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Integral Equations for Cascade Showers
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Integral equations of a new type are derived for the lateral and angular distribution functions in a cascade
shower. The moment recursion relations of Nordheim are direct consequences of these integral equations.
The method of derivation has some intrinsic interest since it involves the formal device of the introduction
of negative probabilities for events in which nothing happens. This formal device may have applications in
other fields. No solutions of the integral equations derived here are given in this note.

1. INTRODUCTION during liight. Since these are commonly charged par-
ticles which are most easily detected, this is a reasonable
restriction.

The next restriction is apparently serious: we require
that the particle starting the shower itself be of type 1.
However, it is easily seen that a shower started by some
other type of particle can be thought of as a super-
position of showers generated by type 1 particles, as
far as the angular and lateral development is con-
cerned, We follow through the initial development of
the cascade until the first particle of type 1 is created;
this particle is still produced along the shower axis, and
moving along it. Hence the solution of the angular or
lateral problem for showers initiated by type 1 particles
forms a Green's function for showers initiated by par-
ticles of other types. This point is developed in more
detail in the accompanying note. '

We now define the conditional probability:

'HE angular and lateral distribution of the par-
ticles in large air showers presents a dificult

theoretical problem, which is so far only incompletely
solved. The present note is intended to indicate a pos-
sible line of attack, not a solution.

Rather than restricting ourselves from the start to
the (usually considered) electron-photon cascade ini-
tiated by a single electron or photon, we shall derive
integral equations for a more general type of shower
which we shall call a type A shower. Type A showers
may contain any number of components (particles of
different types) which are genetically related in any
way. The crucial assumptions are: (1) Only one kind of
particle (particles of type 1, say) suffers appreciable
angular deviation in passing through the medium.
(2) The production processes involved in the cascade
do not lead to appreciable angular deviations between
the directions of the primary and produced particles.

These conditions are satisfied to a good approxima-
tion in electron-photon cascades. Photons are deviated
in direction only by Compton scattering, which is of
negligible importance in air showers, and the production
processes (pair creation and bremsstrahlung) involve
angular deviations much smaller than the angular devia-
tions due to Coulomb scattering of the electrons by the
nuclei in the medium, for electrons of energies less than
10" ev. Higher-energy electrons are on the average so
close to the axis of the shower that their angular and
lateral deviations are of little experimental importance.

These conditions are also satisfied in the multiple
scattering of a single particle without cascade multi-
plication. Thus the equations we obtain will be equally
applicable to this trivial kind of "cascade. " Since the
equations for multiple scattering are simple and well-

known, the equations derived here can be tested on that
example.

We shall consider the projected angular and lateral
distributions, i.e., the distributions projected onto a
plane containing the shower axis (the line defined by
the direction of the initial particle of the shower).
Furthermore, we are interested in the distribution
functions for particles of "type 1" only, i.e., for those
particles which themselves suffer angular deviations

Q(Eo,E,t; 8)d8=probability of finding a particle
at a projected angle with the shower axis
between 8 and 8+d8, given that the shower
was started by a particle of type 1 with energy
Eo, and that the observed particle is of type 1,
has energy E, and is observed at a depth t
from the origin of the shower.

It is understood that there may be any number of
other particles in the shower at depth t, particles of
various types, energies, and angles. On the other hand,
for an infinitesimal angle interval d9, the probability
of finding more than one particle within this interval
is of order (dg)' and can be ignored.

We de6ne a similar conditional probability for the
projected lateral distribution:
/

P(Eo,E,t; x)dx= probability 'of finding a particle
at a projected distance from the shower axis
between x and x+dx, given that the shower

was started by a particle of type 1 with energy

Eo, and that the observed particle is of type 1,
has energy E, and is observed at a depth t

from the origin of the shower. (1.2)

r B. Chartres and H. Messel, following paper LPhys. Rev. 96,
1651 (1954)].
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As a result of these definitions, we have the nor-
malization conditions,

Q(Eo,E,t; 8)d8= P(Eo,E,t; x)Cx= 1. (1.3)

If the cascade is predominantly forward, Q(Eo,E,f; 8)
approaches zero rapidly for values of 0 larger than some
8, (E), and the first integral in (1.3) may be extended
formally to cover the range from —~ to +~. We
shall use the "small angle approximation" throughout
this paper. The methods developed here are rot
restricted to this approximation, however.

