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The consequences are analyzed of the following two assumptions: (1) the effect of temperature upon
magnetic anisotropy arises solely from the introduction of local deviations in the direction of magnetization;
and (2) the local deviation in an elementary region is the resultant of a very large number of independent
deviations. The influence of these local deviations upon the magnetic anisotropy is most conveniently
expressed by representing the magnetic energy as a series of surface harmonics. The coefficient of the nth
harmonic is found to vary with temperature as {J,(7)/J,(0)} raised to the power #(n-+1)/2. The first
two exponents for cubic crystals have values of 10 and 21, respectively. The exponent 10 expresses almost
precisely the observed temperature dependence of K; in iron. In nickel the anisotropy decreases much
more rapidly than predicted. It is deduced that the above two assumptions are applicable to iron but not

to nickel.

1. INTRODUCTION AND RESULTS

HE magnetization energy of a ferromagnetic
crystal is usually dependent to some extent upon
the relative orientation of the magnetization vector
with respect to the crystalline axes. It is customary to
describe this anisotropy of magnetic energy in terms of
the coefficients in a Fourier-like expansion of the
magnetic energy. Thus, K;, K, ---, are the first,
second, - - -, coefficients which symmetry requirements
do not require to be precisely zero. As an example,

E 2= Eo+ K (et oo +as?ar®)

+Ktalag?+- -+ (1)
for a crystal with cubic symmetry, and
Eog=E¢+ K, sin?0+ K, sin%6+- - - )

for a crystal with hexagonal symmetry. Here a1, as, a3
are the cosines of the magnetization vector with respect
to the cubic axes, and 4 is the angle which the magnet-
ization vector makes with the hexagonal axis.

As is illustrated in Fig. 1 for iron, cobalt, and nickel,
the anisotropy coefficients of metals decrease very
rapidly with increasing temperature. One is tempted to
interpret this marked temperature dependence some-
what as follows: the anisotropy energy must have its
origin in a coupling between the spins and the orbital
motion, which in turn is coupled to the crystallographic
axes, and we then interpret the temperature dependence
of the anisotropy coefficients as simply a manifestation
of the gradual weakening of this coupling with rising
temperature. The fallacy of this naive interpretation is
evident upon observing the temperature dependence of
the saturation magnetostriction, A,. Magnetostriction
also arises from a spin-orbit coupling. It decreases with
temperature but at a much slower rate than does
anisotropy. The fallacy of this naive interpretation is
also evident upon observing that the deviation of g
from 2 is a measure of the spin-orbit coupling, and

* This paper is a contribution from a magnetics program
supported by an Air Force contract.

experimentally this deviation is found to be essentially
constant in nickel up to the Curie temperature.!

This paper presents an attempt to understand this
marked temperature dependence of the crystal ani-
sotropy. In this attempt we proceed in a classical
manner, no quantum mechanical effects being intro-
duced. Two basic assumptions are made. The first
assumption is that the sole effect of temperature is to
introduce local fluctuations in the ‘direction of the
magnetization vector J. This assumption implies that
the local magnitude of J is independent of temperature,
and that Egs. (1) and (2) represent correctly the local
density of magnetization energy, the coefficients K1, Ko,

being independent of temperature. The second
assumption is that the deviation in the direction of the
local J from the direction of the macroscopic J is the
resultant of a large number of very small deviations
having independently random directions. This second
assumption is in accord with the spin wave description
of the influence of temperature upon magnetization,
each independent small deviation being associated with
a particular spin wave. A consequence of this second
assumption is that the probability that the angle 6
between the local and the macroscopic J lie within a
certain range is given by a random walk function
appropriate to a spherical surface.
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Fic. 1. Temperature dependence of anisotropy energy
in Fe, Co, and Ni.

1 N. Bloembergen, Phys. Rev. 78, 572 (1950); Bagguley and
Harrick, Proc. Phys. Soc. (London) A67, 648 (1954).
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F16. 2. Comparison of experimental and theoretical temperature
dependence of K for iron. Experimental values of K:(7') from
Bozorth (see reference 2). Experimental data for J,(7")/J,(0) at
low temperature after Bozorth (see reference 3), at high temper-
atures after Potter (see reference 4).

