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of getting 6 events assuming negative o.33 is 340 to 1 in
favor of the destructive interference. This same type of
calculation when made using the best-Gt phase shifts
to aLL the data will give artificially suppressed odds.
This is because the experimental "low value" of the
cross section at small angles will exert a strong eGect in
pulling the constructive interference curve part way
down to it. In this case the ratio is only 11 to 1. We
do not consider this experiment by itself as conclusive
proof that +3~ is positive, but when considered along
with all the other evidence pointing toward an attrac-
tive pi interaction, the "odds" in favor of a positive
+33 become overwhelming.

Some of the other evidence comes from the 65-Mev
experiments at Columbia' and the 40-Mev experiments
at Rochester' assuming charge independence. This is
because the knowledge that o.33 must become large as
shown by the recent results from the Carnegie Institute
of Technology' makes the Steinberger solution im-
plausible. Also an attractive pt interaction is preferred
theoretically in order to explain such large values of n33
as found in the 150 to 200-Mev region. ' The values of
the small angle scatterings below 30' are 17.9', 19, 20,
23.4, 23.5, 23.6, 26.5, 27, 27.6, 28.9, 29.5, 29.6, and 29.7.

The earlier 110-Mev counter results of Anderson
et aL. are fairly consistent with these plate results.
Their values of a, b, and c at 110 Mev are 3.6&0.7,—4.8&0.8, and 7.5&1.9 mb per steradian. Our values

' J. Tinlot and A. Roberts, Phys. Rev. 95, 137 (1954).
'Blaser, Ashkin, Feiner, Gorman, and Stern, Phys. Rev. 95,

624 (1954).

are 4.0%0.4, —3.5~0.7, and 6.8&1.3. At 120 Mev
their phase shifts are n3 ———15', a33=30', and o.31=4'.
Ours are —10.9', 27', and —3.2' at 113 Mev.

The data shown in Table I gave an M value of 11.8
when analyzed by the least squares method. M is the
least squares sum in units of the standard deviations
of each point. According to statistics the mean value
of 3f should be 6 in the case of 9 experimental points
and 3 parameters. "Since JI is g' distributed with Ã= 6
in this case," the probability that this experiment give
M~&11.8 is 7 percent. Of course a small amount of
d-wave might improve this fit, although the odds, 1 in
14, for having a fit as poor as this are not unreasonable.
Inspection of Fig. 1 shows that the 9 experimental
points alternate above and below the curve. We feel
that this large M value is just a statistical oddity. To
support this view a second least squares analysis was
made. This time the data was divided into 6 equal
units of solid angle giving 3f=3.2, which is very close
to the expected mean value of 3 (for the case of 6
points and 3 parameters). Statistics would have to be
improved in order to be sure of seeing any d-wave.

The author wishes to thank Mr. Paul Taylor, Mrs.
Enid Bierman, and Mr. James Ross for their excellent
job of scanning. Dr. Frank Solmitz kindly helped with
the calculations and statistical problems which arose.
In addition the author is grateful to Professor Enrico
Fermi for helpful discussions.

'o H. Cramer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, 1946), Chap. 37.
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The concepts microscopic reversibility, detailed balancing, equal probabilities, equilibrium, P theorem
are often used in (coarse grained) quantum statistics. Et is pointed out that each has a (ime grained) quan-
tum-mechanical counterpart. These concepts are formulated, and their interrelations discussed, at an
abstract mathematical level. The results are then interpreted by taking first the 6ne grained and then the
coarse grained point of view. A type of transition matrix arises which does not seem to have been inves-
tigated so far, and some of its properties are discussed.

1. INTRODUCTION

WO starting points for quantum statistical me-
chanics and the statistical foundation of thermo-

dynamics are often used. In the first one appeals at the
outset to some principle of equal a priori probabilities
and random a priori phases without making any at-
tempt to establish these from more fundamental con-
siderations. These assumptions make possible the in-
troduction of ensembles into the theory. The micro-
canonical ensemble enables one to prove an H theorem

*On leave of absence from Department of Natural Philosophy,
The University, Aberdeen, Scotland.

for a perfectly isolated system in the following sense:
if the ensemble is set up in accordance with an initial
observation at a time 3=0, when the value of H for
the ensemble is H(0), then, at, all later times t, H(t)
&H(0). The statement "dH/dt(0 at all times t" is
de6nitely stronger, and, as far as we know, it has never
been established from this kind of argument. Hy
identifying H as a negative multiple of the entropy (S)
one has here a restricted quantum statistical proof of
the principle of the increase of entropy with time in a
perfectly isolated .system. The restriction resides in
the fact that S(t) &S(0) is weaker than dS/dt&0 It.
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should, however, be noted that, by using a canonical
ensemble for a system in essential isolation, the second
law can be established in the unrestricted form (in
Tolman's notation) AS& f6e/T. Tliis approach via
ensembles is essentially the quantum-mechanical ex-
tension of Gibbs's statistical mechanics. '

