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The first two terms in a frequency expansion of the photon scattering amplitude are considered in the
case where the scatterer is a particle of spin . It is shown that an exact calculation in quantum field theory
gives results identical with those obtained by classical methods or else by use of the Dirac equation with
an anomalous Pauli moment. The results depend only on the charge, mass, and magnetic moment of the
scatterer. In the case of the proton, the second term, arising from scattering by the magnetic moment,
appears to be negligible in comparison with effects due to Thomson and Rayleigh scattering.

I. INTRODUCTION

T has long been known that the scattering of photons
in the limit of zero frequency is described correctly
by the classical Thomson amplitude, which depends, of
course, only on the charge and mass of the scattering
particle. The result is surely independent of the spin
of the particle. In the case where the spin is §, however,
explicit proofs have been given that the result of the
classical calculation is reproduced in quantum me-
chanics: for a normal Dirac particle, in the lowest order
of perturbation theory, the proof is contained in the
famous calculation of Klein and Nishina;! it has since
been shown by Thirring? and by Kroll and Ruderman?
that the Thomson formula is exactly correct in any
local, renormalizable field theory, including, for ex-
ample, electromagnetic and mesonic radiative cor-
rections.

In general, the amplitude for the scattering of photons
by a particle of spin  may be expanded in a power series
in the frequency of the photon. The Thomson ampli-
tude is the zeroth term in such an expansion. It is the
next term, linear in frequency, that we shall consider
here. We shall calculate the linear term in three dif-
ferent ways: (1) Classically, using Kramer’s classical
description* of a Dirac particle; besides the Dirac
magnetic moment considered by Kramers, a classical
anomalous moment isadded. (2) In quantum mechanics,
for a Dirac particle with a Pauli anomalous magnetic
moment, in the lowest order of perturbation theory.
(3) Exacily in quantum field theory, for a Dirac particle
interacting with arbitrary local and renormalizable
fields, for example photons and mesons.

* Some of the work presented here was reported at the Glasgow
International Nuclear Physics Conference, 1954, and is sum-
marized in the Conference Proceedings.
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The results of the three calculations are identical and
show that the linear term depends only on the charge,
mass, and static magnetic moment of the scattering
particle.

II. CLASSICAL CALCULATION

Let us consider an incoming plane light wave with
the electric field E, given by?

Ei=e exp(iq‘r—iqt). 2.1)

The scatterer is taken to be at rest at the origin initially
(#=0). After a long time and at great distance, a scat-
tered wave appears with the asymptotic electric field
given (to first order in the incoming field strength) by

E..=G(n’,n)-erexp[iqgir—1)], (2.2)

where G(n’,n) is a dyadic describing the scat-
tering from the incident direction along the unit vector
n=gq/q to the final direction along the unit vector
n’'=q'/q’. The scattering amplitude® f is now defined
by the equation,

f=¢-G(n'n)-e, (2.3)

in terms of a final polarization vector e’ orthogonal to
’
n.

The scattering particle, with charge ¢ and mass M,
is characterized by its position vector R(#) and a spin
angular momentum S(¢) that is constant in magnitude
but free to rotate. The magnetic moment u(¢) is taken
to be proportional to S(¢); the gyromagnetic ratio g
will be written as the sum of the “normal’”’ Dirac value
¢/M and an “anomalous” part g4. Of course the Dirac
g-factor is often thought to be anomalous from the clas-
sical point of view. However Kramers has presented a

5 We have set c=1; we will further put =1, and use units in
which e2/hc=1/137.

6 Strictly speaking, there is a frequency dependent correction
factor by which Eq. (2.3) must be multiplied in order that it be
the exact scattering amplitude in the laboratory system. This
factor arises classically from the Doppler shift of the radiation
emitted by the particle which is set into motion by the incident
wave. In quantum theory the factor is precisely ¢’/q where the
frequency ratio is computed from the Compton law. We shall
continue to employ the same quantity, f, in quantum theory,
where it is equal to the correct scattering amplitude in the center-

of-mass system, and also to the Feynman matrix element in either
system.
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classical theory? in which the Dirac g-factor appears
naturally. In describing the interaction of the scattering
particle with the electromagnetic field, we shall make
use of Kramers’ formulation of the problem.