We shall also need the longitudinal distribution
function for particles of type 1; for our purposes this is
also best defined as a conditional probability:

ir(Eo,E,i)dE=probability of finding a particle
of type 1 in the energy range E to E+de,
givee that the shower was started by a par-
ticle of type 1 with energy Eo, and that the
point of observation is at a depth t from the
origin of the shower. (1 &)

The distribution functions usually considered in
cascade theory are given by

q(Eo,E,f,8) = n. (Eo,E,i)Q(Eo,E,I; 8),
and

P (Eo,E,t,x) =~(Eo,E,t)P(Eo,E,t; x). (1.6)

These can also be defined by saying that q(Eo,E,I,8)

XdEd0 equals the average number of particles of type 1,
with energies between E and E+dE and angles between
8 and 8+d8, at depth t from the origin of the shower,
given that the shower was started by a particle of type
1 with energy Eo. A similar definition can be used for p.

2. REGENERATION POINT EQUATIONS FOR
PARTICLES OF KNOWN HISTORY

Suppose we find a particle of type 1, energy E, and
angle between 8 and 8+d8, at a depth 1 from the origin
of the shower. We can then trace back the past history
of this particle. This is shown schematically in Fig. 1.
Just before reaching depth i, we have the same particle
undergoing angular deQections. We then trace back to
the point where this particle was produced, let us say
by some particle not of type 1. The producing particle,
as well as the particles not of type 1 from which it may
have originated, are shown by dotted lines. According
to our basic assumptions, the dotted lines are straight
lines, i.e., these other particles are not deflected in

~ The equations derived here hold for a homogeneous medium,
i.e., the relevant cross sections and numbers of scattering centers
per unit volume are independent of t. In a nonhomogeneous me-
dium, the derivation goes through with minor changes, which
consist mostly in specifying separately the depth of observation
t& and the depth of the origin of the shower, to, not merely their
difference t=t1—t0. We avoid this complication in order to keep
the treatment as simple as possible and limited to essentials. The
generalization to a nonhomogeneous medium is given in reference

I
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I
I
1

FIG. 1. The ancestry of a particle of type"-1, observed'at depth
t and distance x from the shower axis, can be traced back as indi-
cated schematically in this diagram. The dotted straight portions
indicate ancestors of type other than 1, which by assumption do
not suffer angular deviations.

passing through the medium, or in transforming into
each other. At an even earlier depth, the ancestor of
our particle is again a particle of type 1, indicated by
the next solid line, and so on, until we reach the
originating particle of the shower before the first
cascade collision. We specify the "history" of the par-
ticle by stating, for each depth t', whether the ancestor
at depth t' was a particle of type 1 or of some other

type, and if the ancestor was of type 1, stating its
energy E'(t'). We do Not include statements about
angles or positions in this "history. "

The following convention will prove useful: for any
value of 3' at which the ancestor of our particle was a
particle of some other type, we shall say that it can be
treated as if it had been a particle of type 1 but energy
E'=0. The reason why we can use this convention is

simply that particles of zero energy (which never occur
in the ancestry of a particle of finite energy E) can be
assigned any scattering cross section whatever, and we

shall assign scattering cross section 0 to particles of

energy 0, formally. The advantage of this convention
is that now the entire history of our particle is given by
a single function E'(f), whoe behavior is shown sche-

matically in Fig. 2. E'(0) =Eo, then E' is a monotoni-

cally decreasing function of 3' (due to collision loss)
until we reach the point of the first cascade collision.
From then on E'=0 until we reach the point in the
shower at which the ancestry of our particle again
consists of a particle of type 1, and so on. Finally,
E'(&) =E.

The method of derivation used in this paper is

based upon the approach of Nordheim that is, we

' L. W. Nordheim, Z. Physik 133, 94 (1952).
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In the special case ti(E) independent of E we have
g(t)=exp( —pt); this special case is of no use to us
because over part of the range 0 to t we had particles
of type other than 1, for which E=O (by convention)
and p(E)=0 Lby fundamental assumption (1)j. The
generalization to arbitrary p(E) is

g(t) =exp —
) tir E'(t')ddt'

0

(2.5)

0
FIG. 2. The energetic history of a particle observed at depth I

is shown schematically in this figure. Whenever the ancestor is
itself a particle of type 1, its energy decreases monotonically (bnt
not necessarily continuously) with increasing 3; whenever the
ancestor is a particle of some other type, the energy is formally
set equal to zero.

first derive equations for particles of giver energetic
history, and then average over all possible energetic
histories of the particles under consideration.

