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The difhculties raised by the elementary interpretation of the recently observed temperature variation
of the nuclear paramagnetic susceptibility of liquid He' as an ideal antisymmetric Quid type of degeneration
phenomenon are discussed. The susceptibility data are then shown to lead to a direct and rigorous evaluation
of the entropy of spin disorder and the associated heat capacity. The observed enormous total entropy of
liquid He' at low temperatures is thus explained to be overwhelmingly entropy of spin disorder. The spin
heat capacity is about half of the observed total heat capacity at the lowest temperature of observations.
It should tend to become the dominant part of the total liquid heat capacity below this temperature. The
maximum of the spin heat capacity at low enough temperatures may become observable indirectly through
the total heat capacity of the liquid.

1. INTRODUCTION "non-spin" entropy and heat capacity. The separate
availability of these partial properties could be helpful
in the investigations of the foundations of the theory
of liquid He'.

Before entering, however, into the main topic of this
paper which we have just outlined, it seems necessary
to discuss first the possible theoretical meanings of the
susceptibility data, using here some of the results
obtained previously by us' in the investigations of the
magnetic properties of liquid He'.

'HE experimental results obtained recently on a
number of fundamental properties of liquid He'

appear to justify their discussion within the framework
of the still fragmentary theory of this liquid. The
present paper will be concerned mainly with the
exploitation of the measurements' ' of the nuclear
paramagnetic susceptibility of liquid He'. It will thus
be shown, seemingly on quite general grounds, that
the susceptibility data supply, over the whole experi-
mentally explored temperature interval, the number of
He' atoms which are in doubly spin-degenerate levels
and their complement, or the number of those which
are aligned with their spin momenta antiparallel. These
are thus in nondegenerate levels as a result of the eGect
of a spin ordering internal field, as intimated by the
experimental workers. ' On the basis of this result, the
susceptibility data appear directly to determine the
entropy of spin disorder and, through its temperature
variation, the associated spin heat capacity of the
liquid. The knowledge of these partial spin propertie
of the Quid could. be evidently of importance insofar a
their subtraction from the calorimetrically measure
total entropy and heat capacity yields the "lattice" o

2. EXCHANGE ENERGY AND CHARACTERISTIC SPIN
ORDERING TEMPERATURE IN LIQUID Hes

In our previous work' the exchange energy per liquid
He' atom has been computed at the temperature of
absolute zero and in the two limiting spin or magnetic
configurations,

@tot=

'Fairbank, Ard, Dehmelt, Gordy, and Williams, Phys. Rev.
92, 208 (1953).

~ Fairbank, Ard, and Walters, Post-deadline paper, Washington
D. C. meeting of American Physical Society, April 29—May 1,
1954.

of total magnetic moment Sp, E being the total number
of atoms of the system and p, the measured He' nuclear
magnetic moment, or vanishing moment. The former
was called the ferromagnetic (f), the latter the anti-
ferromagnetic configuration (tt). The total energy of
the latter configuration was proved to be lower than
that of the former. This total energy was written to be

s L. Goldstein and M. Goldstein, Phys. Rev. 76, 464(A) (1949);
J. Chem. Phys. 18, 538 (1950).
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the algebraic sum of the kinetic, potential, and exchange
energies, the latter being positive here for all physically
plausible closest distances of approach of two He'
atoms. The following admittedly crude approximations
were involved in these calculations. The kinetic energy
was taken to be that of a completely degenerate ideal
antisymmetric Quid formed by the He' atoms with the
known mass per atom and the extrapolated density of
the liquid. In the calculation of the mean potential
energy the ever-present spatial correlations between
the liquid atoms have been neglected. This was equiva-
lent to using the limiting large separation expression
cede(r) for the probability of finding an atom in the
volume element dv, whose center is at a distance r from
the origin atom, eo being the mean atomic concentration
at the absolute zero. Finally, in the evaluation of the
exchange energies, the close packing of the ideal anti-
symmetric collection of atoms in momentum space and
the asymptotic free particle level density in this space
proportional to the square of their linear momentum
were used in conformity with the formalism of the ideal
antisymmetric Quid model. It was thus proved that,
within these limitations, the exchange energy per liquid
He' atom in the antiferromagnetic con6guration, the
only one of interest to us here, was given by

