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It is shown that the 6rst two terms in the expansion of the scattering amplitude of light by a system of
spin —, in powers of the frequency can be simply expressed in terms of the macroscopic properties of the
system. The 6rst term is the well known Thomson amplitude, and depends only on the total charge and
mass. The second term is found to depend only on the charge, mass, and magnetic moment of the system.

I. INTRODUCTION be included in the sum over states which determines
the scattering amplitude to this order in k. The diagonal
elements of p, as is well known, can be simply expressed
in terms of e, ort and p, (the static magnetic moment of
the system) for small momentum transfer. The first
term in the expansion, of course, turns out to be the
Thomson term; the second, which is linear in the spin
vector of the system, is somewhat more complicated,
except in the forward direction, where it must be a
multiple of iv (e'X e)k; the multiple turns out to be
2X', ' where ) is the anomalous part of the magnetic
moment.

The total scattering amplitude, correct to order k, is

' T is well known that the scattering of zero-energy
~ - photons by a charged system is given by the Thom-
son formula and hence is independent of the structure of
the system. In this paper it will be shown that not only
the zero-frequency limit of the scattering amplitude but
also its first derivative with respect to the photon
frequency is determined by the static properties of the
system (charge, mass, and magnetic moment), at least
for a system of spin 2. Vnlike the Thomson limit, which
appears as a consequence of gauge invariance in the
usual theoretical formulation, the new limit appears to
be a consequence of gauge and relativistic invariance.

The derivativation to be given here applies to sys-
tems consisting of spin--,' fermions locally coupled to
spin-zero bosons, but could presumably be generalized,
if necessary, to almost any gauge and I.orentz invariant
system. The proof applies formally to all orders in
e /Itsc (as well as to all orders in the meson-nucleon
coupling) provided the virtual photons are given a
6ctitious rest mass X; it may or may not be correct in
the limit X —+0, depending on whether or not the
derivative in question exists. Failure of the derivative
to exist would, of course, appear as an infrared
divergence. In our derivation such an infrared diver-
gence would be due to the existence of too great
a density of excited states of the scattering system
whose energy was infinitesimally close to that of the
ground state. We shall have to assume the scatterer
(proton, neutron, electron, etc.) to have a minimum
excitation energy with respect to which the photon
frequency can be measured. For protons and neutrons
this energy is of course p,„c', where p, is the m-meson

rest mass; the corresponding length with respect to
which the photon wavelength must be large is k/ts c.

Our method consists in showing that if the scattering
amplitude be expanded in powers of k (for Ack« tt c')
the erst two terms in the expansion can essentially b
expressed in terms of matrix elements of the charg
density, p(x), rather than in terms of the current den

sity, j(x). Since J'p(x)dx=e, the total charge, wherea
J'j(x)dx has large o8-diagonal components, consider
able simplification is achieved: no excited states nee

H' = (e'/trt) e e' —(ie/trt) (2p, e/rrt) krr (e'X—e)
—2tt'ia [(eXk) X (e'X k) ]/k —t' (e/rrt)

Xtt[(e k')e'. (sXk')/k —(e' k)e (o'Xk)/k]' (& &)

Here e and e' are the initial and 6nal polarization
vectors of the scattered photon.

II. CALCULATION: GAUGE INVARIANCE

We shall work within the framework of a specific
theory: we calculate the scattering of light by a spin--',

system locally coupled to a scalar (or pseudoscalar)
meson field. The method of calculation will make it
clear that the result has a much wider range of validity.

The 5 matrix for scattering of a light quantum from
a state (k,co, e) to a state (k',&o', e'), where ~k~ =oi,

~

k'~ =co', e.k= e'. k'=0, is given by

S=—[2i/(4co&u') 2], err'*(*)rb(~)e's s &*d~(e e')

Xe"'"e "*dxdy, (2.1)

*Work supported in part by the joint program of the
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where all integrations and coordinates are four dimen-
sional, g(x) is the charged meson Geld operator, P is

'We use units in which It=c=1, e'/4v=1/137.' The author has been informed that a result essentially equiva-
lent to Eq. (1.1) has been independently obtained by M. Gell-
Mann and M. Goldberger using a different method of proof. See
M. Gell-Mann and M. Goldberger, Proceedings of the Glasgow
Conference on Nuclear Physics, 1954 (unpublished); and Phys.
Rev. , following paper LPhys. Rev. 96, 1433 (1954)g. The author
would like to thank Dr. Gell-Mann for communicating this
result to him.
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Bp(x) 8
,j (y) = PCo(x),j (y)j

8$p Bxp —~(xo—yo) Ep(x),j (y) l (2.1o)

-p(x) = ot @,(x)~,(x)—y, (x)~,(x)g

+ ~()v!(1+ )S(),
(2.2)