We shall need the probability for angular deviations
(in projected angle) between n and n+dn for particles
of type 1 and energy E, when traversing an infinitesimal
layer dt of the medium. Under the assumption of a
homogeneous medium, this probability is independent
of t (see reference 2). We define

o(E,n)dndt=probability of a deviation in pro-
jected angle, of amount between n and n+dn
for a particle of type 1 and energy E traversing
a layer dt of the medium. (2 1)

According to our previous convention, we define

o. (0,n) =0. (2.2)

Ke also introduce the total deviation probability, Q (Es,E,t; 8) = dt'
0

dng(t')o (E',n)

We then determine the probability that the first col-
lision occurred in the interval t', t'+dt', and deviated
the particle by an angle between n and n+dn Th. is

probability is

g (t') o [E'(t'),n Jdndt'.

By assumption we are looking at particles which
make an angle 0 with the shower axis at depth t. Hence
they must have been deviated through an angle 0—n
in the remaining distance t—3 . The probability for this
is Q(E', E, t t'; 8——n). Hence we get a contribution
to the final probability Q(Es,E,t; 0) equal to

g(t')cr(E', n)Q(E', E, t t'; 0 a)dt'—dn—

The occurrence of the first scattering collision at
depth t', with a scattering angle n, is a unique event,
and the various choices of t' and n are mutually ex-
clusive. Hence the probabilities can be added up to
yield a total probability. This total, however, is still
not equal to Q(E Es,t; 8) because we have ignored the
possibility that no scattering collision at all occurred in
the range 0 to t. This latter possibility contributes an
amount g(t)5(0), where 8 is Dirac's delta function. We
thus get the regeneration point equation

p(E) = o (E,n)dn. (2.3) XQ(E', E, t—t'; 0—n) yg(t)S(0). (2.6)

We should point out that the probability of a definite
deviations in projected angle can be defined only in the
small-angle approximation (otherwise this probability
depends upon the projection angle in the other plane
containing the shower axis); hence it is consistent to
use infinite limits of integration in Eq. (2.3).

We shall now concentrate our attention on the erst
scattering collision in the history of our particle. Until
this first scattering collision, all the ancestors of the
particle were moving along the shower axis. We em-
phasize that we consider only scattering collisions, rot
collisions involved in the cascade process (since by our
fundamental assumption (2) the latter collisions do not
lead to angular deviations). We shall need the "survival
probability, "
g(t) =probability that no scattering collision

occurred between t=O and t=t. (2.4)

In this equation, we must replace E', wherever it
occurs, by the (presumed known) value E'(t') at the
depth in question. We observe that the cascade history
of the particle before the first scattering collision (at
depths t"(t') enters implicitly through the survival
probability g(t') t Eq. (2.5)$.

We use entirely analogous arguments to obtain a
regeneration point equation for the lateral distribution
function P(Es,E,t; x). If the first scattering collision
occurs at t' and deviates the particle through an angle
n, the new "axis" is displaced with respect to the
original one at depth t by the amount,

x (t,t') =a(t—t')+terms of higher order in n. (2.7)

In order that the particle be finally 'observed at a
distance x from the old shower axis, the subsequent
deflections (between t' and t) must shift it laterally,
with respect to the new axis, by the amount x—x .
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Hence we obtain:

P(Ee,E,t; x) = I dt' dng(t')o (E',n)J

&&PLE', E, t—t'; x—n(t —t')$+g(t)3(x). (2.8)

We observe that Eq. (2.8) is an integral equation for
the lateral distribution function alone; the angular dis-
tribution does not occur at all in this equation. This is
characteristic for regeneration point equations. The
more usual "forward" or "last-collision" equations are
derived by considering what happens in the last interval
of depth (from t—dt to t) or what happened in the last
collision. In either case it is impossible to get an equa-
tion for the lateral distribution which does not involve
the angular distribution.

Equations (2.7) and (2.8) are not the conventional
regeneration point equations for the shower. We have
concentrated our attention on the first scattering col-
lision, whereas the conventional regeneration point
method considers the erst collision of any kind, scat-
tering or cascade. Conversely, Eqs. (2.7) and (2.8) apply
only to particles of known history E'(t'), and cannot
be used, in this form, for the actual cascade.

