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indicative of a critical ordering temperature is observed
above 50'K.

When no external magnetic field is present, the
torsion modulus has a minimum near 105 K, Fig. 2,
but this disappears when the sample is saturated. It is
thus a domain wall motion e8ect and is associated with
changes in magnetostriction and permeability.

The longitudinal internal friction was also measured
near 275 kc/sec. The measurements, not shown, are
less reliable than those for the lower frequency since

the experimental conditions were not as satisfactory,
but the internal friction appeared to peak at a tempera-
ture 3 to 7' higher than the 83-kc/sec measurements.
This corresponds to an activation energy of between
0.055 and 0.026 ev per electron jump. The value
obtained from ferromagnetic resonance line widths' is
within this range.

The authors are indebted to W. C. Ellis, J. K. Gait,
and E. E. Schumacher for helpful discussions and
encouragement.
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An exact theory of impurity states in crystals is developed, and an evaluation is given of the applicability
of the Wannier equation to the donor states in Si and Ge in view of the multiple energy minima in the con-
duction band. The theory is extended to include degenerate bands, and it is shown by two different methods
that the Wannier equation is to be replaced by a set of coupled wave equations. The theory is applied to
acceptor states in Si and Ge. The agreement with experiment is fairly good for both donors and acceptors.
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ionization energies of the shallow donor and
acceptor impurity states in silicon and germanium.
The ionization of these levels is largely responsible for
the charge carrier concentrations observed at room tem-

perature and below. The central experimental facts' are
that the approximate ionization energies of electrons
associated with pentavalent substitutional impurities
are 0.04 ev in Si and 0.0i ev in Ge, and the ionization
energies of holes associated with trivalent substitutional
impurities are about 0.05 ev in Si and 0.01 ev in Ge.
The general picture which one has of the donor and
acceptor ground states is that their wave functions are
spread out over a hydrogenic 1s orbital with a large
effective radius, of the order of 20 A or more. The loose
binding is thought to be the result of the high dielectric
constant of the crystals and the light effective masses of
the carriers. We recall that the radius Ro of the first
Bohr orbit of an electron of mass no~ moving in a medium
of dielectric constant e around a fixed charge

~ e~ is

Rs = ek'/m*e'= (em/m*) aH,

where an ——k'/me' is the usual Bohr radius. As an
example, R0=50aH=25 A if e=16 and no*=0.3m. The
eGective nuclear charge is taken as &e for pentavalent
or trivalent substitutional impurities in silicon or

germanium.
Our interest in the problem was heightened by the

striking circumstance that in both Si and Ge the ioni-
zation energies of donors are approximately equal to the

' See, for example, J. A. Burton, Physica (to be published).

ionization energies of acceptors. This is the more re-
markable because the forms of the conduction and val-
ence bands are known from cyclotron resonance experi-
ments' to be entirely different from each other. The
principal energy bands for silicon are shown in Fig. 1.
The conduction band energy surfaces are spheroids in
k space along (111)axes in Ge and along (100) axes in

Si, of the form

— 2m1 2m2

The numerical calculations given below suggest that the
apparent equality of donor and acceptor energies is only
accidental, without fundamental significance.

IMPURITY STATE THEORY

The unusual character of the energy surfaces in Si
and Ge makes one hesitant about applying the Wannier
theorem4 without further examination. We have

~ For a review of this work, see papers by Kip, Lax, and Kittel,
Physica (to be published).

s Dresselhaus, Kip, and Kittel, Phys. Rev. 95, 568 (1954).
e G. H. Wannier, Phys. Rev. 52, 191 (1957);J. C. Slater, Phys.

