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three independent groups of workers referred to above, '
a somewhat cursory comparison has been made between
their data and the spin entropy and heat capacity
obtained in the present work. This comparison shows
that at temperatures 1.0~& T~& 1.5'K, a very large
portion of the enormous liquid He' entropy is spin
entropy, while below 1'K the entropy tends to become
overwhelmingly spin entropy. This result is of interest
insofar as it indicates that at low temperatures most
of the "nonspin" degrees of freedom of liquid He' are
already frozen, as one would expect them to be. As
far as the heat capacity is concerned, it is found that
at 0.4'K, about 40 percent of it is of spin origin and
C tends to become its dominant part at T« 0.4—0.3'K.
The characteristic peak of the spin heat capacity might
be detectable in its eGect on the total heat capacity at
temperatures lower than those reached so far. The
qualitative shape of the spin heat capacity curve is,
of course, of permanent significance and is not con-

nected with the analytical approximations used in the
computation of the C, curve of Fig. 1.

It is expected that the experimental workers in the
field of entropy and heat capacity investigations of
liquid He might analyze, in greater detail, their own

respective data with the help of the practically absolute
spin entropies and spin heat capacities obtained above.
These experimental data appear, at the present time,
to be still somewhat of preliminary character.

In conclusion we may thus say that a rigorous
explanation has been given here for the origin of the
very large liquid He' entropy at low temperatures.
This is based on a rigorous evaluation of the partial
entropy and heat capacity of spin disorder using the
experimentally measured nuclear paramagnetic sus-
ceptibilities. It may be expected that the peculiar
maximum of the spin heat capacity becomes observable
indirectly on the total liquid heat capacity at low

enough temperatures.

PH YSICAL REVIEW VOLUME 96, NUMB ER 6 DECEMBER 15, 1954

Statistical Mechanics of Helium II near 1'K*

O. K. Rrcz
Departmertt of Chemsstry, Vrteoerstty of 1Vorth Carols'rta, Chapel Pill, North CaroHrta

(Received August 30, 1954)

It now seems probable that the roton excitations in helium II can be considered to be cooperative motions
of small groups of atoms, the group as a whole being in an excited quantum state. This leads to a very
literal interpretation of the two-Quid hypothesis, and suggests that the entropy of mixing of rotons and
the unexcited atoms be calculated on the basis of the lattice theory of liquids. From this the thermodynamic
properties of liquid helium are deduced, and the degeneracy of the roton energy level (giving the intrinsic
entropy of the rotons) is obtained from the observed specific heat. The change in the thermodynamic
properties of normal fluid (rotons) between O'K and the X point is discussed. Finally the peculiar properties
of the coefficient of thermal expansion are considered in the light of the two-Quid hypothesis.

HE nature of the roton excitations in liquid helium
II has recently been discussed by Feynman' who

concluded that they involve cooperative motions, per-
haps rotations, of a small number of atoms. Somewhat
similar ideas, though differing in detail, had previously
been advanced by Toda' and Matsubara. '

In considering the statistical behavior of the rotons
it has generally been assumed that they can be treated
as though they were a Bose-Einstein gas of particles of
some particular effective mass. This was done originally

by Landau, ' and the thermodynamics of such a system
has recently been considered in some detail by Gold-
stein' who has discussed some of the difhculties which
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11, 91 (1947); see R. 3. Dingle, Advances in Phys. 1, 111
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arise. Landau's treatment is based upon the idea that
the excitations arise from interactions of waves, which
can be represented as excitons or considered as wave
packets. The excitons are assumed to have a certain
e8ective mass and to obey Bose-Einstein statistics.
These assumptions serve to determine the entropy con-
tributed by the excitons, but the effective mass must
be taken as a parameter, and it is difficult to interpret.

Since the roton interactions are apparently localized
over a region containing only a few atoms, it would seem
reasonable to explore some other type of approximation,
such as the lattice theory of liquids. Indeed, the lattice
theory of liquids would seem to be peculiarly adapted
to treatment of the rotons in the region around 1'K
where the rotons are few in number. For in this tern-

perature region the roton, according to the picture
which has been developing, represents a small group of
atoms in a single quantum state (though the energy

may be broadened by interaction with the neighboring
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S„=k ines, (2)

and its free energy (which can be taken as essentially
the Gibbs free energy) is

G„=e—kT lnm. (3)

If the free energy of the superQuid is taken as zero, the
total free energy of the whole system is

G= eG„—TS .