3. AN INVARIANCE PROPERTY OF REGENERATION
POINT EQUATIONS

The various recursion relations for the moments of
the angular and lateral distributions given in the
literature'4 all have this in common: the lateral and
angular moments of all orders can be obtained from a
knowledge of the moments of the scattering cross
section

n"o. (E,n)dn. (3 &)

o'(E,n) = o.(E,n)+ k(E)3(n). (3 2)

'H. S. Green and H. Messel, Phys. Rev. 88, 331 (1952);
L. Landau, J. Phys. (U.S.S.R.) 3, 237 (1940); L. Eyges and
S. Fernbach, Phys. Rev. 82, 23 (1951);L. Eyges, Phys. Rev. 74.
1801 (1948).

The remarkable feature of all the moment recursion
relations is that the zeroth nsoment, i.e., the total cross
section O.p= p, eever enters into the reclrsion relations. To
the extent that the moments of the distribution function
determine the function uniquely, the angular and lateral
distribution of the particles in the cascade do not
depend at all on the total cross section for angular
deviations.

Let us try to understand this remarkable invariance.
Two cross sections o(E,n) and o'(E,n) give the same
Anal distributions provided all the moments agree,
O.„=sr„', except for the zeroth moment 0-p@0'p. Two
functions all of whose moments agree except the zeroth
moment differ by a multiple of the delta function, hence
we conclude that

Here k(E) is an arbitrary function of E. Cross sections
0-' and 0- lead to the same final distribution functions for
the cascade.

This is intuitively clear, also, since the term k(E)8(n)
represents a probability of a scattering event though
an angle 0.=0, i.e., a probability of nothing at all
happening, experimentally.

Hence Eqs. (2.6) and (2.8) are still correct if we
replace o. by o.' everywhere in the equations Linciuding
in the definition of the survival probability g(t), Eq.
(2.5)7. Since k(E) is an arbitrary function at our dis-
posal, we get an infinite variety of regeneration point
equations.

While the invariance under insertion of a probability
of nothing happening was shown here for the special
case of multiple scattering problems, this is of course a
general invariance property of alt regeneration point
eqlations, aed last co/Lision eqlatioes as zvell. We can
always introduce a formal probability (per unit path
length) of nothing happening at all, and obtain a modi-
6ed, but still correct, regeneration point equation. We
shall use this invariance in the next section.

k(E) = -p(E), (4.1)

i.e., k(E) is the negative of the total scattering cross
section. Insertion in Eq. (3.2) gives the modified cross
section,

~'(E,n) =~(E,n) —t (E)3(n), (4 2)

and hence the modified total cross section,

The total cross section p' vanishes as a result of the
cancellation of the total probability of actual scattering
events against the (assumed negative) probability of
nothing happening at all. We emphasize that this nega-
tive probability of nothing happening is a purely formal
device which is justified by the (physically immediate)
invariance of the equations under the substitution (3.2)
for all positive functions k(E), and hence by analytic
continuation also for negative functions k(E).

4. AVERAGING OVER PAST HISTORIES

Relation (2.6) is valid for particles of known history
E'(t'). In order to obtain a result for the actual cascade,
we mustavera. ge over all possible past histories E'(t'),
each weighted according to its probability of occurrence
in this particular cascade. This is at first sight a hopeless
task unless much more is known about the details of
the cascade process than what we have assumed to be
known. The survival probability g(t) is particularly
awkward to handle in such an average.

We now employ the invariance property pointed out
in the preceding section to eliminate, formally, the
survival probability g(t) from the equations. To do
this, we choose the arbitrary function k(E) in Eq. (3.2)
to be
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Equation (2.5) shows that the modified survival prob-
ability g'(t) =1, identically, so that Eqs. (2.6) and (2.8)
can be transformed into

Q(Eo,E,t; e) = dt' du[a(E', u) —tt(E')3(u) JJ

XQ(E', E, t—t', e—)+ s(0), (4.4)

We now observe that we can carry out the averaging
over past histories in a very direct fashion. Let us first
keep E' fixed, and average over histories E"(t") in the
range t'&t" ~&/. This averaging procedure affects only
the term Q(E', E, t t', 0—u—) in Eq. (4.4) [and the cor-
responding term in Eq. (4.5)$, and it leads simply to the
distribution function Q(E', E, t t'; fl —u) for—a cascade
started by a particle of type 1, of energy E', and propa-
gating through a layer of thickness t—t'. Next we
average over past histories E"(t") in the range 0 &~t"(t'.
This average is particularly simple since according to
the structure of Eq. (4.4) the history before the first
"scattering" collision (at t') has no influence whatever.
[In the original Eq. (2.6) the corresponding history
did have an inhuence, since it affected the survival
probability g (t').j