The second approach, which is older, and is falling
slowly into disuse, is associated with Boltzmann.
Formulated in a modern manner, its object is to justify
the use of ensembles. This is done by showing that the
quantum-mechanical time average of macroscopically
observable quantities in a closed system, and the micro-
canonical average of these quantities, taken at a fixed
time, are almost always equal to each other. This is
the quantum-mechanical ergodic theorem. ' It holds if
the number of macroscopically indistinguishable micro-
scopic states is large enough, and if the energy levels
of the system satisfy a certain restrictive condition. '
The same conditions are sufficient (their necessity has
not been proved) to establish the H theorem in the
following sense: the time average of (a suitably dined)
II for a quantum-mechanical system is approximately
equal to the microcanonical average. While some of
the concepts involved in this approach have been
criticized, ' it is more fundamental than the first
approach, since it aims at being based on quantum
mechanics, while the statistical assumptions play a
subsidiary role. None the less, it is to be emphasized
that this method also depends for its success upon an
implicit assumption which is similar to that of equal
a priori probabilities and random a priori phases. '
This assumption occurs when one sets out to calculate
the chances of ending conditions which are at variance
with thermodynamics.

A third approach, which we shall call the method of
transition probabilities, exhibits interesting differences.
Its advantages are mathematical simplicity and a
somewhat weaker statistical assumption. The method
depends on an assumption of random tt priori phases,
but the principle of equal probabilities of accessible
quantum states in equilibrium is not assumed, but is
deduced by quantum mechanics. ' The drawback of the
method is that, it is valid only for limited time in-
tervals, as will be discussed in Sec. 4. For these time
intervals, it leads to the strong form dH/dt &0 of the
H theorem.

R. C. Tolman, Principles of Statistical Mechanics (Oxford
University Press, London, 1938).' J. von Neumann, Z. Physik 57, 30 (1929); W. Pauli and
M. Fierz, Z. Physik 106, 572 (1937); W. Pauli, Suppl. Nuovo
cimento 6, 166 (1949).

~ If E; be the exact energy levels of the system, we must have

E;+EI„E;—Ep+ Ek—E for jQ k, l+ m.
4 E. C. Kemble, Phys. Rev. 56, 1146 (1939).
~ The author is indebted to Professor von Neumann for an

opportunity to discuss this point with him.' W. Pauli, Probleme der modernen Physik, edited by P. Debye
(Hirzel, Leipzig, 1928), p. 30. See also T. Sakai, J. Phys. Soc.
Japan 19, 172 (1937); O. Halpern and F. W. Doerman, Phys.
Rev. 55, 1077 (1939); J. Davydov, J. Phys. (U.S.S.R.) ll, 33
(1947).
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' J. S. Thomsen, Phys. Rev. 91, 1263 (1953).

In 6nite ensembles Quctuations may have to be considered,

We wish to emphasize that the older assumption of
molecular chaos is replaced in all three approaches by
an assumption concerning the perfect irregularity of
certain phase constants.

The method of transition probabilities has recently
been used in an interesting manner for the discussion
of basic principles of statistical mechanics and thermo-
dynamics. ~ The reason for taking up this problem again
is that it seems desirable to develop the results a little
further, and to clarify the foundations of this work with
the following points in view. (1) It is essential in this
type of discussion to make a clear distinction between
coarse grained and fine grained probabilities. One must
therefore introduce groups of microscopic states which
cannot be distinguished by macroscopic methods. (2) It
seems desirable to make explicit, and discuss separately,
the assumption that, after a finite time, the probability
that a system, chosen at random from the ensemble, is
in its ith accessible state, becomes a constant. This
would exclude fluctuations in ensemble averages, ' and
it is therefore best not to assume it automatically.
(3) The assumption that all states of the systems in
the ensemble are interconnected can be dropped alto-
gether, and its eGect investigated separately.

We shall set up our problem in abstract mathematical
terms in Sec. 2, and oQer the solution at the same level
in Sec. 3. Thereafter we shall discuss the physical in-
terpretation of the relations obtained, and show that
the same mathematical scheme is useful from two
entirely diferent points of view.

2. THE PRINCIPLES

Let 8' be a finite, positive, and nonzero integer.
Let G», , G~ be a set of finite, positive, and nonzero
integers. Let Pj, -, Pg be a set of numbers which are
continuous functions of the time t, such that 0 &P; & 1,
Qt~P, =1 at all values of t. Lastly, let A,; (i, j=1,2,

, W) be a set of W' non-negative real numbers. All
numbers, other than the P's are independent of t. The
principles whose interrelations we wish to investigate
are that for all i, j= 1, 2, ~ ~, 8':
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Unless stated otherwise, each principle is assumed to
hold only at a certain value of t, so that our inferences
will be of the form if (A) is valid at t, then (8) is
valid at t. However, in the case of the erst two principles
it is clear that if they hold at a certain value of t, then
they hold at all values of t W.e shall write (A)—+(8)
for (A) implies (8), but (8) does not imply (A); and
(A)=(B) for (A) implies (8), and (8) implies (A).
(A)+(8) (C)+(D) shall mean that if one assumes
both (A) and (8), one can deduce both (C) and (D),
and conversely. It is assumed that A,;=0 for alii.

