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Perturbation Calculation of the Elastic Scattering of Electrons by Hydrogen Atoms*
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A perturbation calculation has been carried out for the scattering of electrons by hydrogen atoms, using
as the perturbation only the interaction between the two electrons, and retaining in the result only terms
of the highest power in the incident energy of the electron. The results are then compared with more con-
ventional 6rst-order perturbation calculations for this problem. It is found that to the order in the energy
that we retain, the results for direct-scattered amplitudes obtained by the two perturbation procedures
are the same, whereas in the results for the exchange-scattered amplitudes there is a difference in the energy
dependence. While no conclusions can be drawn as to which perturbation procedure is more accurate,
some reasons are given for preferring the calculation performed here.

1. INTRODUCTION

'HE customary method' for treating the scattering
of electrons by hydrogen atoms in the Born

approximation is to take as the perturbation the
interaction of the incoming electron with both particles
of the atom, and to take matrix elements of this
perturbation between initial and 6nal states of the
system. We shall call this the method of the "asym-
metric perturbation, " since it is not symmetric in the
two electrons.

If the mass of the proton is taken to be in6nite, one
can, as an alternative, take as the perturbation simply
the interaction between the two electrons. (This we
call the "symmetric perturbation. ") In this case the
unperturbed Hamiltonian is separable, and the initial
and 6nal state wave functions corresponding to it can
be exhibited in closed form.

This latter procedure is likely to lead to more accurate
results than the former, since we include more of the
interaction in our unperturbed problem. This advantage
will be most pronounced in the calculation of exchange
scattering. In this case the approximation with the
asymmetric perturbation seems to be particularly poor
since it leads to the physically absurd result that
exchange scattering will occur even when the interaction
between the two electrons vanishes.

In this paper we shall calculate separately the direct
and the elastic exchange-scattered amplitude in the
first Born approximation, taking as the perturbation
the interaction between the two electrons. These two
amplitudes can then be combined' to give the total'
differential cross section. We will consider energies
high enough so that the term we calculate is likely to
be the first of a convergent series, yet not so large that
we need include relativistic sects. Since the energies
we consider will be high, we will compute only the

*The research reported in this article was done in part at the
Institute of Mathematical Sciences, New York University under
sponsorship of the Geophysics Research Directorate, Air Force
Cambridge Research Center, and in part at the Physics Depart-
ment, College of Engineering, New York University, under
sponsorship of the Once of Naval Research.' N. F. Mott and H. S, W. Massey, Theory of Atomic CollisiorIs
(Clarendon Press, Oxford, 1949), second edition, Chap. VIII.

dependence of the result on the highest power of the
energy.

As our results will show, the direct-scattered ampli-
tude is the same, to the highest power in the energy,
whether one uses the symmetric or asymmetric pertur-
bation. For the exchange-scattered amplitude, on the
other hand, the energy dependence at high energies in
our results differs from that obtained by the method of
asymmetric perturbation. Recalling the unphysical
nature of the expression for the exchange-scattered
amplitude when the asymmetric perturbation is used,
we may presume that this amplitude is given more
correctly by our calculation.

After some preliminary remarks in Sec. 2 which
establish the integrals which must be evaluated, we
calculate, in Sec. 3, the elastic direct-scattered ampli-
tude and the elastic exchange-scattered amplitude. In
Sec. 4 we discuss the results and compare them with
the results of a similar calculation done with the
asymmetric perturbation. The Appendix is devoted to
a detailed evaluation of a typical integral occurring in
Sec. 3.