Rev. 76, 1592 (1949); G. F. Koster and J. C. Slater, Phys. Rev.
95, 1167 (1954); for further references, see J. Friedel, J. phys. et
radium 15, 28 (1954).

where Ak= k—k;, with k; at one of the set of equivalent
energy minima. The valence band energy surfaces for
both crystals consist of two Ruted or warped spheres'
degenerate at k=0:

Z(k) =Ak'& $8'k'+C'(k, 'k '+k 'ke'+ke'ke') j'*. (2)
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where
SCIIPI,' ——E'(k)P '

$~1—I I (r)Siir r

(4)

(~)

is the Bloch function with wave vector k and belonging
to the lth energy band. The solutions%' of the perturbed
problem may be expressed as sums over the complete
set of fI,'

P a
L,k

We substitute this expansion in Eq. (3), multiply
through by 4* and integrate over coordinate space. We
find directly

w=Q
I
aI,II'EI(k)+p p aI, '*aI,I(1tI, ' livpI, ') (7)

l, k l', k'l, k

It is useful to expand the perturbation in a Fourier
series:

developed a method for determining the applicability of
the Wannier theorem and for estimating the importance
of the corrections associated with the multiplicity of the
conduction band energy minima and the approximate
degeneracy of the valence band energy surfaces. Our
general method is exact in principle and leads to an
enhanced understanding of the Wannier theorem.
After completing our development we found that the
basic idea had been anticipated in one of the methods
given by Adams. s Our development is more revealing
for the present applications, which have not been con-
sidered previously.

The line of attack is to compare the Wannier CBective
Hamiltonian in a plane wave representation with the
exact Hamiltonian in a Bloch function representation.
The Schrodinger equation of one electron in the
pcrturbcd pcrlodlc lattice is

(x,+~v)e= we,

where Ko refers to the unperturbed lattice and 6V is the
perturbation. The equation of the unperturbed problem
ls

Q
LLI

LLI

appropriate reciprocal lattice vector to bring it into the
central zone.

We have now the result

W=Z
I aI, ' I'E'(k)+Q Q Q aI+K'*aI, 'bKAI+I I,

" (11)
l, k l l, k K

where

~ir~K, Ir
= J" I+I (12)

It is to be emphasized that Eq. (11) is an exact result.
The energy eigenvalues may be found as the roots of the
secular equation associated with the diagonalization of
Eq. (11).

The Wannier equation follows when a simple and
revealing assumption is made. We know that, by the
orthogonality property of the Bloch functions,

Thus, if we may neglect'K in Eq. (12), the fundamental
equation (8) becomes

lV= 2 (2 I aI,' I'EI(k)+p p aI,+I'*aI,'bK). (14)

0
WAVE VECTOR IN [IOO] OIRECTION

FxG. 1.Energy band scheme for silicon as determined by cyclotron
resonance. The bands will not really cross.

The matrix element in Eq. (7) may now be written

f'

(fi, ' 5VQI, ') =Q bK siI,""NI,'e" "'+ +""dr (9).
K 4

It is the well-known property of periodic functions that
the integral cannot be diferent from zero unless

k'= k+K. (10)

We use the reduced zone convention, according to
which all wave vectors k and k' lie in the central
Brillouin zone. If the sum k+K would lie otherwise
outside the central zone, we may subtract 2x times the

' E.N. Adams II,J.Chem. Phys. 2013 (1953);see also S.Pekar,
J. Phys. (U.S.S.R.) 10, 431 (1946).

In this approximation diQ'erent bands l are entirely
independent. We now show that this equation is equiva-
lent to the Wannier equation.

We consider the problem of a free particle (not in the
crystal) moving in the potential 8V. We take the
effective kinetic energy operator to be E'(—iY), under-
stood to be the same function of —iV as the energy
eigenvalue E'(k) in Eq. (4) is of k. The Wannier
equation in the usual form is

t E'( iV)+fV5y= —Wy.

We can transform this to look like Eq. (14). We con-
sider p in the plane wave representation:

Q a~ISiIr r

k
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Then Eq. (15) becomes

W=Q
( a„'t'Ei(k)+P P a„+I"a,'bK, (17)

and for a Coulomb potential bV 1/r we have

bK 1/K' (22)

lNk+Kr (18)

The following two sections of this paper consider the
applicability of this approximation to our semiconductor
problems.