The question as to the extent to which any one of
these principles, or some combination of these prin-
ciples, implies others, presents clearly a problem in pure
mathematics, and is fully defined by the above informa-
tion. Its solution is attempted in the next section.

3. THE THEOREMS

Lemma 1.—If the quantities P; are arbitrary (except
for the condition PP,= 1), then in order that H be an
extremum with respect to P„, when all other P's are
kept fixed, P„must satisfy

w Q„ P,G„p=F„g A;—„(P;G—„P„G;)+A—„,G; log

where p, is a constant which does not depend on r, and

F„=P(A „,—A—;,)G;.

The proof depends on the use of a Lagrangian multi-

plier LM to ensure that the P's are normalized.
Lemma Z.—If the conditions of Lemma 1 are fulfilled

for every r = 1, 2, ~, W, and if F„=0 for every r, then
condition (P) holds. Pi, Ps, Pit. , and H all vanish as
a consequence.

Proof. Consider a—pair of suffipes with the properties
A„&0, P,/G. )Pi/Gi, and another pair with the prop-
erties A„,QO, P„/G„&P./G, . We must consider four
possibilities. (n) A pair of suffixes of both types exists.

(P) A pair of suKxes like (s, t) exists, but no pair exists
with the properties of the pair (u, n). (y) A pair of
suffixes with the properties of the pair (I, e) exists, but
no pair exists with the properties of the pair (s, t).
(6) No pair of suffixes exists which has either property.
Situation (u) can be ruled out as follows. Of all suffixes

s, t; m, v consider one of those for which P,/G, has its
largest value, and let this suKx be j=u. Consider also
one of those suffixes s, t; si, n for which P,/G, has its
smallest value, and let this suffix be j=b. On choosing
r=a in Lemma 1, one finds p, &0. On choosing r=b in
Lemma 1, one 6nds @&0, and this is a contradiction.
Situations (P) and (y) can be eliminated without refer-
ence to Lemma 1.' Since

P;=Z,G,G, I

——lA;, -P,F;,
~G; G)

s Alternatively, the argument used for case (a) may also be
applied in these cases.

and P,=O, A, ;&0, it follows that P; &0 for all i. Now
Pi) 0, so that Q,P;)0. This contradicts the normaliza-
tion conditions, and situation (P) must therefore be
ruled out. A similar argument eliminates (p), since one
would find P;P, &0. This leaves only situation (5)
which implies that if A,,WO, then P,/G; =P,/G;. Hence
P;=0 for all-i. Therefore,

H=P;P, log(P, /G, ) =0.
Interpretation ot' Condition (P). Our W suffixes can

be subdivided into groups according to the following
rule. For any pair of suffixes x, y within the same group
it must be possible to form a nonzero product of A' s
of the form:

either A,+,s . .A~,A,„or A„+~. .Ar,A„.
Let the smallest number of groups of suKxes obtainable
in this manner be e, and let the nth group contain z
sufEixes. It follows that

P to =W, A,,=O if i,j belong to different groups.
1

If i and j be in the same group, 2;; carI, be zero, but it
need cot be zero. Again in some cases one may have
some m s which are unity; in others no subdivision of
suKxes into groups may be possible, so that ~=1. This
subdivision of the suffixes into groups is independent
of the value of t, since it depends only on the properties
of the A' s.

If now (P) holds at a certain value of t, we find

simply that for all i within a group of suffixes the value
of P,/G, is independent of i, and depends only on n

Suppose that for all i within the nth group P,/G, =IC
(a=1, 2, , s). One can then arrange the e groups of
suffixes according to the size of E, e.g., so that

Eg&E2& -&E„

and this will be assumed whenever (P) holds. If (P)
holds and v=1, then Xi=1/W in virtue of the nor-
malization condition.

As a simple application of these ideas, we note from
the result,

H =Q (P;A;,G, PJ,,G;) log(P;/—G;),

that each group of sufIixes contributes to B a value
which is independent of the other groups. Thus the
total value of H is simply a sum of the contributions to
H which arise from each group of suKxes. Our next
lemma deals with a typical contribution to B when
condition (P) holds very nearly.

I.cessna 3.—If for all i in the nth group of su%.xes
P;=E (G1+h~), ~A;~&&1, where K is a non-negative
constant, then the contribution to H from the eth
group of suffixes is given by

2H= —K Q G;A;,G;(b„—5;)s—E Q G;F,h, (1+6,).
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6s P2-3 P3-~)I 1.
0 6

Ag= 6 0
.2 4

12
3
0.