Kramer’s equations of motion for a classical Dirac
particle may be derived from the following Lagrangian
(accurate to order V/c):

Lx=3MV4ir f (B—H?)dr+¢eV-A(R)
+iS-[H<R>—%V><E<R>J, (2.4)

where V=0R/0¢, A is the transverse vector potential,
and E and H are given, of course, by the equations

E=—0A/0t, H=VXA. (2.5)

In Eq. (2.4), the scalar potential has been ignored since
it does not contribute to the scattering of light waves.
The factor of % in the last term is the celebrated Thomas
factor.

In order to include the effects of the anomalous mag-
- netic moment, we add to the Lagrangian of Kramers
the additional quantity

Li=g.S-[HR)—VXER)].

The absence of the Thomas factor in the case of the
anomalous moment is familiar. From the total La-
grangian Lg+L4 we obtain the following equations of
motion for field and particle:

vXE+oH/dt=0,
v XH—0E/dt=4xJ=47eVé(r—R)
+4rv X[gSs(r—R) ]

4 4 ‘ VxSs(r—R 2.8)
“;[(ﬁ“) XS {r- >]’ (@

M3 R/o2=eE(R)+g4(S-v)H
e (S-v)H+v(S-H)
M 2 ’
3S/9t=gSXH.

InEgs. (2.7) and (2.8) we have simply two of Maxwell’s
equations. The currentin Eq. (2.8) comprises three terms:
the ordinary translational current; the curl of the
density of magnetization; and a displacement current
which arises from the fact that a moving magnetized
medium acquires an effective electric polarization. Only
the last term is affected by the Thomas factor. In Eq.
(2.9), the forces acting on the particle are exhibited. We
have omitted the self-force and also other terms, such as
the Lorentz force, which depend on the field-induced
velocity and angular acceleration of the particle and are
therefore effectively quadratic in the field strengths.
We have left only the electric force and the interaction
of the magnetic moment with the gradient of the

(2.6)

2.7

(2.9)

(2.10)
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magnetic field. The Dirac moment, affected by the
Thomas factor, behaves as if half of it were due to a
genuine magnetic dipole and half to a current loop; the
anomalous moment behaves entirely as a point dipole.
Equation (2.10) is merely the usual formula for the
torque on a magnetic dipole; again terms effectively
quadratic in the field strengths have been dropped.

The asymptotic electric field may now be computed
from the relation-

E— EO (r)t)_}'ESG(r:l)

=E0—r—1fd3r’f a'(8/85)J . (x',t)
T X —tr—rirer), (2.11)

in which J, is the part of the current that is perpen-
dicular to r, i.e., to the direction of observation. In
substituting into Eq. (2.11) the formula (2.8) for the
current, we may simplify the result by omitting higher
order terms in the field strengths. (It must be borne in
mind that R, dR/d¢, 9°R/a82, 0S/dt, and 3°S/8# would
all be zero in the absence of the incident field.) We find

Eoo(t,)=—7r"Z,(t—7), (2.12)

where

R oS R
L=e——gr! ( rX——) —gr“Z(rw—) (rXS)
ar o P

- (ﬁﬂm) (Sx?—;;). (2.13)

Finally, we must substitute into Eq. (2.13) the equations
of motion of Egs. (2.9) and (2.10), simplifying as before.
We obtain, up to terms linear in the frequency, the
expression )

62

Z= [ﬂ—/[e—l—iggqn’X[SX (nXe)]

J%gq[(n-& (nXe)+ (') (' XS)]

ie [ e
+ﬁ(ﬁ+g4>q(s><e)] expliqg(r—10)], (2.14)
so that the scattering amplitude defined by Eq. (2.3)
is given by the equation
62
f= ~ﬂ(e"e)—igzqs'[(n’><e’)>< (nXe)]
ieg n(nXe)+ (nXe)n
e,
M 2
n’(n'Xe')+ (n'Xe')n’
_s.{ }e]
2

LS (exe). (2.15)
——S- (e’ Xe). .
MQ



SCATTERING OF LOW-ENERGY PHOTONS

Here S is the initial value of the spin angular mo-
mentum.