2. PRELIMINARY CONSIDERATIONS

In order to calculate the elastic-scattered amplitudes,
we take the mass of the proton to be infinite and seek a
solution of the Schrodinger equation for the system

1 1 1y
Dr+as+2~ E+ + )

e=o,
rl rs r12~

which represents an incoming plane wave in electron 1
and outgoing spherical waves in particles 1 or 2 as rl
or r2—+~. We are using a system of units in which
m=k=e=i. The unit of length is thus the Bohr
radius, and the unit of energy is 27.06 ev, that is, twice
the ionization energy of hydrogen. The outgoing
spherical waves each correspond to one of the energies
allowed by the conservation of energy. When we confine
ourselves to elastic scattering, as we do in this paper,
we seek the coeflicients fv and go of the outgoing
spherical waves as r& and r2, respectively, approach
in6nity. These are the coef6cients of the spherical
waves having the same energy as the incoming particle.
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1524 SI DNE Y BOROWI TZ

The expression for the exchange-scattered amplitude
in first-order perturbation is given by

If, however, we use the symmetric perturbation of Eq.
(2.5), we must add the Rutherford scattering amplitude
to the amplitude corresponding to Eq. (2.2). This addi-
tional term arises from the circumstance that our
unperturbed problem contains an outgoing wave as
r1—& ~ .' For the symmetric perturbation we have, then, '

1
gs= ——,+f*VV;drldrs)

2m~
(2.2)

Q2

fp =—
~~ exp[ —2ys+i(ks —k„) rt]

(2.3) z' JV=2(1/y, —1/y„),

where t/ is the perturbation. When we choose the
asymmetric perturbation

then the exchange-scattered amplitude is
1

X rFr( —i/0, 1, i(kyr+k„rt))—

gs, = —— exp( —y& —ik r,+iks rt)
7r2

1 1
X ———drtdrs, (2.4)

-~1 ~12-

where kp k are the propagation vectors of the elec-
trons in the initial and final states.

In the case of the exchange-scattered amplitude in Eq.
(2.4), there is some question as to whether the pertur-
bation V should be 2(1/y t1/y~s) or 2(1/ys —1/yts).
If, as in this case, one knows the bound-state wave
functions exactly, either perturbation yields the same
result however, in problems involving more compli-
cated atoms whose wave functions are not known
precisely, this freedom of choice is the origin of the
post-prior discrepancy. '

If one chooses the symmetric perturbation

V= 2/yrs,

then the exchange-scattered amplitude is given by

Q2 1
gs, =—

~' exp( —yr+iks rt —ys —ik„rs)—
7r2 f12

XtFt(—i/k, 1, s(kys+k„rs))
X tFt( i/k, 1, f, (k—yt ks rt))dr—tdrs, (2.6)

where k=
l
ks

l

=
l
ke l, and k'= 2(E+-',); furthermore,

(z./k) exp (—z./k)/2—
sinh(z. /k)

(2.7)

(1 1q
x

l

——ldrtdr2. (2.&)
E yl yls

' S. Altshuler, Phys. Rev. 91, 1167 (1953).
e D. R. Bates el al. , Trans. Roy. Soc. (London) A243, 93 (1950).

is the normalization constant for the continuum
hydrogen functions corresponding to incident waves of
unit amplitude. The 181 are conQuent hypergeometric
functions.

The direct-scattered amplitude when the asymmetric
perturbation in Eq. (2.3) is used can also be obtained
from Eq. (2.2); we have

X tPr( —z/Ie 1 $(kyt —kp'rt))drtdrs+R, (2.9)
where

[2iky sin'(0/2)]"" F (1—i/k) 1 1

; (2.1O)[ 2iky si—n'(8/2)] ~fs F(1+i/P) P sins(0/2)

here r is the gamma function of its argument.
The calculation of Eqs. (2.9) and (2.6) will give re-

spectively the direct- and exchange-scattered amplitudes
in our approximation. These will be compared with the
results obtained from Eqs. (2.8) and (2.4) which have
been computed by Corinaldesi and Trainor. '

X DIRECT SCATTERING

The integration of (2.9) with respect to the rs
coordinate can be ~done immediately, and yields

fs, ———
~

exp[ —2y&+z(kp —k ) rr]

X,P,(—i/k, 1, z(ky, +k„r,))
1

X 1+—rFr( s/k, 1, i—(kyr —ks rr)) drr

S2 f

+— exp[i(ks k)—rt]

1
X,F,(—z/k, 1, i(ky, +k„r,))—

X rFt( i/le, 1, i(kyr——ks rt)) drt+R. (3.1)