The equilibrium value of e is found by making G a
minimum. Differentiating Eq. (4) with respect to is,

using Eqs. (1) and (3), with the Stirling approximation,
and setting the result equal to zero, we 6nd

e—kT inn'+ (q —1)kT ln(N —eg+is)
qkT ln(N —Ng)+kT—lnis=0. (5)

If the roton concentration is small, i.e., if m is very small
compared. to N, we obtain

g~e—e/k T (6)

The roton part of the specific heat is given roughly
(assuming e is constant) by ebs/dT, hence we write

C= (1Vmes/kTs)e 'IsT—

molecules) and the state of the superfluid substrate
does not depend on the position of the roton. At a
sufliciently low temperature no account need be taken
of more highly excited roton states of the same group
of atoms; probably the only distinction between
quantum states that needs to be considered resides in
their nature and in the number of atoms involved. Thus
there will be some multiplicity of the quantum state,
and we shall as a 6rst approximation consider it as a
degenerate state of energy e and multiplicity nz.

Furthermore, at the low temperatures considered, the
rotons are independent of each other. We thus have two
kinds of entities involved, namely, unexcited atoms and
rotons, or groups of atoms in an excited energy level.
It is seen that this enables us to give quite a literal
interpretation of the two-Quid hypothesis if we say
that the unexcited portion forms the superQuid, while
the atoms in the rotons constitute the normal Quid. We
consider helium II as a mixture of the two, and the
number of different con6gurations of the system will

depend upon the number of ways in which rotons and
atoms can be arranged in order, provided that the
density of rotons is small enough so that the question
of overlapping does not arise. This results in an entropy
of mixing given by

~ (N nq+n)!—y

S =kin]—
L (N —~q)!I! i

where E is the total number of atoms, including those
in the rotons, n is the total number of rotons, and q is
the average number of atoms in a roton. Since a roton
has a degeneracy of ns, the entropy of a roton is

This form is of course very similar to that which is
obtained in Landau's theory; the principal difference
is that the factor in front of the exponential depends
directly on m the multiplicity of the energy states of
the roton, and there is no term which arises from the
translational energy states of the roton, for the simple
reason that we have assumed that the rotons have no
translational energy.

The latt'er point is one that will stand some ampli6-
cation. In Landau's theory, the velocity of the roton is
not the material velocity of atoms exhibiting the excita-
tion, but the velocity with which the excitation is
passed on from point to point. The effective mass is,
therefore, as we have noted, essentially a parameter
which has to be chosen to give the proper entropy of
the rotons, so that we have a factor of the right size to
replace 1Vme'/kT' in Eq. (7) (or it may possibly be
deduced from Feynman's theory). At least in the range
of small density of rotons it is possible to make the
thermodynamic consequences of the two theories coin-
cide by the proper choice of the effective mass, on the
one hand, or the multiplicity factor m, on the other.
If the two theories turn out to be equivalent it will
nevertheless be advantageous to have the value of nz,

which is more readily interpreted.
However, it is one of the properties of superQuid that

it can Qow freely around obstacles, and such obstacles
should include particles of normal Quid. Thus there is
certainly the possibility of bodily relative motion be-
tween the rotons and the superQuid. In this case, the
total energy of the rotons would have the form e+p'/2p,
where p is the momentum and p the effective mass. This
is the same in form as the expression for the energy of
rotons first suggested by Landau in 1941, though the
significance of p is different. If this form of energy is

used, and the rotons are assumed to be freely moving
particles the value of p, required to give the proper
entropy so as to obtain the observed speci6c heat of
liquid helium is just of the order of magnitude expected
for rotons of the size we have assumed. However, it is
known that there is a critical velocity for thin films,
in which the superQuid is moving and the normal Quid

is stationary. This is about 50 cm sec ', while the
average thermal velocity of rotons consisting of 8 to
10 helium atoms, if behaving like an ideal gas at 1'K,
would be at least 1000 cm sec '. Therefore it seems im-

probable that there can be development of an entropy
of translation of the ideal gas type, and I believe that
it is preferable to set up the expression for S in the
form of Eq. (1). The actual bodily motion of rotons
with respect to superQuid, though limited by the
critical velocity, should be quite ample to account for
second sound and the peculiar Qow properties of liquid
helium in the roton region. The whole development sug-