It is not difficult to trace through Egs. (2.13)-(2.15)
the meaning of the various terms in the scattering
amplitude. The first term is, of course, the Thomson
amplitude. The second represents magnetic dipole scat-
tering; the magnetic moment absorbs M1 radiation,
precesses, and re-emits M1 radiation. The first half of
the third term represents the absorption of M2 radiation
(through the interaction of the magnetic moment of the
particle with the gradient of the magnetic field of the
incident wave) followed by the emission of E1 radiation
because of the resulting acceleration. The second half
of the third term describes the reverse process; the
particle absorbs E1 radiation and isaccelerated, emitting
M2 radiation by virtue of the magnetic moment
coupling. Now the translational force on the particle
due to the anomalous part of the magnetic moment is
not of pure M2 origin, as can be seen from Eq. (2.9);
there is an E1 part as well. Hence the fourth term in
the scattering amplitude, representing E1 scattering.

III. QUANTUM-MECHANICAL CALCULATIONS

The scattering of photons by a Dirac particle with a
Pauli anomalous magnetic moment, without radiative
corrections, has been discussed by Powell.” The wave
function of the scatterer obeys the equation

{vu(8/%u—1eA,)+M—%pa0uFu}p=0.

The quantum-mechanical scattering amplitude is most
easily calculated as the sum of the two Feynman
matrix elements corresponding to absorption followed
by emission and vice versa. The result is, up to terms
linear in the frequency,

(3.1)

2

= ——;Z(e’-e)-—%u?qc-[(n'Xe')X (nxe)]

eu [ n(nXe)+(nXe)n} ,
_——.q 0- 'e
M 2
{nl (n’Xe’)+ (nlxe/)n/ ]
—q- 2 -e

A xe). (3.2)
— (e €). .
Mqo'

The correspondence with the classical formula (2.15)
is perfect ; we must of course identify S with /2, g with
2u, and g4 with 2u4.

We must now demonstrate that Eq. (3.2) is rigorously
correct in quantum field theory (except, of course, for
higher terms in the frequency). We abandon the phe-
nomenological Pauli moment; instead we suppose that
the scatterer is a normal Dirac particle, coupled to

7J. L. Powell, Phys. Rev. 75, 32 (1949).
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fields describing photons, mesons, etc. The anomalous
moment is attributed to the effects of these couplings.
In what follows, the interaction with photons must have
conventional local, gauge-invariant character and all
interactions must be renormalizable ; otherwise we need
not specify the nature of the fields and interactions in
detail. We shall employ the language of Feynman
diagrams, but it should be emphasized that no use is
made of perturbation theory.

Let us refer to the scatterer as a nucleon, for de-
finiteness. We may picture the entire sequence of
Feynman diagrams in the following way: The nucleon
line proceeds from the beginning to the end of the
diagram, emitting and absorbing, in between, various
virtual quanta that belong to its self-field. The initial
and final real photon lines terminate on charge-bearing
lines, which may correspond to the nucleon itself or to
virtual mesons or members of pairs, etc. We may divide
all the diagrams into two classes, 4 and B.® In Class 4
we include all the diagrams in which those parts that
include the terminations of the two real photon lines are
separated by a strength of bare nucleon line, i.e.,
nucleon line free of virtual quanta. Class B comprises all
other diagrams, those in which there is no stretch of
bare nucleon line between the absorption and the
emission of the real photons.

For the sum of all diagrams of Class 4, we can write a
simple closed expression. Let ¢ and ¢’ be the initial and
final four-momenta of the photon,® and p= (0,0,0,:M)
be the initial four-momentum of the nucleon. The
indices x and » will denote the initial and final direction
of polarization. Then the contribution of diagrams of
class 4 to the scattering amplitude is

T (¢,9)=tu(q",9) F+tw(—q, — 7, (3.3)
where
(') = — ¥ (p+9— T, (p+9—¢', p+9)
XS(p+Tu(p+q, p)i(p). (3.4)

Here ¢;(p) is the initial Dirac spinor; I',(p+g, p) is
the exact renormalized vertex operator corresponding to
the absorption of the initial photon; S(p+¢q) is the
exact renormalized propagation function for the virtual
state of the nucleon with momentum p+¢; T',(p+¢
—¢', p+¢) is the vertex operator for the emission of the
final photon; and y¥;(p+g—¢’) is the final Dirac spinor.
The second term in Eq. (3.3) describes the “crossed dia-
grams” in which emission of the final photon precedes
absorption of the initial one.