This leads to (Eq) and to

PgA g2
——P2A23= P3A3g= 1) PRA2g=P3A32=PgA )3=2)

so that it contradicts (D). Since

H=P,P, log(P, /G, ),

(Eq) implies (H'). The converse does not hold, as
shown by example (IV).

(iv) W=3; Gi=G~=G3=1&
'0

Pg ——Pg ——P3———,, A g= 1
.2

By the de6nition of P; this leads to

P~--„P2-0, P3- --„

1 1
0 0 .
0 0.

thus satisfying (H'), but violating (Eq). The result
(H') —+ (H) is obvious.

Theorem la.—If v=1, then (P)+(D) implies (Q).
If there is only one group of suffixes and (P) holds,

then P, =G,/W)0 for all i, so that (P)+ (D) implies
G;A,,G;/W= G,A;,G,/W (all i, j), and this leads to (Q).

Theorem Z.—(Q)+ (D) —+ (Q) ~ (X) —+ (H).
Obviously (Q)+ (D) implies (Q). The converse is

untrue, as proved by Example (v).
t'0 1)

(v) W=2; Gi ——G2 ——1; Pi ——3, P2 3i A&j= Iv
1 0

This satisfies (Q), but contradicts (D). The result

(Q) -+ (X) is obvious from the definitions. Now (X)
implies F;=0 for all i, and imposes no restriction on the
P's, so that I.emmas 1 and 2 apply. Hence H attains

The proof depends only on some algebraic manipula-
tions.

Theorem 1.—(Q)+ (D) -+ (P)+ (D) —& (D) ~ (Eq) -+
(H') ~ H.

(Q)+(D) implies P,A,,G;=P,A,,G;. If A,;NO, P,G;
=P,G; follows. Thus (Q)+(D) implies (P), so that
(Q)+ (D) implies (P)+ (D). On the other hand if

A,,=O, A;;40, P;=P, =O,

then (P) and (D) are both satisfied, but (Q) is violated.
This shows that (P)+(D) does not imply (Q). Again,
(P)+(D) obviously implies (D), but (D) does not
imply (P), as shown by the following example:

)0 2q
(i') W=2' Gi=G2=1i Pi= 3~ P2= 3I A'i=

~

0&

This satisfies (D), but violates (P). Again (D) implies

(Eq), as follows immediately from the definition of P;.
That (Eq) does not imply (D) is proved by the fol-
lowing example:

(iii) W=3; Gi=G2=G3=1;

0
Pg= P2= P3= —,, Ag= 2.1

1 2
0 0 .
1 0.

This satisfies (P) and (Eq), but contradicts (D). Again,
(P)+ (Eq) implies that

pP; P,
P,=PG,G,

~

—A, ,——A,; ~=P
'EG, '

G; ')
P;

G,G,—(A;,—Ag) =0.
6;

Hence Q,G;(A;,—A,,)=0 (all i), and this is (X). Since,
in addition, (Eq) ~ (H') (Theorem 1), it follows that
(X)+(Eq) implies (X)+(H'). Again, if (X)+(H') hold
a certain value T of t, then, by Lemmas 2 and 3, at
t= T, (P) holds, and P,=O for all i. Since we have just
shown that (P)+(Eq) implies (X), it follows that (X)
must hold at t= T, and therefore (X) holds at all values
of t, If the first change of a P, away from its value
given by condition (P) occurs at t= T', then we must
have d "P;/dt"=P, (Q,G, (A, , A,;))"WO for som—e posi-
tive integer m, and for some i at t= T', and this would

imply that (X) fails for some i. This is a contradiction,
so that (X)+(H') implies (P'). Again, (P') implies
clearly (P) as well as (Eq), since for the nonzero in-
terval of t for which (P) is valid, all P, are given by
equations of the form P,=E G, (i in group n of suKxes),
and are therefore independent of t. This proves the
equivalence of the four intermediate propositions of
Theorem 4. Lastly, (X)+ (H') clearly implies (X).
That (X) does not imply either (P) or (Eq) is proved
by Example (v).

its extreme value with respect to each P„ if (P) holds,
so that, as a consequence, H=O. On the other hand,
if (X) holds but H does not attain its' extreme value,
then H (0 by Lemma 3. Hence (X) implies H (0, and
this is (H). The converse is disproved by Example (iv).
This implies H=O, so that (H) holds, but it contra-
dicts (X).