DONOR STATES

The conduction band edge of silicon consists of six
equivalent spheroids oriented along the set of six
equivalent (100) directions in k space. The conduction
band edge of germanium consists of eight (or four, if
centered at the zone boundary) equivalent spheriods
oriented along the set of eight equivalent (111)axes in
k space.

The first question to investigate is the eGect of mul-

tiple minima in E'(k) on the solutions of the Wannier
equation. The forms (14) or (17) show that the impurity
state problem may be factored into separate problems
relating to each energy spheroid separately if the con-
dition is satisfied that the important ak+K all lie
comfortably within the same region of k space as the
ak from which they originate. In other words, we require
that the sum

p g ~~+I'*~dbK (19)

should group into the appropriate number of separate
parts, each part clustered about a diferent band edge
point k;, with only insignificant cross terms between the
different parts. When this condition is met we can con-
fidently calculate the donor energy by taking one energy
spheroid by itself and know that the resulting value will

not be aGected by including states from the other
equivalent spheroids. The actual eigenstates will involve
all spheroids, but the energy can be calculated from one
spheroid. The eigenstates must transform as irreducible
representations of the symmetry group of the Wannier
Hamiltonian.

We now look into the Fourier coeKcients ak, bK. For
an order-of-magnitude estimate we consider the
analysis of the function

(20)

giving a secular equation identical with the factored
part for the $ th band of the secular equation associated
with Eq. (14).

It is seen that the %annier theorem is rigorous in an
approximation which can be stated precisely, namely,
the approximation that

which led to the Wannier equation. This question
arises, of course, in any application of the Wannier
equation. We restrict ourselves in this section to a
study of the situation in the neighborhood of one
spheroidal energy minimum of the conduction band.

We use the property that it is possible to obtain
u~+K from e~ to the first order in K by the equation

K t'u~'*V'Ni, 'd r
Ng+I'=mg' —(~7P/m) p N~'. (24)

Ei (k) Ei' (k)

The normalization is not aR'ected to first order in K, so
that

(25)&~+I ~"=1+0(&')
However,

i5' K t'uj, 'Vui, '"dr
&k+I, k"=&i i+— +0(&'), (26)

m E'(k) —E'(k)

while in this approximation the effective mass tensor is
given by

(1 q 8;; (fPq 8'

, I
=—+I —,I(m*);; m Lm') BK;BE;

~

K t'u, '*V+„'dr ~'

xg
E'(k) —Ei'(k)

(27)

We can make an estimate of the right-hand side of
Eq. (26), along a principal axis of the energy surface,
if we make the assumption that perturbations by
a single band l' determine the effective mass in the
band /; we also assume for convenience that (1/m*)
(((1/m). Then, in the principal direction,

m' (t'~, ~ *V~,idr )2

(28)
m* m' E'(k) —E'(k)

We note that bKE'dE is constant. It is now obvious that
the convergence of the sum (19) is excellent when
hap))1. From Eq. (1) we know that Rp is of the order
of 50aH, while the values of (Dk)p connecting separate
energy minima of the conduction band are presumably
of the order of 2x times the reciprocal lattice parameter,
or (Ak)p 0.5/uH. Therefore (hk)pRp=25, assuring good
convergence for the donor ground state problem when
solved around a single energy minimum with a surface
of the form (1).

Having disposed of the problem of the multiple
minima, we must now consider the applicability of the
approximation

(23)

ag 1/(1+4'Rp')', (21)

as for the ground state of hydrogen. For this function
the k dependence is given by

Using Eq. (26),

2
LE'(k) —E'(k) g [ A~+K ~"j'

m* A'E'
(29)
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so that
)s'E'/2m*

Z'L

E' (lr) —E' (k)
(30)

mine u and b from

p'+1 2 ' tan 'p
b=3(p'+1)& +—

a= (p'+1) lb.