The second and third terms of Eq. (3.1) may be con-
sidered in a diferent context. Suppose one considered
the scattering of an electron by a positive and negative
charge of the same magnitude situated at the same
point in space. If now one evaluates the scattered
amplitude in first Born approximation, using as the
unperturbed problem the potential due to the positive
charge alone, then the result is just the sum of the

4 S. Borowitz and B. Friedman, Phys. Rev. 89, 441 (1953).' A. Sommerfeld, Wellenmeckane7e (Frederich Ungar Publishing
Company, New York, j.939), p. 502; H. A. Bethe and G. Breit,
Phys. Rev. 93, 888 (1954).' A. Corinaldesi and P. Trainor, Nuovo cimento 2, 940 (1952).
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second and third terms of Eq. (3.1).This sum is not zero,
due to the crudity of the erst Born approximation.
Obviously, however, the scattering due to this configur-
ation, if calculated exactly, would vanish. Therefore
we feel justified in considering the second term in Eq.
(3.1) as cancelled by the third.

The first term of Eq. (3.1) then gives us the sym-
metric-scattered amplitude. We write this as

(Erdelyi, s p. 112, formula 14 with nt =0). Here
4(x) =I"(x)/I'(x). To the highest power of k,

sFi(1+i/k, —i/k, 1, 1—e)=r (1yi/k)r (—i/k)

X[ 2q+—e ( i/k—)O(1+i/k) J, (3.8)

where y= Euler's constant=0. 577215 . . But

where
fp.= (&'/—w) (Io+Ii) (3.2)

r (1+i/k)r (—i/k) =
sinh(pr/k)

(3.9)

Ip ex——pt —}r+i(kp—k ) r]
X iF i(—i/k, 1, i(kr+k„r))

d7
XiF,( i/k, —1, i(kr —kp r))—

Ii= —&~p/~~
I
i=s.

X=2)

(3.3)

(3.4)
are

—y+ —coth(pr/k) —loge
z

(Erdelyi, ' p. 3), and

0'(—i/k) —4'(1+i/k) = ( /sri) coth(pr/k) (3.10)

(Erdelyi, ' p. 15). Consequently,

sFi(1+t/k) 1, 1—e)

sinh(sr/k)

Using a method introduced by Sommerfeld, ' we have
computed the integral Io, the result is

——cosh(sr/k) ——1 (3.11)

4 (k+-'9,)'
~7r / le

4k' sin'(8/2)+X' 4k' sin'(ll/2)+X'

XsFtI 1+i/k, i/k, 1, —
E.

(3 5)
4k' sin'(0/2)+X')

where 2F& is the hypergeometric function of its argu-
ment.

&rom Eqs. (3.4) and (3.5) one could calculate fp,
exactly; but we are interested only in the highest power
of k in fp, To find thi. s we first investigate the highest
power of k in Io. This involves the reduction of the
hypergeometric function 2F&. We set

(3.6)

d ( i
X—sFiI 1+-, ——,1,

dg
1——

4k' sin'(0/2)+}i')

4 (k+-,'i}t)'

4k' sin'(0/2)+}~' 4k' sin'(fl/2)+) '

( i) ( i ) ( i i
XI 1+- II

——
I sFiI 2+-1——2

k) & ki & k

to the highest power of k.
The contribution of Ij can be evaluated from Eq.

(3.4). Di8erentiating the coefTicient of the hypergeo-
metric function gives terms of lower order in k than those
we have considered. Hence we must differentiate the
hypergeometric function. We obtain

4(k+-'iX) s

4k' sin'(fi/2)+}i'

then we have

sFi(1+i/k, —i/k, 1, 1—e)

r (1+i/k)r ( i/k) -=o—

(1+i/k) „(—i/k)

8}tk' sin'(0/2)
(3.12)

4k sin (g/ )+)P~ L k sin (g/2)+

(Erdelyi, ' p. 102). Hut

sFi(2+i/k, 1 i/k, 2, 1—e)—

( 1)n
X I 2+(1+n) +(1+i/—k+n)