It is evident from Eq. (3.3) that the partial scattering
amplitude 7°4) obeys a symmetry relation; this relation
actually holds for the total scattering amplitude 7" and

8 For a discussion of a similar calculation, see Appendix of paper
by Deser, Thirring, and Goldberger, Phys. Rev. 94, 711 (1954).

9 In the remainder of this section, ¢ stands for the four-vector
momentum of the incident photon. The photon frequency, which
is denoted elsewhere by g, is here called go.
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is given by the equation

Tw(d,9)=Tw(—q, —4q). (3.5)

This symmetry condition depends only on the fact that
for every ‘“crossed” diagram there is a corresponding
“uncrossed” one and vice versa.

To proceed further with the evaluation of 7"4) up
to terms linear in frequency, we must exhibit expansions
of T, S, and ¢, in powers of ¢ and ¢’. We write the
propagation function in the form

S(p+q)={iv- (p+9GL(p+¢)* IH+MF[ (1)+q)2]}“‘,( 56

and, expanding, we find®®
1
S(p+q 2—~—[(—iv-P+M)F—iv-qF
2p-qF

+2p-q(—iy-pG’+MF")—iy-q(2p-q)G’
+2(p-q)*(—iv- pG""+MF")
Fr—G”
)

X{2?-q(—i'y-pG’—}-MF’)—Fi'y-q}]. (3.7)

-—2[)-q{ 2G'+M2(F"—G"+

The functions F, F’, etc. are evaluated at p?=—M2. It
should be noted that not all terms linear in ¢ have been
retained, but only those that contribute to (3.4) in the
required order. The form of the vertex operator, like
that of the propagation function, can be specified on
general grounds of invariance; one finds, to first order
in the frequency,

Tu(p+4q,9 g
= PM(?,P) +Eq)\a—“rn (P;P) +54’3—0nxPxF1 (PQ)

by

ONpPpPu

1
+d"7p)\q)\F2 (P2)+ ——F3($%); (3.8)

T,(p+9—¢, p+9)

1 d
=T, (P:P) +- (24)\_ q?‘,)_—'rv (P:p)
2 P

]

) ——omgPa(p)
7 oA\ 1(P ZMG.M(I)‘ 2(P

qh oneP p?v

——F:(#"). (3.9)

Among the symmetry principles useful in deriving
(3.8) and (3.9) are those related to charge conjugation

10 Primes attached to F and G indicate differentiation with
respect to p2.
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and space-time inversion:
CTTyu(p1,02)C=—T,"(— p2, — 1),
'YEPM(PhP?)'Yﬁ: _I‘M(_?l) _P2):

where C is the charge-conjugation matrix. The vertex
operator for equal arguments is connected with the
propagation function through Ward’s identity:

(3.10)

19
Tu(p,p) == a—S" D) =7G(?)
=2ip{iv-pG’ (PH+MF'(p?)}. (3.11)

Furthermoré, we may make use of the fact that for
small values of #y-p+M, the reciprocal of the propa-
gation function has the form

S (p)=iv-p+M+o(iy-p+M)*;
we then obtain the identities
F=g,
P20 (F'—G') =1,

where the quantities are evaluated at p?=—M>
Finally we must expand the spinors ¢(p) and
Vs (p+q—¢’) in powers of the frequency :*

w(p)= (“)

¥i(p+q—¢) =, —o-(q—q")v/2M). (3.13)

The evaluation of 74 is completely straightforward
in terms of the quantities introduced above; we shall
simply give the result. To facilitate comparison with
previous formulae, we write ¢,/T,,“e,=v*fu, with

(3.12)

e e

fA=——e-eF—2
M 4M?

(F—F2)2QO0" (n'X e’)X (nX e)

e e
- (F—F o-{nnXe-+nXen}-e’
Tl )
—- {nlnrxe/__l_n/xelnl} .e]

e e
-I‘—- —(F—F2— 1+4F1)qoo--e’><e.