Theorem 3—(Q)+ (D)=(Q)+ (Eq)=(Q)+ (P).
Since (Q) ~ (X) (Theorem 2), and (X) implies F,=O

for all r, one can use Lemmas 1 to 3. Since (D) ~ (Eq)
(Theorem 1), therefore (Q)+(D) implies (Q)+(Eq).
Since (Eq) —+ (H') (Theorem 1), the maximum value
of H, whose existence is implied by (Q), is actually at-
tained, so that (P) holds by Lemma 2. Thus (Q)+(Eq)
implies (Q)+ (P). Lastly, it is clear that (Q) implies (D)
if A;; or A;; are known to vanish. If neither vanishes,
however, (Q)+ (P) implies A;; (P,/G;) =A;, (P;/G;), and
this is again (D). Thus (Q)+ (P) implies (Q)+ (D), and
this establishes the complete equivalence of the above
three propositions (from each one the other two can
be deduced).

Theorem 4 (P)+ .(—D) ~ (P)+ (Eq) (X)+(Eq)
(X)+(H')=(P ) ~ (X).

Since (D) —+ (Eq) (Theorem 1), therefore (P)+(D)
imply (P)+(Eq). The converse is disproved by the
following example:

(vi) W=3; Gi=G2=Gg=1;
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Q+ Eq ==-Q+D = Q+P

P P+ Eq —X+Eq =- X+H'

X

H

FIG. 1. General scheme of implications. A —+8 means that if
(A) is true of the ensemble of duplicates of a certain system at
time T, then (8) is also true of this ensemble at that time. The
converse, (A) follows from (B), does not hold. A 8 means that
both the direct result and its converse apply.

Theorem 5.—(X)+(Eq) —+ (Eq).
It must merely be shown that (Eq) does not imply

(X). This is accomplished by Example (iii).
A summary of the relations established is given in

Fig. 1. Inspection of the figure raises the question if a
relation of implication can be established between a
pair of the following three proposition: (Q), (D),
(X)+(Eq), or between the following two propositions:
(X), (Eq). However, this can be shown to be impos-
sible. Example (v) shows that (Q) does not imply (D)
or (Eq). (D) does not imply (Q) or (X) )Example (ii)7.
(X)+(Eq) does not imply (Q) or (D) LExample (vi)7.
Again, (X) does not imply (Eq) (Theorem 4), nor does
(Eq) imply (X) (Theorem 5).

4. THE TWO POSSIBLE INTERPRETATIONS

(A) By way of physical interpretation of the above
formalism, we consider an ensemble of identical systems
whose energies lie all in the same small energy range
(E, E+AE). W is interpreted as the number of different
macroscopically distinguishable states i = 1, 2, , 8'
which each system of the ensemble can exhibit. How-
ever, each state i may be any one of a group of G;
microscopically distinct states, between which our
measurements cannot distinguish. P; is interpreted as
the probability of finding a member of the ensemble in
the state i, i.e., in the group of G; macroscopically
indistinguishable states. Alternatively we may say that
P, is the probability, as averaged over a microcanonical
ensemble, of finding the system of interest in the state i.
P; is a so-called "coarse grained" probability; the P,'s
go over into "fine grained" probabilities as 8' is in-
creased and the integers G; decreased until G~= G2=
=G~=1. If the P's are coarse grained probabilities,
B is then the quantity, characteristic of an ensemble,

which occurs in the quantum-mechanical H theorem.
From it one can obtain the statistical mechanical
analog of the . .second law of thermodynamics, by
noting that the quantity S=—kH has the required
properties of the" entropy. (Eq) states that, as far as
can be ascertained by the macroscopic measurements
under consideration, the ensemble averages of the
various physical quantities exhibited by the system of
interest have constant values. In general, such a situa-
tion can arise only if the fluctuations in the ensemble
averages can be neglected (e.g., if the macroscopic
measurements are sufficiently coarse, 'and extended over
a sufficiently short period). Thus (Eq) postulates en-
semble equilibrium (as revealed by the measurements
under consideration). The principle (P) is most easily
interpreted if it is assumed that the system can reach
each of the 8" macroscopic states from every state i.
If this assumption of the interconnection of states is
adjoined to (P), then (P) states I', =G;/8' for all i
This is simply the principle of equal a priori proba-
bilities (at equilibrium) of all accessible microscopic
states. " The statement (P) is just the required gen-
eralization of this principle when one does not wish to
make an assumption as to the interconnection of states.
The A's are transition probabilities per unit time, and
(Q) is a statement of a result, concerning transitions and
inverse transitions, which depends on the Hermitian
character of the perturbation operators, and. on an
assumption concerning random phases. (Q) is some-
times referred to as the principle of microscopic re-
versibility. (D), on the other hand, equates the transi-
tion rate i —+j and the transition rate j—+ i, so that it
may be regarded as a statement of the principle of de-
tailed balancing for transitions between macroscopically
distinguishable states.

The time independence of the A's is the basic assump-
tion which underlies our discussion. It applies in fact
only to systems whose Hamiltonian can be split into
an unperturbed part, for which the Schrodinger equa-
tion can be solved, and a sufficiently weak perturbation.
Hence, if at least one of the states between which transi-
tion is made belongs to a practically continuous spec-
trum of unperturbed energy levels, one arrives at A' s
which are independent of the time for certain restricted
time intervals.