++( i/k+n) —loge je",—(3.7)
' I am indebted to Professor Zumino for this remark. A direct

calculation of the second term of Eq. (3.1}gives an infinite result
when

~
kp

~

=
~
k„~. This is related to the fact that plane waves

cannot be generated by iterating with hydrogenic wave functions.' A. Sommerfeld, reference 5, pp. 503—506. A. Nordsieck
/Phys. Rev. 93, 785 (1954}g has also computed the integral Ip
and obtained the same result as we did. Nordsieck has con6ned
himself to the case where ) is small. However, his result can be
shown to be valid for all positive ).

er(2+i/k)r(1 —i/k) (1yi/k)( i/k)—
(2+i/k) „(1—i/k) „

x p I +(1+n)y+(2+n)
(n+1)!n!m=0

0'(2+i —/+k)n+4(1 i/k+n) —loge5e" —(3.13)

Erdelyi, Magnus, Oberhettinger, and Tricomi, Higher
Transcenderttat FNnctepns (McGraw-Hill Book Company, New
York, 1953), Vol. I.
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(Erdelyi, ' p. 110). Now we restrict ourselves to the
highest power of k, and use Eq. (3.9) and the fact that

which is related to J&' by

J,'= —aJ,/an l.=i. (4.7)

0
k' sin'(0/2)+1

(3.16)

e(1—i/k) —e(1+i/k) = — +rr cot(~i/k) (3.14)
i/k

(Erdelyi, ' p. 16) to obtain

2F, (2+i/k) 1—i/k) 2, 1—e)—2. (3.15)

Thus the contribution of Ii to fo is of the order of
1/k' with respect to the Io. To find the contribution of
Io to fo, we substitute Eq. (3.11) into Eq. (3.5), and
substitute the result into Eq. (3.2); using Eq. (2.7) we
obtain

We may proceed similarly for Eq. (4.5). Then we obtain

g2 p g2 dK
gp,

——
I J,(n, K)J,(P, K)

2~4 BnBP Z'
(4.8)

The difficulty in evaluating the integrals correspond-
ing to J~ and J~ lies in the fact that two distinct and
variable angles are involved, namely the angles between
(K—k„) and r and between k„and r. We can circum-
vent this difhculty by using an integral representation"
for the conQuent hypergeometric function. This yields

to the highest power in k. This is precisely the result 1 (
to the highest power in k which is obtained when one J'= . l~ I exp( r(n+iku)

2~i i u+1&
uses the asymmetric perturbation. '

4. EXCHANGE SCATTERING
+i[K—k„(1+u)) r)rdrdQdu, (4.9)

where the integration in I space is a path surrounding
the points 0 and —1. The space integrals of Eq. (3.1)
are now readily evaluated to give

The exchange-scattered amplitude in erst-order
perturbation theory, with 1/r» as the perturbation,
is given by Eq. (2.6). In order to evaluate this integral
we 6rst introduce the Fourier transform,

1 1 ( exp[iK (ri—r&)]
dK.

E z6ry2 2x' &

1 ( u q'I'1 4n.
du,

2rri (u+1& u $ fu—[In what follows we will omit explicit mention of the e

in Eq. (4.1).) Equation (2.6), then, becomes

g2
go

——— ' exp[ —ri+i(K —k„) ri —r2 —i(K—ko) r2]
2~4~

(4.10)

where
P= (n'+

l
K—k. l '),

i = [2(K,k„)—k' —ink].
(4.11)

X iFi( i/k, 1, i(kr~ ——ko'r2))
dK

X iFi(—i/k, 1, i(kri+k ri)) dridr2 (4.2).
E2 Now as u~ ~ the integrand of Eq. (3.2) tends to zero

as 1/u'. Since P/t does not lie on the real axis between
—1 and 0, we may evaluate Eq. (4.10) by the residue
theorem; we get

Equation (4.2) can now be separated into a product of
functions of r~ and r2.