3 (x) &LV4'1(x)42(x) V'tt'2(x)41(x) j
+ie0(x) V2 (1+~o)4 (x),

j.(x) =
We find, after an integration by parts,

and
(23) ~ ~j j J

k'g ="2io'k' qP(x)Q(x)e'(~ ~ )~dx~=(~ +i~~ )2/v2, e*=(~i-~co)/~2

Dyson's time-ordering operator, and j(x) is the current- and the relation
density operator. In our example

e is the electronic charge, e'/4m. =1/137. The time de-
pendence of all operators is given by the Heisenberg
equations of motion for the scattering system. We may
rewrite Eq. (2.1) as follows:

+— ' dxdye '"' e"&8( xo—yo)Q(x), j&(y))
Z

where
8= —eg e~ggj(4M'M ) (2.4) +oi'J dxdye '~'*e'""Pt p( )xj, (y)j (2.1.1)

g;, =2io' qP(x)$(x)e'~~ "i'd 8x"

+ P$g; (x),g, (y) $e" e "'"dxdy- (2 5)

The first two terms on the right of Eq. (2.11) cancel
exactly as a consequence of the definitions (2.2) and
(2.3) and the canonical commutation relations. We now
multiply the remaining terms in (2.11) by k; and find
easily that

For purposes of orientation we give g,; for Thomson
scattering:

g;; (.)=S;; (2~)49(~k„yaP„)eo/~, (2.6)

where e and nz are the total charge and mass of the
scatterer. Ap„ is the 4-momentum transfer to the
scatterer.

The theorem which makes our calculation possible
is the following:

k,'g;, k; =oi'oi PQ(x),p(y)5e'""e '~' dxdy. (2.7)

~p(y)
dxdye '""e'"&P p—(x)

z Byp

M f

d&dy&
—ia'~

i~

-g~iky-

PLp(x),p(y) J

dxdye '"'*e'"P—ku(x), p(y) j,

1 ~j'(y)
k,'g;, k;=&o' ~dxdye '"'*e'""P p(x) ——

(2.12)

Equation (2.7) is obviously a consequence of the gauge
invariance of the theory. It is valid for any gauge-
invariant theory in which the system interacts with a
scalar potential V(x) through an interaction Hamiltonian
H„=Jp(x) V(x)dx. This can be shown quite simply
and generally by considering the scattering of the
system by an arbitrary external electromagnetic field
and requiring the 5 matrix to be invariant under a
gauge transformation of the external Geld.

To prove (2.7) for our special example, we operate
on (2.5) with k,'. Thus:

where we have made use of the fact that p(x) and p(y)
commute for xp ——yp.

It follows from (2.12) that if we can obtain enough
information about the tensorial character of g;; from
other sources, we can use (2.12) to calculate g,; itself.
Let us look at the defining equation for g,;, Eq. (2.5).

The first term in (2.5) is a multiple of 8;;, and, since
p~g is a scalar, must be independent of the spin to
order O'. The second term can be rewritten in terms of
a sum over intermediate states with appropriate energy
denominators. The contribution g;, ( ) to the sum arising
from unexcited intermediate states can be explicitly
calculated to the required order in k. We shall perform
this calculation in Sec. IV. It turns out that k g;;('&k;= 0
so that g;, (o& will give no contribution to (2.12).

In the sum over excited states, g;;&', there can be no
singularities as {k,&u) ~0, because of the minimum
excitation energy p . The only tensors that can enter
g;;&'& to order k are thus 8;; and 0,;, where 0-~2 ——0-3, etc.

We may therefore write

k;;=2'k 'Jr *(*) ( ) ' "—"' *d

(2.8)

The second term on the right may be transformed by
using the equation of continuity,

f+—
~ P)Bj;(x)/Bx;j, (y) je'"&e "dxdy-

i~

Bj;(x)/Bx,= —Bp(x)/Bxo, (2.9) g'~ =gv"'+~4+&~v. (2.13)
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Substituting (2.13) into (2.12), we find

k' kA+4r (k'Xk)8=co'(AC,

quantity

where

C= dxdye '&'*e-'& P[p(x),p(y) j. (2.14)

E(k) —E(0)—(u E(k') —E(0)+(o'

=e'[E(k') —E(0)+a)'+E(k) E(0)—cv]

&& [E(k)—E(0)—~?'[E(k')—E(0)+~j '
We may now think of (2.14) expanded into a sum over
states. Those terms arising from excited states will con-
tribute at most of order k', since Jp(x)dx is a c-number,
the total charge. Thus to our order we may calculate
(2.14) using only ueexcited intermediate states.