The consequences of the above assumptions are
analyzed in Sec. (2). In order to be able to express the
results succinctly, we rewrite Egs. (1) and (2) in the

form
Emag:zn Ean(al;a2;a3): 3)

where S, is a surface harmonic of order #» having the
appropriate symmetry. The result of this analysis is
that Epag(on,as,a;) averaged over the random walk
function satisfies an equation identical to Eq. (3) except
that now ay, as, a3 refer to the direction cosines of the
macroscopic J, and the coefficients E,(T) are related
to the original coefficients E,(0) by the relation

Eo(D)/Ea(0)={J(T)/T. 0}, (4)
where J, is the magnetic saturation. In particular,
Ey(T)/Es(0)={J:(T)/T(0)}". ©)

Since
1
Se(ar,00,03) = a’al+alad+adal—3,

we are tempted to compare theory with experiment?—
by comparing the right member of Eq. (5) with the
observed value of K1(7")/K1(0) for a crystal with cubic
symmetry. Such a comparison is made for iron in Fig. 2.
The essentially perfect agreement indicates that our
two basic assumptions correspond rather closely to
reality, at least for this metal.

Upon reference to Fig. 1, we see that K; decreases at
least twice as rapidly with 7/T in the case of nickel as
in the case of iron. Since J,; decreases in approximately
the same manner for these two metals, we conclude
that the same agreement will not be obtained for nickel
as was obtained for iron. In seeking for an interpretation
of this disagreement, we observe that the expression
ot ada-asa? occurs not only in Sq(ay,ee,as) but
also in Sg(au,az,as). Thus, we find that

Se(a1,00,a3) = a’alas’

— (1/11) (@ lat+alta?+asa?) 4+ (2/231).

If E; were the first nonvanishing coefficient, other than
E,, in the.expansion of Eq. (3), the coefficient of

2 R. M. Bozorth, Ferromagnetism (D. Van Nostrand Company,
Inc., New York, 1951), pp. 569-578.

3 Reference 2, p. 720.
4+ H. H. Potter, Proc. Roy. Soc. (London) 146, 362 (1934).
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alol?+oas?ada? would vary as the 21st power of
Js(T)/Js(0). Such a variation would indeed agree
quite well with the observed variation of K,(7")/K;(0).
Such an interpretation would, of course, imply a large
value of the coefficient K,(0) compared to K;(0). The
writer is indebted to Dr. H. Sato of this laboratory for
a careful analysis of the low-temperature data for
nickel, from which analysis one must conclude that
K5(0) cannot be sufficiently large compared to K;(0)
to render acceptable the above interpretation of the
discrepancy for this metal. We must conclude that
our two basic assumptions, while valid for iron, are
invalid for nickel.

Two attempts have been made to compute the
temperature dependence of K; by quantum mechanical
methods. The first, by Akulov,® proceeds somewhat in
the spirit of the present paper. He found that at low
temperatures, K1(7")/K1(0) decreased ten times as
rapidly as J,(7T)/J:(0), and recognized that a reason-
able generalization of this variation was a tenth power
law. He showed that the experimental data for iron
were consistent with a power of 10.03. The second
attempt was by Van Vleck.” His computed values of
K1(T)/K1(0) varied between the fifth and sixth power
of J(T)/7:(0).

2. ANALYSIS

In this section, our objective is to compute the
average of S, (a1,as,a3) with respect to the appropriate
random walk function. The origin of the random walk
will be taken at (&@i,&s,@s)a on the surface of a sphere
of radius a.

The random walk distribution function will have
symmetry about (&,@s,d&;). We shall, therefore, find
the average of S,(ai,ases) as the direction (ou,as,a3)
describes a cone about (&i,&@s,&;). Towards this end,
we let f¢ be the polar coordinates of (ay,asas) with
respect to (&1,&s,&;). We then expand

Salanaz,as)= Y Cn¥V.™0,0).

m=—n

(6)

When we now take the average of both sides with
respect to ¢, all terms vanish on the right side except
that corresponding to m=0.