1 (' u q'i'1 4x
Ji=

l l du,
(4 1) 2rri (u+1& u (n+iku)'+[K —k„(1+u))'

N' r dK
go= — Ji'(K) J2'(K) z'' (4.3)

4~(

p Ep+|&
(4.12)

where

Ji'(K) = exp[ —ri+i(K —k„).ri]

X iFi(—i/k, 1, i(kri+k„ri))dri, (4.4)

J2 (K) =
~

exp[ —r2 —i(K—ko) r2]

X iFi(—i/k, 1, i(kr —kp r2))dr, . (4.5)

Instead of evaluating Eq. (4.4) directly, it is simpler
to evaluate the integral

Jl(n, K) = exp[ —nri+i(K —k„) ri)
J

XiFi(—i/k, 1, i(kri+k„ri))ridridQidg, (4.6)

Since we wish to find BJi/Bnl i rather than J, we
differentiate Eq. (4.12) with respect to n and set the
derivative equal to 1. The result is

(1y l
K—k„l2)2

(E'—(n, K)(k+i) ) ( (4»)E' (k+i)' ) E g+j&—
Here n is a unit vector in the direction of k„. By a

"See A. Sommerfeld, reference 5, p. 461.
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similar procedure we obtain

BJ 16 pE' (n—„K)(k+i)y (
aP e i=(1+[K kol')' & [X'—(a+i)'] & E(pyro&

where $p and fp are related to kp as $ and f to k„.
Now using Eqs. (4.8), (4.13), and (4.14), we obtain

(4.14)

1281Vs
t
dK E4—E'(k+i) [(no,K)+ (n, K)]+(k+i)'[(no, K) (n, K)] t' 5 ) ""( $o

go, ———,. . . , I [ I I (4»)
pr' " E' (1/ [K—k [')'(1+ [K—4[')'[&'—(k+i)']' &6+t & &So+i 0&

It is interesting to compare Eq. (4.15) with the corre-

sponding term that would arise if one were to compute
the matrix elements of 1/rip using plane waves instead
of hydrogenic continuum functions; this term is

32!dK 1 1
go . (4.16)E' (1+ [.K—ko[')' (1+ [K—k„[')'

The differences between Eqs. (4.16) and (4.15) which

can be identified are: (i)—that Eq. (4.16) contains a
normalization constant Ã2, which tends to 1 as k—+~;
(ii)—Eq. (4.15) contains an extra term [E'—(k+i)']'
in the denominator; this is the sort of term that would

arise from the matrix element of 1/rip between outgoing
spherical waves of the form e'""/r; and (iii)—Eq. (4.15)

contains the factors [$/($+f)]"" and [$p/($p+t p)]@",
which resemble terms that might come from a logarithmic
phase factor at in6nity in the asymptotic form of the
continuum hydrogenic wave functions. We shall now
show that if, as in the present study, we consider only
the highest power in k in go„we may replace the last two
factors in Eq. (4.15) by unity. First we note that since
the integral is absolutely convergent we may expand
[P/(P+t')]'~s and [$p/(fp+i p)]'" The. result of this
expansion is 1+5, where S is a complex number whose
real part is & 7r/k and whose imaginary part is
((p/k) logk, with p finite. Since both these terms
approach 0 as k—+~, we may neglect 5 in investigating
the k-dependence of go, as k—+~.

Now, replacing [$/(P+f)]'!" and [Pp/(Pp+fp)]'~" by
1 in Eq. (4.15), we have the approximate expression:

128Ã t dK (K4 K'( k—+i)[(np, K)+ (n, K))+ (k+i)'[(np, K) (n, K)]q
ap=— E' 4 (1+ [

K—ko [')'[E'—(k+1)']'(1+
[
K—k~ [')'

(4.17)

which we shall now proceed to evaluate exactly. Equation (4.17) may be simplified somewhat and then written
in the more tractable form

gOS
——128Ã'

I
1 (k+i)'

dK
PE' (k+i)'](1+ [—K—kp[')'(1+ [K—k„[')' [E' (k+i)']'(1+—[K—kp[')'(1+ [K—k„[')'

(k+') I (",K)+(,K)] (k+i)'(kp, K) (k, K)
+ . (4.18)

[X'—(k+i)']'(1+
[
K—ko [')'(1+

[
K—k„[')' E'PK' (k+i)']'(1+

[

—K—kp [')'(1+ [ K—k„[')'