dr
E, p

——,
' ——C (r)J;s(kpr) —,

a r

where ko, the length of the wave vector at the surface of
the closely packed momentum sphere of radius ps asso-
ciated with the antiferromagnetic configuration, is ps/fi,
}s being Planck's constant divided by 2z-; C (r) is the mu-

tual potential energy of two stationary He atoms sepa-
rated by a distance r; J,*(y) is the Bessel functionof
order ~3; and a, a cutoff length which had to be intro-
duced because of the diverging character of the inte-
grand at close separations. Physically the cuto6 length
a is equivalent to the assumption that the probability
of ending two He atoms at distances r& a vanishes
identically. The exchange energy (1) was evaluated
numerically with both the so-called Slater-Kirkwood
(S-K) and Margenau' (M) approximate potential
energy expressions, Qs & and QM, for various values of
the distance of closest approach a. The results appear
in Figs. 1 and 2 of our previous work. ' It seems of
interest to give here a few E values of physical interest.
These are inc1uded in Table I, in temperature units
E,(a)/k, k being Boltzmann's constant.

A glance at Table I shows that for the physically
plausible cut-off distances a 2.5—2.6A, where the
mutual potential energies become negative, or binding,
the approximate antiparallel spin ordering energies or
characteristic temperatures are of the order of magni-
tude of one K. At the present time, one is apparently

4 J. C. Slater and j. G. Kirlrwood, Phys. Rev. 37, 682 (1931);
H. Margenau, Phys. Rev. 56, 1000 (1939).

TABLE I. Approximate exchange energies per liquid He3 atom,
'K units, for two types of potential energies and various cutoG
distances o, (A). The hquid is at the absolute. '.zero temperature.

2.4
2.5
2.6
2.7
2.8

Z&,B-K (a) /k
'K/atom

0.72
1.03
1.12
1.07
0.98

B,M(a)/k
K/atom

1.62
1.68
1.59
1.42
1.23

inclined to consider Ps K(r) as a closer approximation
to the correct potential energy function than &sr(r).
At any rate, keeping in mind the approximations
involved in the derivation of the spin orientation energy
or characteristic temperature of about one 'K, the
latter cannot be interpreted in any other way than by
associating it with an "antiferromagnetic" internal
held energy per atom. In the present system of the
coupled He' atoms this approximate spin ordering
energy, resulting from the interaction of two atoms and
the antisymmetric character of their wave function,
might be envisaged as a quantity more closely con-
nected to the fundamental properties of liquid He'
than the degeneration temperature

(2)

associated with a system of ideal antisymmetric He'
atoms of actual or effective mass m and concentration
eo. The effective mass concept would, of course, be
helpful for taking into account, in a rather indirect
way, the atomic interactions.

In the 'evaluation of the energies of Table I, the
limitations resulting from the plane wave character of
the individual atomic wave functions should lead to
an overestimation of these exchange energies. More
localized wave functions which could be associated
with liquid atoms are expected to yield lower exchange
energies. It is unlikely that the assumption of the close
packing of a momentum sphere, even though centered
at the origin of the momentum space, is too far from
the actual state of affairs in the liquid at the absolute
zero and vanishing total spin momentum, particularly
as far as the calculation of the exchange energy is
concerned. The latter depends, indeed, only on the
distance of two atoms in momentum space and not on
their individual momenta. In estimating the eGect of
using the free particle level density in these calculations,
one might be inclined to say that this results in over-
estimating the exchange energy at least in parts of the
spectrum. This could, however, be compensated for
by the contributions from other portions of the energy
spectrum.

Even though the directly evaluated exchange energies
are relatively close to the experimentally found ordering
energy' of about 0.45'K, the preceding studies do not
explain why the experimentally established liquid He'
paramagnetic susceptibility law should be so closely
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approximated by the Pauli susceptibility formulas

valid for an ideal antisymmetric gas of particles with
spin 5/2, magnetic moment p, concentration e, and
degeneration temperature TO=0.45 K. Here, for n&1,

F(n) =P(—)"—'I-& exp( —nn) =-;(Tp/T);
1

F'(n) =dF/dn,
(4)

n being the negative Gibbs free energy per atom in
units of kT. Clearly, it has not as yet been proved that
the analytic form of the liquid He' susceptibility law
is necessarily given by (3). The use of the "apparent"
degeneration temperature of 0.45'K in connection with
(3) tends to imply that this same temperature should
appear in the expressions of the different thermal
properties of the system, in accordance with its descrip-
tion as an ideal antisymmetric Quid of atoms of mass
about ten times the atomic mass of He' and the actual
density' of the liquid. These indeed yield with (2) a
degeneration temperature of about 0.45'K. However,
in the temperature interval explored so far, where
T&0.4—0.5'K, the entropy and heat capacity data' in
liquid He' rule out completely the possibility of ac-
counting for them in terms of the ideal Quid formalism
with a degeneration temperature of about 0.45'K.