The results were as follows:
For e—Ge with 0.~=2.58, o.2

——0.082, ~=16:impurity ionization energy '
(31) 8"p= —0.00905 ev, u'= 0.135, P=0.0174.

For e—Si with a~=1, o.2=0.2, &=12:

8'p= —0.0298 ev, a'= 0.216, b'= 0.0729.

Using the four-parameter variation function,

P=N)a+ bx'+ c(y'+ z') $ exp( —Pdx'+ e(y'+ z') $&),

band gap, taken at k

so that 6"' may be of the order of 0.1 for Si and Ge. We
are going to neglect it in the calculations reported
directly below, but it is useful to realize that the error
introduced by the neglect may be of the order of 10
percent of the effective potential 5V.

The next question to consider is that of the effective
potential energy. We shall use as the potential energy of
an electron in the field of a donor atom

the energy was not lowered by as much as one percent.
It may be noted that the extent of the Ge ground state
in the ys plane is of the order of 60 A.

(32)5V= e'/er, —
DISCUSSION OF RESULTS

The range of K of importance is of the order of 1/Rs, and
where Ep is the orbital radius. We can expect therefore
for the important terms,

Kf p

exp{ Lasgs+b2(y2+z2)]$/» } (34)

where rs ——el'/me'. We obtain

(me4 ) p'+1 2 '(tan 'pp'
Ws= —3( ( (p + 1) y—

( (, (35)&2''i n, n, E p i
where p is to be chosen to minimize TVp. We then deter-

where e is the dielectric constant. At the relevant
energies (W;, ;„s;, «Ws, n) the static dielectric con-
stant may be used. We are not aware that a careful
analysis has ever been carried out of the applicability
of Eq. (32) to the circumstances of the present problem.
It is tempting to let e—+2 for small r well within the
outer shells of the donor atom. We are not entirely
certain, however, that the Wannier equation can be
used to describe e8ects so restricted in range. Pauling
gives the ionic radius of P'+ as 0.34A, so that at this
point e'/r is much greater than the important interband
energies. There is undoubtedly some increase in binding
and a pileup of charge near the donor nucleus, but we
will have to omit these eGects because we do not yet
know how to treat them with a rigor comparable to that
of the rest of the present calculation. The eigenvalue
equation is

5' 1 c)' 1 t' r)' r)' ) c'
+

~
+

~
q~wy,

2rrs ar r)xs rrs L. rlys r)z'I Er

where m;*=a.;m. This equation is not separable com-

pletely for o.&/o. 2. We determine an upper bound to the
ground-state energy 8'p, relative to the bottom of the
conduction band continuum, by a variational calcu-
lation. The variational function was of the form

Burstein, Oberly, and Davisson' report that the donor
ionization energy in silicon is 0.04 ev, based on measure-
ments of the infrared photoconductive response. Morin,
Maita, Shulman, and Hannay' report for Si the values
0.039 ev for P donor atoms; 0.049 ev for As; 0.039 ev
for Sb. Their values are derived from Hall coeKcient
data. A representative experimental value may be taken
to be 0.04 ev, although it is not clear why the arsenic
donors give 0.049 ev. Our calculated lower bound to the
numerical value of the ionization energy is 0.030 ev and
is in fair agreement therefore with the observations.
There is some uncertainty in principle in the interpre-
tation of all the observations.

Burton ' reported at the 1954 Amsterdam conference
on semiconductors the following ionization energies for
donor atoms in Ge, based on Hall eBect measurements:

P, 0.0120 ev; As, 0.0127 ev; Sb, 0.0096 ev.

The calculated lower limit to the ionization energy is
0.0090 ev. This is also somewhat lower than the experi-
mental values.

