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34-kev gamma ray. There is no clear evidence for
other gamma rays in this region except for the fact
that the valleys between peaks do not drop as low as
would be expected from the assumption that the peaks
should show a Gaussian-type shape.

Analysis of the measured peak areas to obtain
relative gamma-ray intensities indicates that, if an
intensity of unity is assumed for the 134-kev gamma
ray, the 81-kev line will be 0.287; the 0.695-Mev
gamma, 0.116; the 1.48-Mev gamma, 0.0226; and the
2.185-Mev gamma, 0.0589.

Errors in these values can arise because of an in-
ability to determine the exact base and shape for the
total absorption peak and because of counting rate
statistics. These errors are present both in the spectrum
under observation and in the experimental determina-
tion of the peak to total ratios. Experience gained in
the analysis of a considerable number of gamma-ray
spectra has led to the conclusion that the uncertainty
in the value quoted for the 0.695, 1.48, and 2.185 Mev
quanta is about &8 percent and for the 81 kev quantum
about &15 percent.

H it is assumed that 22 percent of the Ce'44 disinte-
grations produce the 134-kev transition' ' and that 6.6
percent of the Ce'~ disintegrations are internally
converted in the 134-kev transition' (leaving 15.4
percent of the transitions as photon radiation), then
the 0.695-Mev gamma ray occurs following 1.79
percent of the Pr'~ disintegrations, the 1.48-Mev
gamma ray follows 0.35 percent of the transitions and
the 2.185-Mev gamma ray, in 0.91 percent of the
transitions. This would be indicative that Pr'" decays
through the 2.28-Mev beta group 1.44 percent of the
time, and the 0.80-Mev group 1.26 percent, diGering
somewhat from the figures proposed by Emmerich
et al.'

From the fact that only the 81- and 134-kev transi-
tions are distinctly evident in the low-energy photon
spectrum as well as being most prominent in the internal
conversion spectrum, ' ' we 6nd no evidence contra-
dictory with the decay scheme proposed for Ce'" by
Emmerich et al. ,

' except that the 223-kev beta transi-
tion may have an intensity of as much as six percent.
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Numerical values for the energy levels, Zeeman splitting parameters, and intensity parameters of the
pure quadrupole spectrum are given for ten values of the asymmetry parameter for spins 5/2, 7/2, and 9/2.
The intensity parameters for the m —+ —m transition in a magnetic field for large asymmetric quadrupole
interaction are given. They show that the corresponding lines should be observable. A method of increasing
the accuracy of perturbation calculations is presented for the Zeeman splitting case and the strong magnetic
field case.

INTRODUCTION

S INCE the first observations of nuclear quadrupole
spectra in solids by Pound' and by Dehmelt and

Kruger, ' it has become abundantly clear that such
observations provide a powerful means of investigation'
of the structure of solids. The theory of nuclear quad-
rupole interactions in solids has two aspects: 6rst, the
purely formal task of describing spectra in terms of
interaction parameters; and second, the calculation
of the interaction parameters or, conversely, the draw-
ing of inferences about structure from experimenta]
observations. It is toward the 6rst aspect that this

~This work was initiated at the University of California,
Berkeley, while the author held an Atomic Energy Commission
fellowship and where it was supported in part by the U. S. Ofhce
of Naval Research. The work done there was included in a thesis
submitted in partial satisfaction of the requirements for the degree
of Doctor of Philosophy.' R. V. Pound, Phys. Rev. 79, 685 (1950).

'H. G. Dehmelt, Naturwiss. 37, 111 (1950).

paper is addressed, in the hope of providing a broader
theoretical basis for experiments which stress the
second aspect.

The present state of the spectrum theory may be
summarized as follows: (1) Pound has discussed the
Hamiltonian; (2) Bersohn treated the broadening of a
magnetic resonance line by a small quadrupole inter-
action (3) Pound gave third order perturbation for-
mulae for the splitting of the magnetic resonance line

by nuclear quadrupole interaction with a symmetric
field gradient;4 Bersohn treated the general case to
third order; VolkoG et u/. , have discussed the explicit
orientational dependence of the first and second order
formulas;s (4) Explicit numerical formulas giving the
eGect of small asymmetry on the pure quadrupole

3 R. Bersohn, J. Chem. Phys. 20, 1505 (1952).
4 See also E. I'. Carr and C. Kikuchi, Phys. Rev. 78, 470 (1950).
~Volkoff, Petch, and Smellie, Can. J. Phys. 30, 270 (1952);

G. M. Volkoff, Can. J. Phys. 31, 820 (1953).
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spectrum exist in the literature for I=5/2, ' 3,' 7/2, '
and 9/2 Bersohn has given the general formula for
small asymmetry; (5) Kruger' and Dean" have in-
vestigated the first order Zeernan effect for spin 3/2
for which the pure quadrupole spectrum can be ob-
tained exactly for arbitrary asymmetry; Bersohn has
given the eGect of small asymmetry on the first order
Zeeman splitting for spin 5/2; (6) Weiss" has studied
a spin 3/2 nucleus in a symmetric electric field and
simultaneously in a magnetic field of various strengths
and orientations; I.amarche and Volko6" have studied
in detail the case of spin 5/2 in a particular asymmetric
electric field for given orientation and arbitrary strength
of magnetic field.