It may be noted here that the degeneration temper-
ature of about 5'K resulting from (2) where the liquid
is pictured as a limiting ideal Quid leads to entropy
values which appear to approximate crudely the meas-
ured entropies. This is however not the case with the heat
capacities and the paramagnetic nuclear susceptibility.

We may thus conclude this section by saying that,
at the present time, there is no unique and simple
theoretical approach which accounts simultaneously
for both the measured susceptibilities' ' and the entro-
pies and heat capacities' of liquid He'. However, the
previously estimated' antiferromagnetic spin ordering
energy of about 1.0'K, Table I, appears to be a fair
approximation of the empirically obtained value of
this energy derived from the susceptibility values. '

3. ENTROPY AND HEAT CAPACITY OF SPIN
DISORDER IN LIQUID He'

We shall now derive an entropy of spin disorder and
the associated heat capacity which should be closely
connected with the rigorous formulation of these
thermal properties resulting from first principles within
the framework of the correct theory of liquid He'.

The liquid He' nuclear paramagnetic susceptibility

' W. Pauli, Jr., Z. Physik. 41, 81 (1927).
s Grilly, Hammel, and Sydoriak, Phys. Rev. 75, 1103 (1949);

E. C. Kerr, Phys. Rev. 96, (1954).
r G. deVries and J. G. Daunt, Phys. Rev. 92, 1572 (1953);

93, 631 (1954). T. R. Roberts and S. G. Sydoriak, Phys. Rev.
93, 1418 (1954). Osborne, Abraham, and Weinstock, Phys. Rev.
94, 202 (1954).

where
(7)

(s)

is the limiting Curie-Langevin susceptibility law, e
being the atomic concentration in the system at temper-
ature T. The ratio of the measured and ideal limiting
susceptibilities, at the same temperature, is thus equal
to the fraction of those atoms which, in absence of the
external field, are in the. double spin-degenerate levels

' P. Langevin, Ann. chim. et phys. 5, 70 (1905).' L. Brillouin, J. phys. et radium 8, 74 (1927).

measurements" over a wide temperature interval prove
that at high temperatures the liquid tends to behave as
an ideal paramagnetic system whose susceptibility
obeys the Curie-Langevin law, ' and at low temperatures
its susceptibility is continuously reduced below the
values predicted by the ideal limiting Langevin formula.
The liquid ceases to be an ideal paramagnet as the
temperature decreases and increasingly deviates from
the ideal behavior as the low-temperature region is
approached. An important feature of the empirical
susceptibility law, over the temperature range explored
so far, is its monotonic increase with decreasing
temperatures.

In the present case of pure spin paramagnetism, the
empirical susceptibility law can be explained on quite
general grounds. Its results from the interplay of the
disordering effects of thermal origin and the ordering
eGects due to both the application of a constant and
uniform external magnetic field and the existence of an
internal field, the latter tending to achieve antiparallel
orientation of the nuclear spins. ' Actually we are in
presence of a "three-way" competition, insofar as the
internal spin ordering phenomenon tends to oppose also
the magnetization eGect of the applied field. The
existence of the internal 6eld is of course a permanent
and fundamental characteristic of the system. Let, then,
u(T) be the number, per unit volume, of those atoms
or spin moments of the system at the finite temperature
T which, as a result of thermal disorder, have escaped
the orienting effect of the interns, l field. The magnetic
moment M(H, T) per unit volume induced in the system
at temperature T, by application of the external uniform
field of strength II, is given by the quantum-mechanical
formula of Brillouin' for independent spins, or

M(H, T) = v(T)lJB;(PH/kT)
= v(T) p tanh(pH/AT),

for spin moments )'s/2 and actual magnetic moments p.
In the paramagnetic range pH(&kT this yields the
susceptibility

x(T)= lim M/H
@II«kT

= v (T)p'/kT.