The four terms of Eq. (4.18) will henceforth be designated as integrals I, II, III, IV respectively. These integrals
can be evaluated by the method developed by Feynman. " In this technique terms of the form 1/A, . A„are
replaced by integrals, as follows:

Ag A„ [A@i +A „x„]"
b(tx +xi+s' x~ i)dÃi ' ' 'dg~

= (~—1)!,~, )0.
J

(4.19)

Our denominators in Eq. (4.18) do not occur to the first power, but can be put in the form (4.19) since

1 I'Si S(xi+so' '+s~—1)dpi' ds~
= (—1)'—'(e+s —1)! x;)0, i= 1, 2, e. (4.20)

A2 A„ [A pp, + gA „x„]-+

Also, the terms in Eq. (4.18) containing (np, K) in the numerator can be put in the form (4.19) using the identity

(np, K) 1 t) 1

[1+%'—2(K,ko)+k']' 2 Bkp [1+%'—2(K,ko)+k']
"R. P. Feynman, Phys. Rev. 76, 769 (1949); R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

(4.21)
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Using Eqs. (4.20), (4.21), and (4.19), Eq. (4.18) becomes

$2$35($7+$2+$3 1)dx,d$2d$3dKI=4| t'

~ {tZ' —(k+2)']s,+([K—k,
t +1)s,+([K—k.

f
+1)s,}

II $7$2$3& ($7+$2+$3—1)d»d$2dxod K

(k+i)' " {L&'—(k+i)2]$3+(~K—ko~'+1)$2+(~ K—k„~2+1)$3}3

$3$3&($7+$2+$3—1)d$7d$2dxod K1

2 ~ko " {L&'—(k+i)']»+(1+X'+k2 2—(K,ko))x y(1+
~

K—k„~')$,}3

(4.22)

(4.23)

IV

(k+i)'

1 $7$28($7+$2+$3—1)d$7d$2d$3dK
4I, '

(4.24)" {I&'—(k+i)']$7+(1+
~
K—ko~')$2+[1+X'+k2 —2(K k„)]x,}3

1 8 8 $45($3+$2+$3+$4—1)d$7d$2d$3dK
-41

4 &ko &k~ " {&'$3+L1+E'+k'—2(K,ko)]$2+L1+E2+k'—2(K,k„)]$3+tE' (kyi) —]2$}4'

x, &0. (4.25)

We now follow the Feynman technique exactly in evaluating Eqs. (4.22)—(4.25). As an example of the use of this
method we have computed Eq. (4.24) in detail in Appendix I. The others are computed by a straightforward use
of the same method. We obtain

15~' 1 N2 ~2

I=—— ds ' dv

(k2P) 7/2 J J (~ 7/2) 7/2

—1057r2 p2 I' /
" (u2 —7/2) (1—u)-

dl d8
128 k7/42/2J ~ (4o—r2)2/'

(4.26)

(4.27)

III=—
1057r2 p t'

I
" (u' 7)(1I2—u)u-—

(1—
/4) du d7/

64 k /4'/' & J (o/ —7/2) 2/2
(4.28)

37r2 1 1 ~1 pe
IV=+ (1—2/) ~ du

64 (k+i)' (k2/4)'/2
d7/(u2 —7/2)—

- (~—&')'" (V—o')"'

(u' —o2) (1—u)- 15~2 1 1

+ du d7/ + — ~ du I d7/(u2 —7/2) [u2 (1—/4)2 —/427/2]

128 (k2/4) '"~ J (o/ —7/2) 7/2 64 p2 (k2/4) 7/2 J J

1 1 1057r' 1 1 /' /
~ (u' —7/') Lu' (1—p) 2—p2o2] (1—u)-

X dQ dw-
(4o—7/ ) /2 (& „2)7/2 128 k7 &2/2. (o/ —,7/2)'"

(4.29)

In Eqs. (4.26)—(4.29) the following symbols have been
used:

/4= (1—cose)/2= sin'(t//2),

where 0 is the angle between ko and k„;
(4.30)

p = 1+i/k;

o/ = u2 —(1/p) (u —p)',

~=( /~)E (~—1)+(1+1/k')].