(B) The mathematical discussion of Sec. 3 admits of
an alternative interpretation, which is free of all sta-
tistical elements. In this approach the P's are the 6ne
grained probabilities and the G's are all unity. The
basic limitation of the discussion resides again in the
assumed existence of time-independent transition proba-
bilities A;;, but the assumption of random phases is
not now involved, and (Q) is an exact quantum-me-

"Our principle (f') is a generalization of the principle (Z) of
reference 7, which is there called the ergodic hypothesis. We re-
serve this name here for a hypothesis which relates time averages
of probabilities to ensemble averages of probabilities. Jordan calls
the principle (E) Liouville's theorem for quantum statistics. We
prefer to adopt as the latter one of Tolman's formulations.
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Q+ Eq Q+0 —Q+P —P+0

D P =P+Eq X+Eq X+ H

Eq

Q

X

H

)(

«H
FIG. 2. Scheme of implications, provided the states i,j, ~ ~ ~ are

interconnected. See caption of Fig. 1.

"0.Klein, Z. Physiir 72, 767 (1931).
rs P. Jordan, Statistische Mecharsih assf Qstarttemtheoretischer

Grttssdtage (Vieweg, Braunschweig, 1933), p. 25.

chanical result (provided, of course, the perturbation
operator and the time satisfy the usual requirements).
But there is not now any contact, through the condi-
tion (H), with the macroscopic measurements of ther-
modynamics, even though a theorem corresponding to
the H theorem can again be proved, and is not in this
case based on an assumption of random tt priori phases.
All the results which one obtains by adopting this
hne grained point of view are to be regarded as results
in quantum mechanics proper, and not as results in
quantum statistical mechanics.

Strictly speaking all principles of Sec. 2, excepting
(Q) and (X), are thus seen to be principles which may
or may not apply to an ensemble of duplicates of a
system of interest. Their truth or falsehood is therefore
characteristic of the ensemble rather than of the system
itself.

S. DISCUSSION

We first of all adopt interpretation (8), which uses
the fine grained probabilities. In. this case (Q) may be
taken as correct, and hence leads to (H). The proof,
freed from the assumption as to the existence of transi-
tion probabilities, is due to Klein. "But this is a result
in quantum mechanics, and therefore not the H theo-
rem proper. To investigate the limiting value which H
approaches, we adjoin to (Q) the assumption (Eq), and
deduce from Fig. 1 the validity of both (P) and (D).
Thus, if the states i and j are connected (directly or
via other states), the I', and I', tend to become equal.
This is the well-known e6ect of quantum-mechanical
"spreading, " which has no classical analog. Assuming
the interconnection of states, Jordan" has already ob-
served that (Q)+(Eq) implies equal probabilities for
diferent states.

In interpretation (A) the proof that the assumption
of random phases leads to (Q), and that (Q) in turn
implies (H) is due to Pauli. '
g We wish to emphasize the very limited part which
the interconnection of states can play in these con-
siderations. Theorem 1a represents the only example
we have found of a relation of implication which holds
only if this assumption'iis made, and Fig. 2 represents
the scheme of implications for this case. On the other

Qr- Qrt Dr — Qr+Pr&Q

FIG. 3. Scheme of impli-
cations, provided the en-
semble attains the condi-
tion (Jrq} at some time (T).
See caption of Fig. 1.

PT+DT

X

H

HT

hand, the assumption of equilibrium in the stringent
form (Eq) is very powerful. Figure 1 shows that if at
a certain time (Q) be true and (Eq) be false (e.g. , due
to fluctuations in ensemble averages about a mean
value), then (X) and (H) must also be true, but (E),
(P'), (D), and (H') must all be false at that time. Yet,
restrictive though the equilibrium assumption (Eq) is,
it alone does not enable one to infer the existence of
detailed balancing.

It may possibly be of interest to draw attention to
the time-independent condition (X) which does not
appear to have been noticed before (it is a generaliza-
tion of Thomsen's )t hypothesis). ' It is suKcient to de-
duce the H theorem, and, if (H ) be adjoined to it, it
implies (E), even (E'), as well as (Eq). The implication
in some writings that the validity of (Q) is a necessary
condition for the validity of the H theorem, is therefore
not correct.

As an example of a series of stipulations in which
each is more restrictive than the preceding one, we may
note the following: If (E) holds at a time T for a
certain system S (more accurately: for the ensemble of
duplicates of a certain system S), this does not imply
that any of the other statements of Sec. 2 shall be true
of S at T or at any other time. If (P) and (Eq) are
both true of S at time T, however, (H') must hold at
time T, while (X), and therefore (H), must be true of
S at time T, and therefore also at all other times.
Neither (D) nor (Q) need be true of S at any time in
this case. If (P) and (D) are both true of S at time T,
this is a more restrictive condition, in that (D) must
now definitely be true of S at time T. (Q) need still
not be true of S at any time. Lastly, if (P) and (D) be
both true of S at time T, and the states are inter-
connected, then all the other principles of Sec. 2 must
be true of S at time T. In particular, (Q), (X), and
(H) are then true of $ at all times.