Hence, on the basis of the above reasoning,
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as stated by Fairbank and his collaborators on the
basis of the ideal antisymmetric Fermi Quid type of
degeneration mechanism. The preceding derivation of
the ratio (7) is however quite general and independent
of the particular mechanism responsible for the anti-
parallel alignment of the spins of the system.

It appears interesting to recall here the rigorous
proof of the ratio (7) in the formalism of ideal anti-
symmetric Quids of atoms with spin sk. Here one can
start from first principles, as was erst shown by Bloch"
in the course of his discussion of the Pauli-formula (3).
Let e; be, at temperature T, the mean number of atoms
in the state of kinetic energy e;, of spin degeneracy g,
or (2s+1). By definition,

I*(T)=gEexp(n+~~/kT)+13 '. (9)

The probability of ending only one single atom in the
group of g levels, or the g-fold level, is e, (T) times the
probability that in this level group is empty. This
latter probability is, by definition, (1—e;/g). Hence,
the probability for having only a single atom of energy
e; is

~'(T) =~'(T) (1—~*/g) (10)

The total number of atoms in the system occupying
singly the g-fold levels is thus

E,(T)=p 0,(T),

the summation extending over the whole spectrum of
the system. With the free particle continuous spectrum
approximation e(p)=p'/2', p being their linear mo-

mentum and m their mass, and the associated level

density 4~(V/k')p'dP one finds in the whole system
occupying volume V, using (9), (10), and (11),

X.(T)=kg(V/k') p' exp~ n+( p

&0 E 2mkT)

P'~'
1+exp I n+

~
dP, (12)

2mkT)

which yields easily, when the denominator,

E.(T)=gV(2smkT/k')1 g (—)"—9, & exp( —Xn)) (13)
X=1

is expanded. But from the definition of the parameter n,
S being the total number of atoms of the system at
temperature T, one has

=g(2mmkT/k')l Q (—)"—9, 'exp( —Xn) (14)
) 1

=g(2mmkT/k') lF (n)

"F Bloch, Z. Phy. sik 53, 216 (1929).

And finally, dividing (13) by (14), one obtains

~(T)/~=— (dF/dn)
F(n)

=xp(T)/xo(T),

using (3) and (8) for x& and xo(T), respectively. The
general relation (7) is thus proved rigorously for ideal

antisymmetric Quids.
The susceptibility measurements define through (7)

the number of liquid He' atoms which have "freed"
themselves from the spin orienting internal field and
became thus, as far as their spins are concerned,
independent. If the volume of the liquid is V, the total
number of these spin-free or spin-disordered atoms is

X.(T)= i (T)V, (16)

and the total number of their spin configurations is,

g or (2s+1) being equal to 2 for spins —,',
P (T) —2%0'(7) (17)

"That the susceptibility measurements should lead to the
entropy of spin disorder in liquid He' has been suggested inde-
pendently by Drs. T. R. Roberts and S. G. Sydoriak of this
laboratory before the recent results of Fairbank and his group
(reference 2) became available.

By Boltzmann's theorem, they contribute to the total
entropy of the liquid the entropy of spin disorder

S.(T) =S,(T)k ln2, (18)

or, per mole of the liquid, Ã being Avogadro's number,

S,(T)= (X,/$)R ln2
= Lx(T)/x, (T)jR ln2~ (19)

E. being the gas constant, and where use has been made
of (7). For our evaluation of the entropy of spin-
disorder only the experimental values of x(T)/xp(T)
are needed. The ana1ytical form of the latter ratio and
the knowledge of the detailed mechanism explaining
the empirical susceptibility law are not needed at all,
provided, of course, that this empirical susceptibility
law belongs to that very wide class of susceptibilities
for which the reasoning leading to (7) is valid. "

To the spin entropy (19) there is associated a heat
capacity of spin disorder

C.(T)= T(dS./dT)
=~T(ln2)(dldT)(x(T)/xo(T) j, (2o)

where, of course, the temperature derivative can be
evaluated directly with the empirical ratio x(T)/xo(T).
The knowledge of the latter determines thus also the
heat capacity of spin disorder in liquid He' in as
absolute a way as it determines the spin entropy.