A detailed derivation and discussion of the Hamil-
tonian, of various aspects of the spectrum theory, and
of the calculation of interaction parameters has been
given by the author. "For an introduction to the sub-

ject of nuclear quadrupole resonance, see the paper of
Dehmelt "

Experimentally, spins 7/2 and 9/2 are of importance,
for example, in the study of ferroelectrics. " Further,
inspection of the above summary shows that there is a
need for the study of the pure quadrupole spectrum
and its first order Zeeman splitting for electric fields of
arbitrary asymmetry. Section I of this paper consists,
theo, of a review of the Hamiltonian; Sec. II gives a
numerical analysis of the pure quadrupole spectrum
for spins 5/2, 7/2, 9/2 in electric fields of arbitrary
asymmetry; and Sec. III deals with the first order
Zeeman splitting of that spectrum. For splittings of the
magnetic resonance line as great as those observed by
Knight and Cotts for Nb in KNb03, " third order
calculations are not adequate. For that reason, Sec. IV
contains a method of obtaining fourth order accuracy
from third order calculations. A similar method of
increasing the accuracy of calculations of the first order
Zeeman splitting of the pure quadrupole spectrum is
also presented.

Much of the work in this paper can be applied
directly to the study of ferroelectrics and antiferro-
electrics by nuclear resonance techniques. '~ For such
substances the quadrupole coupling can be large, the
field gradients asymmetric, and the orientation of the
principal axes of primary importance.

'H. G. Dehmelt, Z. Physik 133, 528 (1952).
7 H. G. Dehmelt and H. Kruger, Z. Physik 130, 385 (1951).' Robinson, Dehmelt, and Gordy, Phys. Rev. 89, 1305 (1953).' H. Kruger, Z. physik 130, 371 (1951).
' C. Dean, Phys. Rev. 86, 607 (1952)."P.R. Weiss, Phys. Rev. 73, 470 (1948); 74, 1478 (1948).
"G. I.amarche and G. M. Volkoff, Can. J. phys. 31, 1010

(1953).
"M. H. Cohen, thesis, University of California, Berkeley,

1952 (unpublished).
"H. G. Dehmelt, Am. J. Phys. 22, 110 (1954).
'~ R. M. Cotts and W. D. Knight, Phys. Rev. 93, 940 (1954)

and following paper LPhys. Rev. 96, 1285 (1954)g.

TABLE I. Secular equations.

Secular equation

5/2 B8—7 (3+q'2)B —20(1 —g2) =0 a

7/2 B4 —42(1+rp/3)B2 —64(1 —p7~)B+105(1+772/3)2 =0 b

9/2 B6—11(3+77')B'—44(1 —g') B2+—(3+17~)~B+48(3147') (1—g')
44
3

Units
of B
2L
3L

=0 6L

' See reference 3.
b See reference 7.

X=—gPHp I Eg F„Q —„,

E=eQ/4I(2I —1),

BE, (BE, BE,)
Bs . (Bpp By)

1 (BE, BE„BE,)
+6& Bx By By )

(3)

The operators Q„are such that the nonzero matrix
elements of 3'. in the representation diagonalizing I, are

(mI 3(!
I m) = gPIIp*m It Fp[3m' I(I+1)),—(4a)

(m&1IBeIm) = ——,'gj9(IIo wiII ")
X[I(I+1)—m(m+1)]& —E'F (3/2) &

X (2m&1) [I(I+1)—m(m% 1)]&, (4b)

(m~2 I3C Im) = —&F-s(3/2) '

X[I(I+1)—(m& 1)(m&2) fi
X[I(I+1)—m(m+1) 1&. (4c)

II. PURE QUADRUPOLE SPECTRUM

A. Enexgy Levels

In this case, the magnetic Geld vanishes and it is
convenient to work in the principal axis system of the
tensory BE;/Bpp; Then Fp= .eq, F+i 0 F/2 —(1/
+6)eqri, where r) is called the asymmetry parameter.
If the axis are chosen so that IBE,/BxI & BE„/ByI
&