The integrals (4.26)—(4.29), while elementary, are
extremely laborious to compute. We shall restrict
ourselves in what follows to computing the terms

corresponding to the highest power of k in the result.
Superficially, one might draw the conclusion that go,
behaves like 1/k7 as k—+oo, since the only dependence
of k in the integrands arises from terms which go to
zero as k—+~. However, more careful examination
shows that the integrals have a singularity at n=1
when k—+~ and thus depend strongly on k.

The terms containing the highest powers of k in
Eqs. (4.26)—(4.29) are those which have the highest
powers of (&o

—u') in the denominator. Accordingly, we
will examine the k-dependence of Eqs. (4.21), (4.27), and
the last line of (4.29). When we do this the validity of
the above statement will become obvious.

First we carry out the e integrations and retain
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terms only to 1/(o/ —u')'"; we get

II=—105m' p' 2 Q 12 I
duu'(1 —u) — +—

128 k' p'"~ p 7 oo(oo u2)7/2 35 ~2(o/ u2)o/2

2 1 2 1—u(1 —u) — +—
7 (o/ —u')'" 35 &o(oo—u')'"

105or' p' 1 /'4 (u' u4)—dn
+terms O((oo —u') '")

128 k' p'" ~o 35aP((o —u')"'
(4.31)

Similarly,

and

105~' p 1 I'4 (u4 u—')du
III= — — (1—n) —— +terms O((oo —u') o/')

64 k7 9/2 g 35 ~2 (~ u2) 5/2

105or' 1 1 /' 4 (u' —u')du /
' u —u'

2 —32IV= — — (1—p)' — + — du+terms O((&e—u') '")
128 k'n'" .~o 35 oo( oo u')'—" ~o (o/ —u')'"

(4.32)

(4.33)

7r2 11
II+III+IV4 —— [3 p'3 k'p»1 (4 35)

128 k4 p,
'du (u" u "+—')

)
"o (u —u, )'(u —u,)'(n, —p)

(4.34)

To And the highest power of k when p, =0, it is most
convenient to return to Eqs. (4.26)—(4.29) and to
set p, =0 there. Again we find that II, III, IV4 contribute
to the highest power of k; the result is

where

If one now substitutes the value of &u from Eq. (4.30) and (u —p) '. If these are integrated we get
into Eqs. (4.31)—(4.32) one obtains integrals of the form

If k'p)&i, then the highest power of k arising from
terms of the form (4.34) comes from the upper limit
when (u —p) " is integrated after Eq. (4.34) is decom-
posed into partial fractions. In this case, the k-depend-
ence of the other factors can be neglected. However, if
k'@&i, then there will be a strong k-dependence arising
from terms of theform (u —u~)- or (u —uo) . Instead
of investigating this explicitly, we will determine the
k-dependence of go in this range by evaluating Eqs.
(4.26)—(4.29) for @=0.

After decomposing Eqs. (4.31) to (4.33) into partial
fractions, we consider only terms of the form (u—p) '

II+III+IV4= 5or'/128 n =0. (4 36),

1 3
go,

—————1, k'p, )&1;
k' p,

' (4.37)

gos= 5) (4.38)

Corinaldesi and Trainor' have computed the elastic
exchange scattered cross section, with 2(1/r~ —1/r~o)
as the perturbation using Eq. (2.4). Their result, to
erst approximation, is

Inserting Eqs. (4.20) and (4.21) into the expression for
go„we have

gos=
16 1 k4 tan '(k'p)'/o

+2k'
(1+k')' (1+k')' (1+k'p)' (k'p)o/'

1 3+2lPn 2+-
[kon(1+koan) j2 (1+koan)2 (k2p)1/2

tan '(k'p)'/o (4 39)

In order to compare this with our result [Eqs. (4.37)
and (4.38)$, we select the highest power of k from
Eq. (4.39), and this gives

go ——
i

16——i, k'n))1;
k' E p'3

(4.40)

go,
———1/k', p =0. (4.41)