Next we must average over all possible choices of E'
at depth t'. We need the conditional probability
W(Eo,E,t; E', t')dE' of finding the ancestor of our par-
ticle at depth t' to be a particle of type 1 in the energy
range E', E'+dE', given that the initial particle is of
type 1 with energy Eo and the final particle is of type 1

with energy E at depth t. According to the definition of

(aE, o,E),/formula (1.4), W is given by'

w(E„E',t')w(E', E, t- t')
W(Eo,E,t; E',t')dE'= dE'. (4.6)

w(Eo,E,t)

The integrand in Eq. (4.4) must be multiplied by this

~ This formula was erst g&ven by Nordheim, reference 4, Eq.
(13). The factor dt' in Nordheim's formula 13 is misleading,
however, and should be dropped. We would also like to point out
that this is the only point at our derivation where we make
essential use of the fact that the shower was started by a particle
of type 1, and that the observed particle, at depth t, is also of
type 1. Suppose that the initial particle is of type i and the ob-
served particle is of type j; we then need the conditional prob-
ability W;;(Eo,E,t; E',t ) of finding a particle of type 1 (because
these are the only particles that scatter) at depth t' with energy
in E', 8'+dE'; this is given by

where ~;;(Eo,E,t) is the probability of Gnding a particle of type j
and energy E at depth t in a shower started by a particle of type i
and energy Ep. With this modification and suitable addition of
subscripts to the functions Q and P we get Eq. (5.2) of
reference j. ; however, this method does not give in any direct
way the more general equations in Eq. (3.10) of reference 1.

P(Eo,E,t; a) = dt' ' du[o. (E',u) —tt(E')8(u)$
0

XP[E', E, t t', a——u(t —t'))+ 3(a). (4.5)

8', and we must integrate over all possible E' for a
given t', i.e., over the range E&E'&Eo.

Finally we integrate over all possible t' as indicated in
Eq. (4.4). No special weighting of diferent values of t'

is necessary because we have arranged Eq. (4.4) in such
a way that the formal survival probability g'(t') is unity,
hence the first formal scattering collision (which may
be either an actual scattering collision or a scattering
through an angle zero) is as likely to occur at one value
of t' as at any other.

The result is an integral equation for the probability
function Q(Eo,E,t; tl) for the cascade, i.e., if one takes
into account all possible past histories E'(t') of the
particles under consideration.

X[o(E',u) —tt(E')8(u)) q(E', E, t t', (l—u)—

+w (Eo,E,t) o(0). (4.8)

By an entirely analogous argument we obtain an
integral equation for the lateral distribution function p,
Eq. (1.6):

p(E E,ot,x) = dt' dE', f'
J, du v-(Eo,E',t')

X[o(E',u) —t (E')8(u)) p[E', E, t —t', s—u(t —t')g

+w(E„E,t)3(~). (4.9)

Equations (4.8) and (4.9) are the main results of this
vote. We now point out some features of these equations.
First of all, the equations have been derived without
making any specific assumptions about the genetic rela-
tions in the cascade. The basic assumptions are merely
that particles of type other than 1 are not scattered by
the medium, and that no appreciable angular deviation
occurs in the various production processes which give
rise to the cascade. The details of the cascade process,
including even the average numbers of particles of type
other th, an 1 at various depths, are not needed in Eqs.
(4.8) and (4.9).The only necessary knowledge about the
cascade is the longitudinal distribution function
w(Eo,E,t), i.e. , the average number of particles of type 1

and energy E at depth t in a cascade started by a par-
ticle of type 1 and energy E, at depth t=0.

pEp

Q(Eo,E,t; t)) =
~

dt' f dE' duW(E„E, t. E', t')
0 E CO

X[o(E',u) —
t (E')&(u)]XQ(E', E, t—t', (l—u)

+3(0). (4.7)

This equation can be rewritten in terms of the more
usual distribution function q(Eo,E,t,g) given by Eq.
(1.5). We multiply both sides of Eq. (4.7) by w (Eo,E,t)
to get

q(&o,E,t,ft) = dt' dE' du or(Eo,E',t')f
Eo POO
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In particular, we can specialize to simple multiple
scattering without cascade multiplication or energy loss
by setting

pr(Ep, E,t) =8(Ep —E)
(multiple scattering without energy loss). (4.10)

It is shown in the appendix that the equations of Scott
and Snyder, ' for example, are consistent with Eqs.
(4.8) and (4.9) if Eq. (4.10) is substituted for pr(Ep, E,t).
We also observe Eqs. (4.8) and (4.9) determine the
respective distribution functions q (t,B) and p (t,x)
Nmiqle/y.