ACCEPTOR STATES

As shown in Fig. 1, the valence band actually consists
of two bands which are degenerate at the center of the
Brillouin zone; there is also a third band. which at the
center of the zone is lower in energy by the amount of
the spin-orbit coupling energy. To terms in k', the
energy surfaces are described by

(Q)
—+$2~ [+sjp+Q2(p 2$ 2

+k„'k,s+k.'b, ')jl, (36)
s Burstein, Oberly, and Davisson, Phys. Rev. 89, 331 (1953).
r Morin, Maita, Shulnran& and Hannay, Phys. Rev. 96, 833(A)

(1954).
J. A. Burton, reference i; T. H. Geballe and F:. J. Morin,

Phys. Rev. 95, 1085 (1954).



C. KITTEL AND A. H. M I TCH ELL

and
E3 (k) =—h.+A k' (3&)

for our e bands,
~k, k—K =~jij

where'. is the separation between bands at k=0.
When the energy minimum of a band is at or close to

a point in k space at which several bands are degenerate,
the theory of impurity states has to be revised and the
Wannier equation replaced by a set of coupled diAeren-
tial equations. The unperturbed Hamiltonian and the
impurity perturbation should be in effect diagonalized
simultaneously. We develop the necessary theory below.

We suppose that we have e orthogonal states @p'

degenerate at k= 0. We make an arbitrary choice of the
&0' once and for all. By perturbation theory we obtain a
set of functions Pi, '. To first order in k,

k fiso'*~go'dr
4"= A' —(@'/~) 2 4o' ~"' (38)

E'(0)—E'(0)

The sum is over all bands l, but in our applications the
matrix elements connecting the degenerate functions
Qo' will vanish. It is important to recognize that the
Pi, ' defined by (38) are eigenfunctions of the crystal
translation operator and have the eigenvalue eik'. The
@z' are not, in general, eigenfunctions of the crystal
Hamiltonian Ko. The eigenfunctions iPi, ' of Ko are
linear combinations of the Pi,'..

(39)

The coeKcients c»"may be fairly complicated functions
of k; for this reason our theory is simpler when set up
first in terms of the Pi, '.

We call the pi, ' pseudo B/ock functions, a-s they ob-
viously share some of the properties of Bloch functions.
The functions given by Eq. (38) are approximately or-
thogonal, and, we may treat them as orthogonal for our
purposes. The pseudo-Bloch functions are of value even
in the unperturbed problem, as the secular equation in
the pseudo-Bloch representation is identical with that
obtained less directly with the usual method of Van
Vleck and Shockley.

We now look for a solution to the perturbed problem
in the form

this approximation is better than the earlier one of
neglecting mixing of higher bands. The secular equation
takes the form

W« =Q « ~ (k)+«—K f K) (44)

where
se "(k)=(y, lx, ly, ');

to the second order in k,

X"(k) =2 "5;,+Q B„q&'k~kq,

The secular equation which results from Eq. (46)
identical with Eq. (44). This completes the proof.

It is now desirable to establish a physical interpreta-
tion of the functions U'(r). To do this we must start out
with a new derivation of our modified Wannier equation
Eq. (46). We follow the lines of the usual proof of the
Wannier theorem for a single band, generalizing as
required. We de6ne a set wi of pseudo-Wannier func-
tions for the bands degenerate at k=0:

w„'= w'(x —x„)=E '* Pie '"*"yi,'(x); (48)

yi, '(x) =N—l P„e'"*-
w( xx„) (49)

where p, q run over x, y, s.
We now propose that for degenerate situations the

Wannier equation should be replaced by the following
set of coupled wave equations:

Q 3C"( iV) —U'(r)+CAVU& (r)=W'U'(r), (46)

where BC&"(—iV) is a differential operator derived from
BC&"(k) by replacing k by iV'. We note —that K&' is a
much simpler operator in the pseudo-Bloch representa-
tion @i,

' than in the diagonalized Bloch representation
i','. The proof of Eq. (46) follows readily from the
secular equation (44). We suppose that the U' may be
expanded in plane waves,

Ui(r) P ii ieilr r (47)

%=+ «'Qg'. (40) We look for a solution of the perturbed problem in the
form

We neglect other bands l except as they are already
mixed in the pi, ' by Eq. (38). We are trying to establish
a modi6ed Wannier equation. Taking matrix elements
of 3'.0+SU, we have