We proceed to rewrite Eq. (2.14) as a sum over
states (suppressing all excited states):

e' k" k' (k—k')'
+

GoM L 285 285262
e'k k'

(2.16)
82 MM

g2

[E(k') —E(0)+E (k) —E(0)+E (0)—E(k' —k)]
GOGO

whence the constant A in (2.14) is given by A = —(24r)4
(pf I~[p(x) pb')3 I p'& i5(k„' k„+Dp„—)e'/m which leads trivially to the Thom-

=eez»'e z'e"'&pr
I p(x) e H( eogxp) p(y) I

p.
& (x,~ y,) son formula (2.6).

=e'""'e "'"&pal p(y)e '"'" *"p(x)
I p'& (»&xo),

so that

C=
~

dxoe'&"' I' ' pr
' p(x)e ' "dxe ' "

III. RELATIVISTIC INVARIANCE

We return now to Eq. '(2.15), and investigate the
properties of (p~ I p I pi).

The four vector &p&l j„lpi) must have the general
form, for a spin--,'particle,

2:0

= ~ 4»e"x " '"' "e(x)"e'A r )
&p I j.I pi& =i~(p )[ev.f((~p~)')

—~"t1P g((~pi)') j~(p ), (3 1)

=~~ 6 e"" '"'(ue "eb)e'"'4re ' "'

1f0

X ~ dx,ee" 'e"'" ~e(x)e '""dx p;)
W

2x

J
8((u'+Et cu E;)—pr p(x—)e —'~' *dx

1
' p(y)e"dy p' + pr p(y)a—E,— J

' J

Xe'x'dy p(x)e 'e' *dx p)H Ex+% J

where I and t7 are the Dirac spinors for the momentum
states p2 and p~ and the y's and 0-'s are the well-known

Dirac matrices. Here f and g are functions of (t1P))'
only, and f(0)=1, g(0) =X, the anomalous magnetic
moment of the particle.

Using (3.1), we find

(p2lpl p»= (1/i)(p~lj4I pi&

=@»)+ef—~4'~pcj~(p»
=efN*(p~)~(p»+g~*(p2)P&'~p~(p» (3 2)

Let us call the bracketed quantity in Eq. (2.15) Q:

(k—k'I pl k,4r&(k,elplo&
Q=E

4r E(k) —E(0)—(o

(24')' (k—k'
I p I k,4r&(k, 4r

I p I 0&
8(hp„+6k„)g

i 4r E (k) —E (0)—4d

&k-k'I pl
—k', 4r&(—k',el pl0&-

E(k') —E(0)+co'
(3.3)

&k—k
I pl —k,~&(—k,~l plo&-

E(k') E(0)+(u'—(2.15)

where we have made use of momentum conservation
and set p;=0 in arriving at (2.15).

We may now find immediately the Thomson limit
from (2.15). Since J'p(x)dx=e, (klplo&=(olplo&=e
+ k', so that as k —+0 we have for the bracketed

We wish to evaluate Q only to order k. Thus, the
numerator in (3.3) need be accurate only to order k'.
Since (AE)'=k4, we may set (t) p),)'= (t1p)', and since
the (tI)p)' are the same in both terms of (3.3) (although
in opposite order), the f and g functions will be common

factors to both terms. Their Dp dependence may there-

fore be neglected in our limit, which considerably
simplifies the remaining calculation. We thus set f= 1,
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E(k') —E(0)+o)'

g2 e'k k'

m MQ) [1+~k] m (d (d

In evaluating the remaining terms in (3.4) we may set
E(k') =E(k) =m, ~'=~ everywhere. Since N(p)=(1+
n y/2m)u(0), we have

g=g(0)=X, the anomalous part of the magnetic mo-

ment. Equation (3.3) for Q becomes, if we insert pro-
jection operators for the spin sums over intermediate
states:

-
[equip~ (—k')] [~ 1+pm+E(k)]

Q=N*(k —1')
. [E(k)—E(O)—~] 2E(k)

(e+Xp~ k)
X(e+~p~ k)+

[E(k ) E(0)+o) )
[—n k'+Pm+E(k')]

X [e+xp& (—1')] N(o). (3.4)
2E(k')

All the terms of the form Pe k or n k in (3.4) will

be of order k'/&v, so that they may be evaluated to their
lowest nonvanishing order. The only term we have to
watch is the one with every n k left out. Since Pu(0)
=N(0), and since k'2 —k2=k'/m, this term is

[m+E(k)] 1
(N*(k—k'), 44(0))e'

2E(k) E(k) —E(O)+ ~

and (2.14) informs us that

(2ir)4 g2

A = — 6(hp„+6k„)—,
z m

(3.7)

(2m.)4 a)e ( e )
~(~p„y~k„)i I

—2&—
i m& 2mi

(3.8)

Note that this term is exactly zero for a neutron.
In the next section we shall calculate g;;&').