3.14
M2M @:14)

We must still evaluate the sum of the contributions
from all diagrams of class B. It may be expressed con-
cisely as follows, to first order in the frequency:

T ® (¢ ,q) = —ie®¥;(p+9—¢')

T,(',9)

a a
X _Pu (?7?)'*"
ap,. v A
d
)t i), (3.15)

p'=p

N A

11 4 and v are two-component Pauli spinors describing the initial
and final states.
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Using the expansions and relations given above, we
obtain from (3.15) the simple result

5 .
(B):..i '.e(1—F _Z@_/;F -(e' 3.16
f Me e( ) Y 10-(e’Xe). (3.16)

Adding f® to f4) as given in (3.14), we see that we
have exactly the formula (3.2) for the total scattering
amplitude, provided we can set

ua=(e/2M) (F—Fy—1). (3.17)

In order to prove Eq. (3.17), we consider the scat-
tering of a nucleon by an external electromagnetic
potential that transfers four-momentum ¢ to the
nucleon. The transition matrix element R is

R=—y(p+q)iel'u(p+g, p)Au(Q¥ ().

If we choose 4 to correspond to a uniform magnetic
field and p to a nucleon at rest, we may compute the
term in R proportional to ¢, using (3.8) and (3.13):

Re~—y(p) (e/2M) (F—Fo)s0,F o (0).  (3.19)

We may also compute R on the basis of Eq. (3.1) for
a Dirac particle with a Pauli moment:

R~— ‘/-/(P) (8/2M+ﬂd)%a'ﬂvFuv¢ (P).
We conclude that Eq. (3.17) is correct.

(3.18)

(3.20)

IV. DISCUSSION

We have derived an expression for.the scattering
amplitude up to terms linear in the photon frequency,
and the expression is valid for any known theory. It is
in order to discuss what predictions, if any, can be made
of quantities that are likely to be measured experi-
mentally. Let us first see what information we have
about cross sections on the basis of our formula for the
scattering amplitude.

For a neutral particle, we simply put e=0 and p=p4
in Eq. (3.2). If we square the amplitude and sum and
average over spins and polarizations, we obtain the
leading term in an expansion of the cross section in
powers of the frequency:

do/dQAPut (14} sin®9). (3.21)

For a charged particle, the leading term is of course the
Thomson cross section. The next term, quadratic in
frequency, is composed of two contributions, only one
of which we can calculate by squaring the linear term
in the scattering amplitude (3.2). The other contribu-
tion is made by the interference of the Thomson am-
plitude and the quadratic term in the scattering am-
plitude, which should come largely from Rayleigh
scattering and which we have not hitherto discussed. If
we denote the second contribution by ¢?/(d), then we
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have
do ¢ (14-cos™) e*u?
—=— ———‘"}"42[[(0)4- { Out+—
aQa M2 2 M?
e 3 et 8eud 2e%u?
——pt-— +cosz?{——--l— }
M 8 M* M M

3t Su et

SCA) N
M* ME 8M*

+cos?® { —2utt (3.22)

In general there is no way to compute I(J) without a
detailed study of the mechanism of Rayleigh scattering
for the particular case in question; in the forward
direction, however, there is a useful general formula?
for I:

¢ reor(q)
M-;r?f; q? ’
where o7(¢’) is the total cross section in the laboratory
system for light of frequency ¢’ incident on the scat-
terer. Equation (3.23) may be deduced from the
Thomson formula and the principle that a light signal
cannot be transmitted with velocity greater than c.

Using Egs. (3.22) and (3.23), we have for the forward
direction:

do é
(5). 5
dQ 0° M2

Perhaps the most interesting application of these
formulas is to the proton. If we take Eqgs. (3.23) and
(3.24) literally, we must in that case include in o7 the
cross section for electron pair production in the Coulomb
field of the proton as well as the cross section for such
processes as photomeson production. However, at
energies above a few Mev, but still small compared to
the meson rest energy, the Delbriick scattering arising
from real and virtual pair production has an angular
distribution sharply peaked in the forward direction;
on the other hand the Thomson and Rayleigh scat-
tering and the scattering from the magnetic moment
should have rather slowly varying angular distributions
at these energies. We may therefore omit the Delbriick
scattering, but leave Eq. (3.24) otherwise unchanged, if
we evaluate do/dQ at an angle near 0° but far enough
away so that the Delbriick scattering is small. In that
case the principal contribution to o7 is the cross section
op for the photopion effect. Empirical data on this
process indicate the relation®®

1(0)=—

(3.23)

e r°ar(q)
2] _ & alg ...
q[ M1r2j(: q" S A
(3.24)

1 ®op (q’) e?