(4~'I~0+&Vl+) =«'1V=E «'(A'I~old~')
'b

+2 «"(4~'I~VIP'~") (41)
i, k'

Writing 5V=+bze'"',

(4~'I&VIP~ ') =&K&~,~ I", (42)

where & is defined by Eq. (12).To a good approximation

@=+U'(x )w'(x —x )

~
w '*bU P U'(x„)w„'dx bU(x„) U'(x—„), (51)

S

and at the appropriate stage making use of the fact that
K"(k) is periodic in the reduced zone scheme:

Se&'(k) =Q,A &'(x,)e '" (52)

We treat this function exactly as in the standard deriva-
tion for the nondegenerate problem, using the approxi-
mation (for 8V slowly varying)
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so that
g( s ( lg/'gX) —p Ai'(X )0(— &I& ) (53)

We are led to the set of coupled wave equations

Q;3'."(—i'|7) U'(r)+CAVU&(r) =WU'(r), (54)

identical with Eq. (46). We now have, however, the
interpretation in Eq. (50) of the U' as envelope func-
tions of the pseudo-Wannier functions w'(x —x„).

We have established. above the important result that
for degenerate bands the ordinary Wannier equation is
replaced by the set of coupled differential equations'

(54). We now consider the application to the valence
band edge in germanium and silicon. It is known from
cyclotron resonance that the highest state in the valence
band is 4-fold degenerate and transforms as the irre-
ducible representation I'8, of the cubic group. We have
then to deal with a set of four coupled wave equations,
analogous to the Dirac equations. The band associated
with Fi,(J=—', ) does not mix in.

We choose a system of representation in which the
&f 0' transform as my= $, 2, —~, —$. The matrix operator
becomes, symbolically,

Ak'+Bk, 2+8V W-
Dik, k

Ek '+ Jk+'
0

—Dik, k+
Ck' Bk,'+—SV W—

0
Ek '+Jk+'

Ekp'+Jk '
0

Ck' Bk,2+—6V W-
—Dik, k

0
Ek+'+ Jk '

Dik, k+.

A P+Bk.'+IV W. —
(55)

The constants A, 8, C, D, E, J can be expressed in terms
of three constants F, G, H related to sums of matrix
elements squared over energy denominators. The
relations are known from unpublished work by Dressel-
haus. The constants can be determined from cyclotron
resonance results.

The perturbation 5V= —e'./er is invariant under time
reversal, so that 5y the Kramers theorem the eigen-
values of (54) must occur in pairs. This means that for
real trial functions it is reasonable to take V~= U4,
U2 ——U3. In a magnetic field the Kramers degeneracy is
lifted, and four diGerent functions are required in
principle.

Consideration of the expression (2) for the unper-
turbed energy shows" that the 4)&4 matrix operator
may be factored into two identical 2)&2 non-Hermitian
matrices which do not contain square roots of diGer-
ential operators. The elements of these matrices are

(
3Cii= —A+I B2+ C'

I
V' ————W

3 ) ~r

9 J. M. Luttinger and W. Kohn (private communication} have
found independently a result of this type.

"This factorization was performed by G. Dresselhaus.

1
ae» ——A —

I
B2+-C2

I
v~ ———W

E 3 ) .r
C ( O' 8' 8' )

~12 ~21
I

+M +(d
3' (Bx' By' Ps' )

where oP=1 and A, B, and C are defined by Eq. (2).
If we treat the oG-diagonal elements as perturbations,
we obtain in the zeroth-order approximation two
hydrogen-like equations with diGerent eGective masses.
The larger eGective mass and ionization energy that
we obtain are m~=0.58m, 8'0=0.055 ev for Si, and
m*=0.42m, 8'0=0.022 ev for Ge. A second-order per-
turbation calculation lowered the energy by less than
one percent in both cases.

The result is not reliable, however, as noncommuta-
bility was neglected in the transformation.
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