As a further example of the use of Figs. 1 and 2, let
us consider now a system such that the ensemble of its
duplicates attains the condition (Eq) at some time T.
Let us denote by (A&) a principle if it is true of the
ensemble at the time T, and let (A) denote the same
principle if it is true of the ensemble at all times. The
schemes of Figs. 1 and 2, give them rise to those of
Figs. 3 and 4, which are self-explanatory.

Figure 4 incorporates all assumptions made by
Thomsen, ~ provided our G's are set equal to unity. It



1426 P. T. LAN DSB E RG

Q Pr+ Dr-

D P X-

H

HT

Fn. 4. Scheme of impli-
cations, provided the as-
sumptions of both Figs. 2
and 3 are made. See caption
of Fig. 1.

should therefore be compared with his results which are
summarized in Fig. 5. The only significant difference is
seen to reside in the fact that his principle (S) and our
principle (II) do not occupy analogous positions, al-
though they are both supposed to represent the sta-
tistical counterpart of the second law of thermo-
dynamics. The reason resides in Thomsen's Theorem 3,
in which he proves that (5) implies (Pr). In the present
treatment it is impossible to prove such a theorem, as
evidenced by our example (iii). This shows that (H)
may be valid, even for an indefinite period of time,
without enabling one to infer (P), (X), or (D):and that
this remains true even if the condition (Zq) is adjoined
to (H). The H theorem is therefore seen to imply only
comparatively weak restrictions on the parameters of
the theory. This is also clear on the general grounds
that (H') and (II) each represent just one restrictive
equation which is to be imposed on the parameters at
any one time, whereas all the other conditions represent
several restrictive equations.

Q Pq+ D Fio. 5. Scheme of im-
plications deduced by
Thomsen (see reference
7). The symbols Q, Dz,
Py, X correspond to
Thomsen's symbols M,
D, E, I., respectively.

"G. Frobenius, Sitzber. Kgl. preuss. Akad. Wiss. Berlin, p. 456
(1912).

"H. Wielandt, Math. Ann. 52, 642 (1950).
's Y. K. Wong, Proc. Natl. Acad. Sci. 40, 121 (1954).

M. Frechet, in Traite du calcul des probabilites et ses applica-
tsons, edited by E. Sorel (Gauthiers-Villars, Paris, 1938), Vol. I,
Part III, Book 2.

'7W. Feller, An InIroduction to Probabi7ity Theory and its
A pplications (John Wiley and Sons, Inc. , New York, 1950).

's V. Rotnanovsky, Acta Math. 66, 137 (1935).

6. SIGNIFICANCE OF THE CONDITION (X):
COARSE GRAINED TRANSITION MATRICES

In this section, we wish to consider briefly the
properties of those transition matrices A which satisfy
the condition (X). Such considerations belong properly
to the theory of matrices whose elements are real and
non-negative. This was initiated by Frobenius, " and
has been developed more recently by other authors. ""
Such matrices are also of importance in the theory of
probability, "' and, in particular, in connection with
Markov processes. "In these theories one often studies
stochastic matrices, i.e., matrices whose elements are

real and non-negative, and whose row sums are unity.
Occasionally doubly stochastic matrices are also studied.
In such matrices the elements in any one row and in
any one column add up to unity. If we agree to take
any one row sum in an order defined by the requirement
that the column suffix shall increase, and any one
column sum in the order indicated by an increasing row
suffix, and if we also agree to give the jth term in any
one such sum the finite and nonzero weight G;, we shall
speak of the "weighted" row sum and of the "weighted"
column sum. A matrix which satisfies condition (X) is
clearly not a stochastic, or a doubly stochastic, matrix;
it is a matrix whose jth weighted row sum is equal to
its jth weighted column sum for all j=1,2, .TV. A
matrix satisfying this requirement for some set of
weights G, , and having all its elements non-negative,
will be said to be a "coarse grained" transition matrix.
We shall establish some of its properties.

Let 8(p, q) be a matrix of p rows and tt columns. Let
0 denote a matrix whose elements are all zero. Fro-
benius" defined a matrix 8 as decotrtposaMe if it could
be expressed in terms of submatrices according to the
scheme

1&a&rt 1, (1)—
by applying a permutation to the row suffixes, and the
same permutation to the column suffixes. If Q is also
a zero matrix, 8 is said to be costtp/etely decomposable.

Theorem 6.—If a coarse-grained transition matrix is
decomposable, then it is completely decomposable.