IV. DIAGONAL MAGNETIC SCATTERING

In complete analogy with the derivativation of Kq.
(2.15) for the quantity C defined by Eq. (2.14), we may
derive an expression for g;, "directly from the defining

Eq. (2.5). We find

(2~)4 -(k—k'I j, l k)(kl j, Io)
gv"'= t'(~p. +~4)Z

i e E(k) —E(0)—(o

The o6-diagonal contribution to the scattering is thus
given, correct to order (k,co), by

(2m.)4
g' g' "—'= . ~(~p.+~4)

z
e' et' e)

x —-~,;+i~-
I 2w I~—„(3.9)

m mE 2mi

e't k' ky 1 p a (k—k')q
Q= —-

I
I+-~~*(0)

I
1+

m(~'~i ~ E 2m i
with

(k—k Ij, l

—k)(—k Ij, lo)-

E(k') —E (0)+(u'

(—n k'+m+pm)
(e+pn k)I I (e—liPn. k')

2m i

f n k+m+Pm~—(e—xp k')I I(e+Xpn k) N;(0)
2m

e'(k k') t'4r (k'xk)) t' e' 2lieq
I+il I I + —

ImE~'~ i E m i &2m' mi

e'(k k'y (e' (k'Xk)y e ( e

I+il
mE (o'~ i 0 (u imL 2mi

Here p, is the total magnetic moment. Equation (2.45)
now becomes

(y2I j'I yi) =i~(y2)[ev'f((~p. )')
—~'.~p.g((~p~)'))~(yi) (4 2)

Since y; and o.,;hp; vanish with k, we may disregard
o,46E and s. et f((hp&)')=1, g((dpi)')=X. With these
approximations

(y2I i I yi) =N*(y~) [«—i»yx~)44(yl)

=(e/2m) (yg+ yi)+i(e/2m+X)4rx ay
= (e/2m) (y2+ yi)+ip4r Xhy, (4.3)

which is, of course, the current of a nonrelativistic
particle interacting with a magnetic field according to
the Hamiltonian

(2~)4
C= S(~p„+ok„)

HN. r4.
' —(e/2m)(y A+A——y) —i44F H. (4.4)

e' k. k' e
+ia (k'Xk)

I
2@-

m co+' nuo 4

We may now verify the statement made in Sec. II
that k g;, ' k;=0. This is obvious for all those terms

(3 6) involving the spin, since hy is in each case the k with
which an inner product is being taken. For the spin-
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independent terms, we have

(2zr) 4 ( e )'2
S(~p„g~k„)

~(2zlz) (0

so that in all

(2zr)4 1
S= 8(hp„+6k„)

z (4M M)z

X (k,'k —k;k;), (4.5)

s«&=—
1 (2zr)4

8(d,p„+6k„)
(4N C0) ' z

e i e. (eXk)zz—e' k+ie'
t sX(—k')]zz

which is manifestly orthogonal to k k;. Furthermore,
since e k= e' k'=0, the spin-independent terms make
no contribution to the scattering matrix.

The contribution to the scattering matrix of g;, ~') is
thus

(
X —e e' i —~e—(e'Xe)~ 2zz-

m ns 2~)

22@ CP,Z

e (eX k) X (e'X k')—

X[(e k')e (eXk') —e' ke (eXk)]+ k' . (4.7)

The bracketed term is what we have called the
scattering amplitude, H, in the introduction.

In the forward direction k=k', and (4.7) simplifies
considerably. %e find for this case:

e
+ ——e k'+ie. (eXk)zz

m

ie' LsX(—k')zz]

e' ie( e )H'= (e e') ———
~

2zz — ~~o" (e'Xe)
nz nz & 2zzz&

+2zz'i(eXk) e'(k (r)

1 (2zr)4
S(Sp„+ok„)

(4''cv) '* i

2' ZCP

X 0 $(eXk)X(e'Xk')]+

e' e( e)= —e e'+i~a (e'Xe) 2zz' ——
~

2zz-
ziz zzz & 2zzz)

= (e'/zzz) e e'+i~a (e'Xe)2(zz —e/2zzz)'

= (e'/zzz) e e'+zu. A'e (e'X e), (4.8)

X[(e k')e'. (OXk) —(e' k)e (eXk)] . (4.6)

The contribution to the scattering matrix of g;,—g;;(') is

e, 'e; (2zr)4
S—S&"= — 8(d,p„+6k,)

(4GD M)~

e' e( ep
X 8,;+zo;,co (—2zz

——.—
zzz zzz E 2m)

where A is the anomalous part of the magnetic moment.
In conclusion, we may make a few general remarks.

Our results depend primarily on gauge and relativistic
invariance, so that they should not be dificult to generalize
to cases of higher spin. They are valid for atoms, nuclei,
and elementary particles. Unfortunately, experimental
verification seems almost out of the question since in
every case the coeKcient of k (which we have calcu-
lated) is anomalously small compared to the coefhcient
of k' (Rayleigh scattering) which is known to be
structure-dependent in a nontrivial way.


