E,t)

pt pEp

dt'~ dE'~ d8'w;, ,(E„t,; E', t')
~o z 00

Xf~i( E',t'; fl') —&(0')t (E',t')$

Xp, ;(E', t'; E, r 0'(t t—'), 0——0', t) (3..2)

This is also a generalization of Blatt's equation' in
that it also treats the case of an incident photon (i= 2).
It should be noted that for this case it yields an im-

mediate solution for ps, ; in terms of the equivalent
expression for a primary electron.

It should be noted that m;, 1 may contain such proc-
esses as ionization loss, Compton e8ect, etc. , and hence
(5.2) is valid for any energy range for which we have
the average numbers. It is obvious that this leads to a
simple recursion relation for the moments which greatly
simplifies previous work. See for instance Chartres and
Messel '

One of us (B.A.C.) wishes to thank Commonwealth
Scientific and Industrial Research Organization for the
grant of a studentship.

s 8, A. Chartres and H. Messel, Proc. Phys. Soc. (London) A67,
158 (1954).

PH YSI CAI REVIEW VOI UME 96, NUMBER 6 DECEMBER 15, 1954

Possible Triple-Scattering Experimentsn

L. WOLPENSTEIN
Carnegie Irtstitstte of Teehstotogy, Pittsbttrgh, Pertnsytvalia

(Received September 7, 1954)

Triple-scattering experiments may be used to get additional information about the spin-dependence of the
scattering matrix of the second scatterer. In general two new parameters describing the scattering may be
determined by means of two distinct experiments, one in which the successive scattering planes are parallel
and one in which the successive scattering planes are at right angles to each other. The relation between these
parameters and the scattering matrix is given for the cases of protons scattered from a spin-zero target and of
proton-proton scattering. For the former case the magnitude of the left-right asymmetry in the third scatter-
ing is calculated on the basis of a phenomenological model due to Fermi in the Born approximation. Further
experimental possibilities for p-p scattering are discussed.

1. GENERAL FORMULATION

ECENT successful experiments' on the double
scattering of high-energy protons make it of

interest to note that further information may be
obtained by means of triple-scattering experiments.
Such experiments would be designed to determine how
the second scatterer changes the direction and/or
magnitude of the polarization of the proton; thus, the
6rst scatterer serves simply as a polarizer and the final
scatterer as an analyzer.

To describe the geometry of a triple-scattering experi-
ment we first define for each scattering the unit vector

direction n1. For a given scattering angle 8, the second
scattering is completely defined by an azimuthal angle

p, here defined by

cos9i=ni'lls sing =»Xns'ks. (1.2)

In the third scattering a left-right asymmetry is
measured relative to a direction n3,' since polarization
along the direction of motion cannot be detected, two
"settings" of the analyzer are sufhcient; that is, two
directions for n;. Therefore we need only consider the
cases when n3 is parallel to n~ and when n3 is along the
direction

n= (kXk')y (kXk'(, (1.1) s =ns Xks'. (1.3)

where k and k' are unit vectors in the incident and
outgoing laboratory directions, respectively. The beam
incident on the second scatterer is polarized along the

*Work supported in part by U. S. Atomic Energy Commission.
' Oxley, Cartwright, and Rouvina, Phys. Rev. 93, 806 (1954);

Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis, Phys. Rev.
93, 1430 (1954); Marshall, Marshall, and Carvalho, Phys. Rev.
93, 1431 (1954);J. M. Dickson and D. C. Salter, Nature 173, 946
(1954);Kane, Stallwood, Sutton, Fields, and Fox, Phys. Rev. 95,
1694 (1954).

Thus the third scattering may be chosen to determine
either (o), .ns or (e)s s, where (tr)s is the expectation
value of the spin vector after the second scattering; the
corresponding asymmetries in triple scattering will be
designated e3 and e~,.' The discussion throughout is
nonrelativistic.

s The asymmetry e,„(or es, ) is defined as PI&(+)—Ii(—)7/
Lie(+)+Is(—)7 where Is(&) refers to scattering such that nq is
parallel to &ns (or +s).