To get multiple scattering with definite energy loss,
we 6rst determine the energy E(t) at depth t and then
set

q„(Ep,E,t) = 8"q (Ep,E,t,8)d8, (4.13)

p. (Ep,E,t)= " x"p(Ep,E,t,x)&x, (4.14)

and observe that

explicit reference to the cross sections involved in the
cascade multiplication. This program is carried through
in the accompanying paper. '

From integral equations such as Eqs. (4.8) and (4.9)
it is usually possible to derive recursion relations for the
moments of the distribution functions. This case is no
exception. We de6ne moments by

~(E„E,t) =BLE—E(t)j
(multiple scattering with unique energy loss). (4.11)

qp(Ep, E,t) =pp(Ep, E,t) =pr(Ep, E,t) . (4.15)

If there is straggling in the energy loss, the function
x(Ep,E,t) must be determined from the longitudinal
equations.

In cascade theory, the longitudinal distribution func-
7r(Ep, E t) is well-known for electron-photon cascades (or
at least its Mellin transform is well-known). In cascade
theory it has been customary until recently to use the
Landau approximation of pure multiple scattering, i.e.,
to neglect single and plural scattering contributions.
This amounts to an assumption about the scattering
cross section o.(E,n), namely

~(E,a) = (E,/2E)'5" (rr) (4.12)

where E,=21 Mev is a characteristic energy for mul-
tiple scattering and the second derivative of the delta
function has to be understood in the usual way, in
terms of integrations by parts. The resulting equation
for the angular distribution has been given in the
literature~ and has proved to be useful. The corre-
sponding equation for the lateral distribution in the
Landau approximation had been surmised from the
Nordheim moment recursion relation but had not been
derived directly. It has not proved useful so far in
cascade theory, since it is very dificult to obtain
explicit solutions of that equation.

The derivation of Eqs. (4.8) and (4.9) given here has
made use of the absolute minimum amount of informa-
tion about the cascade, namely that information which
eventually enters the final equations, i.e., the function
pr(Ep, E,t). It is of course possible to derive these equa-
tions in other ways. One way, suggested by H. Messel,
consists in writing down the conventional regeneration
point (first collision) equations for the cascade in
question, and afterwards using the (presumed known)
solutions of the purely longitudinal problem to eliminate

P H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
'M. H. Kalos and J. M. Blatt, Australian J. Phys. (to be

published).
Osborne, Nordheim, and Blatt, Proceedings of the Echo Lake

Conference on Cosmic Rays, 1949 (unpublished).

We multiply both sides of Eq. (4.8) by 8" and integrate
over all values of 0. We notice that odd powers of 8
give zero by symmetry; we also write 8"= (8 rr+n—)"
and use the binomial theorem; this gives

(2e)
q,„(E„E,t) =P

~ ~

dt' dE'x(E„E',t')
s-i (2P) Jp

Xapj, (E')qs„si(E', E, t t')+8, ppr(Ep, E,t). (4.16)

Here &r» is defined by Eq. (3.1), and B„,p equals 1 if v= 0,
and equals 0 otherwise. The Nordheim recursion rela-
tion for the angular distribution moments (reference 3)
is a special case of Eq. (4.16) obtained by the substitu-
tion (4.12), i.e., o.p(E) = si (E,/E)' and all other moments
of 0. vanish.

An entirely similar derivation gives the lateral mo-
ment recursion relation,

t 2e)
ps (Ep,E,t)=p

) (
' dt' ' dE'x(Ep, E',t')

a=i (2k& Jp Js
X~s.(E') (t—t')'"ps. ss(E', E, t—t')

+5„,p7r(Ep, E,t). (4.17)

Again the Xordheim moment recursion relation is a
special case of Eq. (4.17). It should be pointed out that
these moment recursion relations can be obtained di-
rectly by an extension of Nordheim's derivation, without
going via the integral equations (4.8) and (4.9), and
hence also without the introduction of negative proba-
bilities. This explicit generalization of Nordheim s
proof has been performed by the author, but it is too
complicated to warrant repeating here.