— A, (3.25)
20y @ 3mAM

( gsG)ell—Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612

1954).
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Thus we find
do ¢ 2¢% 1
(&) ot
dQ/ nearo® M2 3M? 1"%—2

where B4 is the anaomalous magnetic moment in
nuclear Bohr magnetons. Since 3m,%84%/8M*~0.08, we
see that near the forward direction the scattering by the
magnetic moment is greatly overcompensated by the
interference of Thomson and Rayleigh scattering. We
cannot say with certainty, of course, that this situation
persists at most angles, but it seems likely.

So far we have treated the scatterer as a ‘“particle,”
but it seems reasonable that Eq. (3.2) should be valid

tey

(3.26)

3"n1r2ﬁ A4 ]
. 8M2
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for any system of spin %, whether elementary or complex,
and that the expansion in frequency should be possible
when the photon energy is small compared to the energy
of the first excited state of the system. Thus complex
nuclei of spin  may be treated, as well as the proton.

The generalization of the result to other spins is an
interesting problem. For spin zero, the term in the
scattering amplitude linear in frequency must vanish
in order that the symmetry condition (3.5) be satisfied.
For spins higher than 3, we conjecture that it is still
possible to express the linear term in terms of static
properties of the system.

We acknowledge with thanks conversations with
Professors G. Wentzel and V. L. Telegdi concerning
classical methods of calculation.
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This note is about the construction of energy-independent potentials from the Tamm-Dancoff equations,
by a systematic method of Klein’s. It is shown that, when the method is applied to the new Tamm-Dancoff
equation of Dyson, the difficulty of the spurious singularities can be overcome. It is proved further that the
old and new Tamm-Dancoff methods give the same potential in the adiabatic limit.

INTRODUCTION

N this note, we are concerned with the use of the

Tamm-Dancoff methods! to derive, for the two-
nucleon system, a single integral equation like that
used, for instance, by Lévy.? The old Tamm-Dancoff
method (O.T.D.), which has been used in the past,
suffers from infinite vacuum-to-vacuum terms. These
do not occur in the new Tamm-Dancoff method
(N.T.D.) of Dyson.? N.T.D. has also the advantage of
being generally closer than O.T.D. to the covariant,
renormalizable theories.

The kernel of the N.T.D. integral equation contains
“spurious” poles,* which are not at the threshold for any
real physical process. We thus have the problem of
imposing boundary conditions on the amplitude which
satisfies the integral equation, so that it should have no
singularities arising from the spurious poles. This
problem, which amounts to the definition of the vacuum
state in the Dyson amplitudes, has not yet been solved.

The purpose of this note is to examine what form the
problem of the spurious singularities takes when the
kernel of the N.T.D. integral equation is considered as a
generalized potential. The kernel is dependent upon the

1S. M. Dancoff, Phys. Rev. 78, 382 (1950).
2 M. M. Lévy, Phys. Rev. 88, 72 (1952).

3 F. J. Dyson, Phys. Rev. 90, 994 (1953).
4F. J. Dyson, Phys. Rev. 91, 1543 (1953).

total energy, and so does not give a straightforward
eigenvalue equation for bound states. We adopt a
systematic method of eliminating the energy de-
pendence, which has been proposed by Klein.? Klein’s
actual suggestion was for the adiabatic limit; but in
Sec. 1 we give a natural generalization of his method,
which, while it would probably be useful only near the
adiabatic limit, enables one to obtain some general
properties of the energy-independent potential.

In Sec. 1, we also give a method of generating energy-
independent potentials, using the four-dimensional
formalism of N.T.D. of Mathews and Salam.® This
method, which agrees with Klein’s except for a few
special terms, is the basis of our general results.

In Sec. 2, we show that, for the energy-independent
potential, the problem of the spurious singularities
reduces to the simpler question of how to define the
poles in a certain integral. It is no longer a boundary
condition problem. The essential step in this demon-
stration is a generalization of a result already given by
Klein? for the fourth order. This states that, if the total
energy is replaced by the kinetic energy, the kernel is
free of spurious poles on a suitable rearrangement of
terms.

5 A. Klein, Phys. Rev. 94, 195 (1954).
8 Quoted by the present author in reference 9.
7 A. Klein, Phys. Rev. 95, 1653 (1954).