Proof. Let A(st, rt) be —the matrix under considera-
tion, and let the weighting factors be GI, G~. Let G
be a diagonal matrix whose (jj) element is G, , and let
a matrix 8 be defined by 8—=GAG. The sum of the jth
row of 8 is then equal to the sum of the jth column of
8 Lby condition (X)j.8 can be decomposed as in (1),
since A is decomposable; also the elements of the
matrices P, Q, E are all non-negative. Now the sum of
the first a rows of 8 must be equal to the sum of the
first u columns of B. But the difference between these
two sums is the sum of the elements of Q, and this
must therefore be zero. Hence 8 is completely de-

composable. It follows that A is completely decom-

posable.
Theorem 7.—If a matrix A (rt, rt) whose elements are

non-negative is not decomposable, then the quantities
(A");& (r=1, 2, , rt —1) cannot all vanish for any
given pair of suffixes j,k.

This result is due to Frobenius. " The quantities
(A");s are just the products which we introduced in

Sec. 2.

"See reference 13, p. 461.
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Theorem' 8.—Sy applying the same permutation to
the rows and columns of a coarse grained transition
matrix the latter may be completely decomposed into
indecomposable parts, or it is itself indecomposable.

This result follows from the last two theorems. As a
special case, we note that "fine grained" transition
matrices, for which Gl=G2= G~ ——1, and doubly
stochastic matrices, are all completely decomposable.

By Theorem 8 condition (X) ensures that the W
macroscopically distinguishable states can be sub-
divided into groups of states such that no transitions
are possible between groups, while transitions in either

directional, are always possible between any two states
which belong to the same group. Thus, whatever the
values of the weighting factors G, , condition (X)
ensures that if transitions are possible from a state j to
a state h (possibly via other states), then converse
transitions are also possible.

The author is indebted to Dr. J. S. Thomsen for a
careful reading of the manuscript, and a resulting
helpful discussion.

AI PENDEX

In this appendix we shall derive two additional re-

sults, which, while not essential to the main arguments
of the text, will serve to clarify the relations obtained.

In Lemma 3 we have neglected terms of order 6,
and this will now be justi6ed by showing that the terms
in 6,' must in all important cases make some con-
tribution.

I.emma 4.—If condition (P) can hold for a system,
then, when it holds very nearly and at least one 6, of
Lemma 3 is nonzero, we must have

~GrA~'G'(~~ ~')') o-
(i,j in nth group of suffixes; valid for all n)

Proof. When condi—tion (P) holds, the probability
of 6nding one of the suffixes i is

QP, =E QG„.

This equation must remain valid even when (P) does
not hold, as no transitions are possible between dif-

ferent groups of states. Hence

Thus, if one 6;, 6& say, isnonzero, we must haven &1
and, also, there must exist at least one other nonzero

6;, 6& say, which has a sign opposite to that of 6I,. The
states k and l can be joined by a nonzero product of
the A' s, and, by definition, this can be formed using
only suKxes from the nth group. Let it be Ai,+,t,

~ A„,A, t. We can now show that, if Lemma 4 were
not true, one could arrive at a contradiction.

Suppose, then, Ai&0, Q, ,G,A, ,G, (h;—d„)'=0. Then
each term in this sum must vanish separately. Consider
those terms of this sum which are specified by the pairs
of suffixes: (fj)= (h, a), (a,b), (p, q), (q, t). Since the
A's are nonzero for these terms, they will vanish sepa-
rately only if AA, ——6,= 6& A~= 6,= 6&. Since 6A, , 6&

are of opposite sign and nonzero, this is a contradiction.
Hence Lemma 4 holds.

It follows from this lemma that in the neighborhood
of H =0, for which B/0, H is in fact negative, provided
Ii„=O for all r. Vnder these conditions H must attain
a maximum value when H=O. This result is used in
Theorem 3.

Theorem lb.—If (P)+(D) holds (so that P,/G, =K
for all w groups n=1, 2, , m of suffixes), and if E )0
for all n, then (Q) holds.

Consider the nth group of suffixes. Suppose P,/G,
4P,/G;, then A,,=A, ; by (P), so that (Q) holds in
this case for the o.th group of suffixes, there being no
need to appea, l to (D). Suppose next P,G, =P,G,. By
(D) P,A;,G; =P,A;,G, , and these two results enable one
to deduce (Q) for the nth group of suffixes also in this
case, provided P,)0. But, by hypothesis, E„=P,/G;
)0, so that (Q) is established for the nth group of
suffixes in both cases. Repeating the argument for the
other groups of suffixes, the proposition is finally proved.

If the states are interconnected, v=1 and Ei 1/W-—
&0, so that the conditions of Theorem 1b are fulfilled.
Hence,

Theorem& 1a.—If the states are interconnected, then
(P)+ (D) implies (Q).

It is therefore clear that Theorem 1b is somewhat
stronger than Theorem 1a of the main text.