At the present time, and for reasons of simplifying
the above calculations of entropy and heat capacity of
spin disorder, it is convenient to adopt for x(T)/xo(T)
the expression resulting from (3), that is Eq. (15),



ON THE THEORY OF LIQUID He' 1459

which is claimed' by the experimental workers to
constitute a fair analytical approximation to the
measured values of this ratio, with an "apparent"
degeneration temperature Tp of 0.45'K. Hence, the
spin entropy (19) becomes with (15),

5.(T)/R= C
—F'( )/F( )J(ln2) (21)

0.8

0.6

04

in 2

Vte want to emphasize, however, that the use of the
preceding analytical approximation of the spin entropy
in liquid He' cannot and need not be, at the present
time, interpreted as being equivalent to an acceptance
of the elementary statistical gas degeneration mecha-
nism on which it is based. The various difhculties raised
by such an interpretation have been discussed in the
preceding section.

The limiting values of S, at both ends of the temper-
ature interval, are:

0.2

0.0
0

FIG. I. Molar spin entropy S,/R and spin heat capacity C /R
in liquid He' as a function of the temperature ratio T/Ts, Ts
being a characteristic temperature of spin orientation of about
0.45 K, according to the nuclear paramagnetic susceptibility
data (reference 2).

x

3u')

1
lim C,/R=(-,'ln2)

I
1—

T small ( u) l,
lim S./R= (ln2) limC —F'(u)/F (u)j

lim 5,/R= (ln2) limC —F'(u)/F(u) J=ln2, (22)
T large n»1 Also, up to terms in (1/u'), or (T/Tp)',

if the definition (4) of F(u) is used. Up to terms in
(1/u'), or (T/Tp)', one has

T small tx«0 = (-', ln2) (T/Tp) C1—-',pr'(T/Tp)'1. (28)
7r2

= (-', ln2) 1—
(—u) 6u'

= (sPln2) (T/Tp) 1——(T/Tp)' (23)
12

The low-temperature expansion of F(u),

1 2-
F(u)=- (—u)l 1+

~«o I'(5/2) 8
(24)

F"(u) F'(u)-
= (-,' ln2)

F'(u) F(u)

since from (4),

T(du/d T) = —
s (F(u)/F'(u)).

(25)

(26)

In the high and low temperature limits, one obtains

has been used in deriving (23). The analytical approxi-
mation (21) of S, predicts thus the linear vanishing of
the spin entropy with temperature.

The spin heat capacity C, (T), Eq. (20), becomes,
within the same formalism,

(F'(u) ) ' F"(u) ( du )
C (T)/R=(ln2)T I(F(u) ) F(u) (dT)

C vanishes thus at both ends of the temperature
interval. Since it is always positive, S (T) being a
monotonically increasing function of T, it has at least
one maximum. The position of this maximum is at
u= —1.90, T/Tp ——0.43, and the peak value of C,/R is
0.24.

It is interesting to note here, in passing, that the
very low-temperature spin entropy and spin heat
capacity of the ideal antisymmetric Quid, up to' terms
linear in T, are only relatively small fractions of the
total entropy and heat capacity. The ratios 5 /Ss, s

and C /Ci, s equal 3 In2/mrs or 0.21. The spin portions
of these quantities amount only to 21 percent of the
totals at these low temperatures.

By using the Tables" of the function F(u) and its
derivatives at T/T &~2p, u~&1.23, and the expansion
(4) at T/Tp)2, the analytical approximations (21)
and (25) of the spin entropy S,/R and spin heat
capacity C /R have been evaluated" in the range
0&~T/Tp&~5, —20&&u~&2.7. They are given in Fig. 1.

As mentioned in the Introduction, the knowledge of
the spin entropy and the associated heat capacity
allows one, after subtracting them from the measured
total liquid He' entropy and heat capacity, to obtain
the nonspin or lattice portions of these thermal prop-
erties. Using the entropy and heat capacity data of the

since

lim C./R=O,
T large

limCF" (u)/F'( )1 —1, limC —F'( )/F (u)1
tx»1

(27)
's J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London)

A237, 67 (f938).
137 wish to thank here Mr. Max Goldstein and Miss M. L.