We notice that the recursion relations (4.16) and
(4.17) determine all the moments qs„and ps„uniquely,
starting only from the longitudinal distribution function
m of particles of type 1.This is a way of seeing that the
integral equations (4.8) and (4.9) determine the dis-
tribution functions uniquely. We conclude that the
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angular and lateral distribution functions of type 1 par
ticles in a cascade satisfying our fundamental conditions

of Sec. 1 are determined uniquely by the average longi
tzzdinat numbers zr(Ep, E,t) of type 1 particles and by the

scattering probability o(E,n), independently o& the detailed
nature of the cascade process T.his is a rather surprising
conclusion, since it is quite possible to obtain the same
zr(Ep, E,t) from two fundamentally different cascades.
Conversely, this theorem shows that one must be
careful in interpreting experimental information on
lateral and angular distributions unless the basic nature
of the cascade process is well understood from other
sources. This may be important to keep in mind when
analyzing angular and lateral distribution data on the
nucleon cascade inside a heavy nucleus or in the
atmosphere.

5. CONCLUSION

Having derived these equations, we now consider
possible applications. These fall into two classes: appli-
cations of the equations themselves, and applications of
the tricks used in the derivation. As regards the equa-
tions themselves, we believe that a straightforward
attack on the lateral distribution function, using Eq.
(4.9) and standard analytic methods, is likely to fail.
Equation (4.9) is a rather nasty equation, even in the
Landau approximation (4.12), and our attempts to
obtain explicit analytic solutions to it have not suc-
ceeded so far. However, we feel that a purely numerical
attack on Eq. (4.9), using the Monte Carlo method and
a fast digital computer, may perhaps be worth while.

The more interesting applications are in the direction
of applying the tricks used in the derivation here to
other stochastic processes. The introduction of negative
probabilities for events in which nothing happens has
enabled us to average over one set of stochastic variables
while retaining probability statements about another
set of stochastic variables, in spite of the fact that the
two sets of variables (e.g. , energy and angle) are
genetically related to each other. There are surely many
other 6elds of physics in which similar "partial prob-
abilities" are desired, but have so far been found only
indirectly by first solving the complete stochastic
problem and afterwards averaging over the unwanted
stochastic variables.

cancelling the common factor b(Ep —E), and setting
t —t'=t" gives

q(t,9)= ' dt"
~0

d~La(~) —t b(~) J

Xq(t", &—o.) + b(8). (A.1)

When we diGerentiate both sides with respect to t, we
get directly the usual equation for multiple scattering
Lfor example, Scott and Snyder, reference 6, Eq. (5);
their Eq. (5) includes the lateral distribution, and must
be integrated over their variable x to obtain the equiva-
lent of Eq. (A.1); also the notation differs somewhat:
their g is our 0, their s is proportional to our t, and their
p(zt) is proportional to our o (zz)$.

The equivalence is harder to show for the lateral
equation (4.9), since Scott and Snyder do not have such
an equation at all. Inserting Eq. (4.10) into Eq. (4.9)
gives, again setting t"=t—t',

u(t, k) = " dh exp(ikx)p(t, x), (A 3)

and the notation

S(k) = J' dn exp(zkn) o (n)

to get

(A.4)

t

u(t, k)= I dt" $5(kt")—t] u(t",k) + 1. (A.5)
0

We diGerentiate witk respect to t,

Bu(t, k)/Bt= LS(kt) —tz$u(t, k), (A.6)

and observe that Eq. (A.5) implies the initial condition
u(0, k) =1. The solution can be written best in terms
of the function

and is

h(t) =, ft —S(t')ddt',
Jo

(A.7)

t ~oo

p(t, x) = ' dt" dnLo (n) —tzb(n)]J,
XP(t", x—nt") + b(~). (A.2)

We introduce a Fourier transform on x,

APPENDIX. MULTIPLE SCATTERING
WITHOUT ENERGY LOSS u(t, k) =exp

-h(0) —h(kt)-
(A.8)

We wish to show that Eqs. (4.8) and (4.9) with the
substitution (4.10) are correct for multiple sca.ttering
without energy loss. Putting Eq. (4.10) into Eq. (4.8),

This is exactly the solution of Scott and Snyder, except
for notation.