' K. R. Atkins, Advances in Phys. 1, 169 (1952), see p. 189.
It is true that the critical velocity increases as the 61m becomes
thinner, so some question may exist regarding the upper limit.
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gests that quite a literal interpretation of the two-Quid

hypothesis may have considerable validity.
We shall now use Eq. (7) to determine e/k and m.

Using the specific heat data of Kramers, Wasscher, and
Gorter' between 1.0' and 1.5'K and allowing for the
phonon contribution by subtracting 0.0235 T' joule g

'

deg
—', we obtain

e/k = 10.1'K, m= 9.3.

The value of e is of course approximately the same as
the value of the energy increment obtained in Landau's
theory. The value of m is rough since it depends fairly
strongly on e/k. Feynman' has suggested that the
average roton might consist of six helium atoms in-
volved in some kind of cooperative motion. If there
were a range of about nine or ten in the number of
helium atoms involved, this would account for the
value of m. This might indicate that actually, on the
average, eight or ten helium atoms are involved in a
roton.

In making these calculations we have assumed that
the roton concentration is small. It is somewhat tempt-
ing to suppose, however, that Eqs. (1) through (5)
could be used at much higher concentrations (i.e.,
higher temperatures) provided e and m could be evalu-
ated as functions of T. As T increases, higher-energy
levels must become accessible, so the value of e (which
is essentially an average value) and m must both in-

crease. It may be possible to make a rough interpolation,
since the values are known at the P point, where the
liquid is almost pure normal Quid. If there is actually
an average of eight atoms per roton, the value of e/k
corresponds to an energy of about 2.5 calories per mole
of helium in rotons, which is not far from the energy of
liquid helium at the X point, namely, 3.0 calories per
mole, so that relatively little change is found in the
average energy of superQuid over this range of tempera-
tures. Still using eight atoms per roton, we find a
change in entropy from about (E/8) ln9.3=0.55 to
about 1.6 eu (entropy units) per gram atom, corre-
sponding to about a 1.7-fold increase in the number of
available energy levels for each atom, or about a 70-foM

increase per roton of eight atoms. This seems to be a
rather large change and means that as the roton con-
centration increases and some of them coalesce, there
is a disproportionate increase in the number of energy
levels, which certainly in large measure compensates
for the decrease in entropy of mixing which occurs when

concentration of rotons increases. This is, presumably,
what causes the continued increase in specific heat up
to the P point. Looked at from the point of view of the

energy levels of the whole system, we may say that
there are many low-energy levels (case of few rotons)
because these are localized and can be located in differ-

ent regions of the fluid (entropy of mixing); on the
other hand, the density of high-energy levels (case of

r Kramers, Wasscher, and Gorter, Physics 18, 329 (1952).

many rotons) receives a contribution because the
presence of some freely moving atoms makes it easier
for other atoms to move freely also, when the rotons
coalesce, and there may be highly excited energy levels
in which the energy per atoll, is even lower than it is in

isolated rotons.
The value of e is comparable to the heat of vaporiza-

tion of liquid helium, and one might intuitively expect
that a single atom could be excited to a number of
energy levels with energy appreciably less than the
energy necessary to separate it from the liquid alto-
gether. However, the result seems to be that this cannot
occur in the case of helium. By the time the liquid gets
to the X point, it may be that individual atoms can
move through the liquid fairly readily without each
one having enough energy to evaporate, as we suggested
in a previous paper. '

If this picture of liquid helium has any element of
truth, it will be clear that entropy of mixing of super-
Quid and normal Quid must play an important role in

determining the properties of the liquid, and that we

were, therefore, correct in taking it into account in our
discussion of the thermodynamics of liquid helium, '
though some of the details may need to be changed (see
Appendix). The present picture also is in accord with
the ideas which we have discussed recently in con-
sidering the X transition, in that a separation of super-
Quid and normal Quid is visualized. The point of view

taken here is that which is appropriate for a dilute

solution of normal Quid in superQuid, whereas in dis-

cussing the ) point it is necessary to consider the
reverse case.