(S,,(al,az,ag)),,:Can (COSG). (7)

The constant Cy is found by giving 8 the particular
value of zero. We thereby obtain

(Sn(ahdz,a;;))p:Pn(Coso)Sn(al,&z,&;g). (8)

Our second and final step is to obtain the average of
P, (cosf) with respect to the appropriate random walk
distribution function. This distribution is a function of

5 Honda, Masumoto, and Shirakawa, Sci. Rpts. Tohoku Imp.
Univ. 24, 391 (1935-36).

6 N. Akulov, Z, Physik 100, 197 (19306).

7J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).
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8 and of some parameter 7 which determines the spread
of the distribution function. Upon recalling that diffu-
sion is a random walk process, we recognize that the
distribution function RW (0,7) will obey the standard
diffusion differential equation if we associate = with
time, or more appropriately, with the dimensionless
quantity ¢D/a? where D is the diffusion coefficient,
a the radius of the spherical surface upon which diffusion
is imagined to be occurring. Thus, we have

a 1 9 d

—RW (9,7) =—— — sind—RW (0,7). )
ar sinf 060 96

The solution of this differential equation, subject to
the boundary condition that RW(9,r) approaches a
delta function about §=0 as 7—0, is

RW@,7)= é { f P,2(cosh)d cosf }—1

Xe~mDTP, (cosh).  (10)
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We thereby obtain

’ +1
f RW (8,7) P, (cosf)d cosf=e~n(vtD7  (11)
V-1

or

(Pn(cos)) gw=e D7 (12)
where ( )zw denotes an average with respect to the
random walk function. We now eliminate the parameter
7 by observing that

J(T)=J ;(0){P1(cos))rw, (13)
which equation, combined with (12) leads to
(Pr(cost))rw={J:(T)/T:(0)} 02 (14)

Upon combining Egs. (8) and (14), we obtain our
final equation,
<Sn(a13a2;a3)>RW

={J(1)/T:(0)}"n+D2S, (&1,8s,&5). (15)
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Angular Distribution of 12- and 16-Mev Gamma Rays from the Proton Bombardment
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The angular distribution of 12- and 16-Mev gamma rays from proton bombardment of thin boron targets
has been obtained for proton energies ranging from 0.6 to 2.0 Mev. The angular distribution may be repre-
sented by the equation w(0) =1-+4 cosf+B cos¥, indicating interference between at least two levels of
opposite parity. An analysis of the energy dependence of the coefficients 4 and B for the 16-Mev gamma
rays indicates the interference to be between more than two levels.

INTRODUCTION

AMMA-RAY resonances in the yield from the

proton bombardment of boron have been observed
by various investigators at 163,! 680,23 1388, 2650,
and 3550 kev,’ all except the first having very large
widths. The excited states of C? may decay directly
to the ground state with the emission of gamma rays
of energy equal to the excitation energy (Q=15.949
Mev) or to the 4.43-Mev excited state and then to the
ground state with the emission of cascade radiation.
These gamma-rays are called, in the following, the
“16-Mev,” “12-Mev,” and “4.43-Mev” radiations.

* Sponsored by the Office of Ordnance Research, U. S. Army.

+ Now at Virginia Polytechnic Institute, Blacksburg, Virginia.
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Earlier work® has shown a cosf term in the angular
distribution of the gamma radiation from this reaction
over the energy region from 300 to 1100 kev. This
indicates interference between at least two states of
opposite parity. Since the spin and parity are known
for the C*2 level corresponding to the 163-kev resonance,
this investigation of the angular distribution of the
16-Mev gamma rays was undertaken so that the spins
and parities of the interfering levels could be deter-
mined. Although the theoretical analysis of the angular
distribution of the 12-Mev gamma rays is more complex,
the experimental determination of this angular distri-
bution was also undertaken since the spin and parity
of the 4.43-Mev excited state of C*2 are known.

EXPERIMENTAL PROCEDURE

Protons were accelerated in the University of
Kentucky 3-Mev electrostatic accelerator to energies

6 Jenkins, Cochran, Kern, and Hahn, Phys. Rev. 91, 915 (1953).