5. DISCUSSION

If we were to compare the symmetric and the asym-
metric perturbation procedures, we would expect that

the former would, give results closer to the exact
solution than those obtained by the asymmetric method. .
There are two reasons for this. First, the symmetric
perturbation method includes more of the interaction
in the unperturbed Hamiltonian. Second, the formula
given for the exchange scattered amplitude, using the
asymmetric perturbation procedure, gives a result
different from zero even when the interaction between
the two electrons vanishes, whereas the symmetric
perturbation does give a zero result under these circum-
stances. This would indicate that the first-order
approximation is much poorer in the asymmetric
method in the symmetric one.
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The results for the two diferent approximations can
be compared by considering Eqs. (4.37), (4.38), (4.40),
(4.41), and (3.16). The meaning of these equations
can be stated as follows: The direct-scattered amplitude
is the same to the highest power of the energy when
one uses either perturbation scheme. The fact that
more of the interaction is included in the unperturbed
Hamiltonian results in some additional terms, but
they vanish as k—&~. The results for exchange scatter-
ing, however, exhibit quite di8erent energy dependences
in the limit of infinite k in the two different procedures.
Since, as has been indicated above, the results using
the asymmetric perturbation procedure are obviously
incorrect, we feel that the results for exchange scattering
that we have obtained must be more accurate.

In three-body scattering problems such as the scat-
tering of neutrons by deuterons, where the masses of
all three bodies are comparable, one cannot employ
the symmetric perturbation procedure, and whatever
calculations have been made in the Born approximation
have used the asymmetric scheme. If the conclusions
arrived at here could be extrapolated to these problems,
there must be some doubt as to the validity of the
results already obtained for those cases where exchange

scattering plays a signi6cant role. For such problems,
other approximation methods should be investigated.

The direct-scattered amplitude in the case of elastic
scattering by hydrogen atoms is so much larger than
the exchange-scattered amplitude, that there is no
possibility of verifying experimentally the theoretical
difference between the results of the symmetric and the
asymmetric methods.

There is a possibility, however, of checking experi-
mentally the eBectiveness of the type of perturbation
method presented here. Corinaldesi and Trainor' have
shown that some inelastic scattering processes have
approximately the same energy dependence for the
direct- and exchange-scattered amplitude. If the sym-
metric perturbation theory will alter substantially the
exchange-scattered term for this process, then an
experiment measuring the cross section for this process
will enable us to choose between the t~o formulations.
This investigation is being undertaken.
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APPENDIX

xlx3~(x1+x2+x3 1)dx1dx2dx3dK1 8 f
41

k+z 2 Bko " {[E'—(k+z)']x~+[1+K'+k' —2(K,ko)]x2+[1+
~

K—k ~']x3)'

1 8 xgx28 (xg+x2+xs —1)CxgCx2dx3d K
(A.1)

2 Bk„& {[E'—(k+i)']xg+(1+ ~K—kp~')x2+[1+E' —2(K,k„)+k']x3)'

Now we let P= K—kox2 —k„x3 and carry out the integration with respect to x&. Then we differentiate with respect
to ko and k to obtain

We carry out here the detailed evaluation of the integral (4.24) because it exhibits not only the method of
Feynman, " but also illustrates how we handle the additional complication of diGerentiating with respect to ko
and k„. We repeat Eq. (4.24) here:

where t=cos8
(k+i)

t. (1—(x,+x3))x~x~ (x2+x,) (1+P)Cx2dx, dP
= —5 |k

(P2+Q+2) 6

Q'= 4k'x2x3p —[k (xg+ x3) —(i+i)]'.

(A.2)

We now can carry out the integrations with respect to P immediately, to obtain

105vr' p' t'—" (xg+x3) (1—(x2+xa))x2xaIII= — k(k+i)(1 —~) I dx2 I dxs
J() [4k'x2x3p —(k(x2+x3) —(k+i))']'"

Now let x2+xa= u, x2 —*3=v. Then

105~' p (u' v') (1 u—)u-
III=— (1—p) du dv

64 k'p" " J ((o—v')'"
This is the result given in the text.

(A.3)

(A.4)