Finally, as a sort of addendum, we should. like to
make a few remarks concerning the peculiar behavior
of the coefficient of expansion of helium II. Atkins and
Edwards" have recently found that there is a slight

expansion with increasing temperature in the phonon

range, as might be expected, followed by the well-known

rather considerable contraction between 1'K and the
X point. On the basis of the two-Quid hypothesis this
is formally accounted for by saying that normal Quid

has a slightly smaller volume than superGuid. "In order

to understand this further we have to inquire why the
thermal plus zero-point energy of normal Quid changes
less rapidly with the density than is the case with

'O. K. Rice, Phys. Rev. 93, 1161 (1954). The results of this
paper, however, do not depend upon the detailed nature of the
excitations.' O. K. Rice, Phys. Rev. 76, 1701 (1949). Indeed the existence
of entropy of mixing was already implicit in Landau's original
treatment, and Landau noted PL. D. Landau, Phys. Rev. 75, 884
(1949)] that his theory was different from that of L. Tisza
)Phys. Rev. 72, 838 (1947)j in that it did not make the entropy
proportional to the density of normal Quid.

"K. R. Atkins and M. H. Edwards, Phys. Rev, 93, 1416
(1954)."We have already (reference 9}treated the dependence of the X

temperature on pressure from this point of view. This calcula-
tion indicates that the partial volume of each of the two Auids

may itself va"y somewhat with circumstances.
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superfiuid. " The ground state energy (aside from the
background of potential energy) is zero-point energy
only, which depends upon the free range of motion of
an atom hemmed in between other atoms. But a free
range of motion, depending on the space between atoms,
is very strongly dependent on density. An excited energy
level probably involves motions of atoms through larger
distances, and these distances will probably depend less
strongly on density. Thus such an energy level itself
does not depend so strongly on density, and that part
of the helium where such an energy is excited settles
down to a smaller interatomic distance, since this
results, especially in liquid helium, in a lowering of the
potential energy. Thus the negative coefficient of
thermal expansion seems reasonable enough.

APPENDIX

It seems desirable to set forth the expressions for the
partial molecular entropies, 8„and 8„ for normal and
superAuid, respectively, which are obtained from the
theory here developed for the dilute roton region.
8„can be obtained by differentiating the entropy

t
~S=S +rzS„with respect to zz, holding iV nq, th—e

number of superQuid atoms, constant, and then dividing

by q, the number of atoms in a roton. This gives, if

n/N«1,

s„=(k/q) Dn(N/zz)+ inm j.
The molecular entropy is given, at mole fractions x„

'2 The rate of increase of this energy with decreasing volume
represents a pressure which pushes outward, and which is balanced
by the pressure due to the potential energy.

s=) (C/cVT)dT
0

T

(zzz««/kTz)r, '~~rdT

= zrzke '"r(1+—«/kT) (10)

From Eqs. (6), (8), (9), and (10), and noting that qN/N
is small, we obtain

8,=eke-'~'~
=s/(1+ «/kT).

When it was assumed that s had the form,

s= sq(T/Tq)",

where s), and Tq denote values at the P point and r is
a constant, we found, " under the further assumption
that there is no erztiza/py of mixing of normal and super-
fluid but only entropy of mixing, that

s,=s/(1+r);
this is quite a,nalogous to Eq. (11), only the dimension-
less quantity «/kT being replaced by its near equiva-
lent, r.

"O. K. Rice, Phys. Rev. 78, 182 (1950).

and x, by

s= x„s„+x,s, = (qzz/N) 8„+[(N—pz)/N j8,. (9)

Using Eq. (7), and neglecting the phonon contribution,
we also have