Johnson for these calculations, and Mrs. L. E. Moss for the
preparation of the graph. The low-temperature, T/T0 &:2, suscepti-
bilities have been used already in Table I of our previous work,
reference 3.
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three independent groups of workers referred to above, '
a somewhat cursory comparison has been made between
their data and the spin entropy and heat capacity
obtained in the present work. This comparison shows
that at temperatures 1.0~& T~& 1.5'K, a very large
portion of the enormous liquid He' entropy is spin
entropy, while below 1'K the entropy tends to become
overwhelmingly spin entropy. This result is of interest
insofar as it indicates that at low temperatures most
of the "nonspin" degrees of freedom of liquid He' are
already frozen, as one would expect them to be. As
far as the heat capacity is concerned, it is found that
at 0.4'K, about 40 percent of it is of spin origin and
C tends to become its dominant part at T« 0.4—0.3'K.
The characteristic peak of the spin heat capacity might
be detectable in its eGect on the total heat capacity at
temperatures lower than those reached so far. The
qualitative shape of the spin heat capacity curve is,
of course, of permanent significance and is not con-

nected with the analytical approximations used in the
computation of the C, curve of Fig. 1.

It is expected that the experimental workers in the
field of entropy and heat capacity investigations of
liquid He might analyze, in greater detail, their own

respective data with the help of the practically absolute
spin entropies and spin heat capacities obtained above.
These experimental data appear, at the present time,
to be still somewhat of preliminary character.

In conclusion we may thus say that a rigorous
explanation has been given here for the origin of the
very large liquid He' entropy at low temperatures.
This is based on a rigorous evaluation of the partial
entropy and heat capacity of spin disorder using the
experimentally measured nuclear paramagnetic sus-
ceptibilities. It may be expected that the peculiar
maximum of the spin heat capacity becomes observable
indirectly on the total liquid heat capacity at low

enough temperatures.
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It now seems probable that the roton excitations in helium II can be considered to be cooperative motions
of small groups of atoms, the group as a whole being in an excited quantum state. This leads to a very
literal interpretation of the two-Quid hypothesis, and suggests that the entropy of mixing of rotons and
the unexcited atoms be calculated on the basis of the lattice theory of liquids. From this the thermodynamic
properties of liquid helium are deduced, and the degeneracy of the roton energy level (giving the intrinsic
entropy of the rotons) is obtained from the observed specific heat. The change in the thermodynamic
properties of normal fluid (rotons) between O'K and the X point is discussed. Finally the peculiar properties
of the coefficient of thermal expansion are considered in the light of the two-Quid hypothesis.

HE nature of the roton excitations in liquid helium
II has recently been discussed by Feynman' who

concluded that they involve cooperative motions, per-
haps rotations, of a small number of atoms. Somewhat
similar ideas, though differing in detail, had previously
been advanced by Toda' and Matsubara. '

In considering the statistical behavior of the rotons
it has generally been assumed that they can be treated
as though they were a Bose-Einstein gas of particles of
some particular effective mass. This was done originally

by Landau, ' and the thermodynamics of such a system
has recently been considered in some detail by Gold-
stein' who has discussed some of the difhculties which

*Work supported by the U. S. Once of Naval Research.
' R. P. Feynman, Phys. Rev. 94, 262 (1954).' M. Toda, Progr. Theoret. Phys. (Japan) 6, 458 (1951).
s T. Matsubara, Progr. Theoret. Phys. (Japan) 6, 714 (1951).' L. D. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941); 8, 1 (1944);

11, 91 (1947); see R. 3. Dingle, Advances in Phys. 1, 111
(1952).

e L. Goldstein, Phys. Rev. 89, 597 (1953).

arise. Landau's treatment is based upon the idea that
the excitations arise from interactions of waves, which
can be represented as excitons or considered as wave
packets. The excitons are assumed to have a certain
e8ective mass and to obey Bose-Einstein statistics.
These assumptions serve to determine the entropy con-
tributed by the excitons, but the effective mass must
be taken as a parameter, and it is difficult to interpret.

Since the roton interactions are apparently localized
over a region containing only a few atoms, it would seem
reasonable to explore some other type of approximation,
such as the lattice theory of liquids. Indeed, the lattice
theory of liquids would seem to be peculiarly adapted
to treatment of the rotons in the region around 1'K
where the rotons are few in number. For in this tern-

perature region the roton, according to the picture
which has been developing, represents a small group of
atoms in a single quantum state (though the energy

may be broadened by interaction with the neighboring