I
BE,/BsI, then 0&pl &1. Now (—m' BC

I

—m)
=(m'IKIm), and (m'I3('Im)=0 u»ess &m=0, +2,
so that the secular equation factors into two identical
ones of degree I+—',. We shall speak of each set of I+-',
levels as a group of levels. If we denote E as that eigen-
value which goes over continuously into —L[3m' —I

I. HAMILTONIAN

Ke are concerned here with that part of the inter-
action energy between a nucleus and its environment
which depends explicitly on the nuclear spin. For our
purposes, we may characterize the nucleus completely
by its spin I, its g-factor, and its quadrupole moment
Q. The environment is specified by a constant magnetic
field Hp and by BE;/Bx;, the gradient of the electrostatic
field at the nucleus produced by all charge exterior to
the nucleus (V E=0). The relevant part of the
Hamiltonian is
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TABLE II. Eigenvalues E' and Zeeman-splitting parameters A, 8, C of the pure quadrupole Hamiltonian.

I m

5/2 5/2 0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
P9
1.0

5.00278
5.01113
5.02512
5.04481
5.07034
5.10185
5.13952
5.18353
5.23412
5.29150

6.2469
6.2375
6.2215
6.1982
6.1670
6.1268
6.0767
6.0154
5.9417
5.8545

0.0002
0.0011
0.0035
0.0086
0.0179
0.0332
0.0567
0.0907
0.1379

0.0002
0.0007
0.0018
0.0039
0.0075
0.0136
0.0229

I
7/2 t/2 0.1

0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

—5.04097
5.15658
5.33044
5.54610
5.79112
6.05702
6.33822
6.63098
6.93270
7.24157

0.2220
0.1512
0.1023
0.0607
0.0349
0.0198
0.0112
0.0063
0.0036
0.0020

16.6392
18.1007
19.6395
20.8895
21.810Q
22.4699
22.9450
23.2926
23.5518
23.7490

—3.8223
6.7962
8.7475
9.9385

10.6626
11.1165
11.4133
11.6162
11.7604
11.8664

3/2

1/2

7/2 7/2

3/2

Q.i
0.2
0.3
p4
0.5
0.6
0.7
0.8
p9
1.0

0.1
0.2
0.3
p4
0.5
o.6
0.7
0.8
p9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.Q

0.1
0.2
0.3
o.4
0.5
0.6
0.7
0.8
0.9
1.0

—0.985095
0.941470
0.872088
0.781033
0.672723
0.551343
0.420564
0.283469
0.142591

0

—4.01768
4.06966
4.15303
4.26378
4.39762
4.55051
4.71895
4.90006
5.09153
5.29150

7.00233
7.00935
7.02106
7.03753
7.05881
7.08501
7.11622
7.15260
7.19432
7.24157

1.00834
1.03351
1.07589
1.13601
1.21447
1.31176
1.42809
1.56325
1.71652
1.88669

—2.96971
2.88628
2.76651
2.62743
2.48217
2.33975
2.20609
2.08487
1.97813
1.88669

2.2206
2.1387
2.0202
1.8830
1.7416
1.6048
1.4768
1.3587
1.2496
1.1480

0.2409
0.2162
0.1824
0.1464
0.1131
0.0850
0.0626
o.o454
0.0325
0.0230

12.2467
12.2369
12.2203
12.1966
12.1656
12.1265
12.0786
12.0210
11.9521
11.8704

6.2360
6.1925
6.1154
5.9991
5.8383
5.6295
5.3736
5.0765
4.7485
4.4025

2.1575
1.9362
1.6823
1.448Q
1.2436
1.0632
0.8998
0.7493
0.6112
0.4870

0.1565
0.5870
1,1959
1.8751
2.5387
3.1340
3.6373
4.0435
4.3583
4.5918

9.0955
9.3570
9.7237

10.1289
10.5222
10.8752
11.1772
11.4283
11.6339
11.8008

0.0002
0.0005
0.0013
0.0030
0.0063
0.0121

0.0005
0.0078
0.0386
0.1183
0.2762
0.5395
0.9249
1.4331
2.O456
2.7277

0.9293
3.0617
5.3001
7.0760
8.3145
9.1305
9.6656

10.0346
10.3166
10.5589

0.0026
0.0182
0.0510
0.0942
0,1353
0.1620
0.1652
0.1399
0.0846

—1.1827
2.2692
3.1952
3.9390
4.5125
4 9437
5.2640
5.5010
5.6771
5.8086

0.0001
0.0002
0.0004
0.0009
0.0020

0.0003
0.0019
0.0078
0.0228
0.0527
0.1035
0.1784
0.2762
0.3900

—0.0138
0.0618
0.0564

+0.1041
0.4516
0.9604
1.5779
2.2449
2.9078
3.5256

9/2 9/2

7/2

1/2

0.1
0.2
0.3
p4
p.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
P9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

6.00143
6.00572
6.01289
6.02297
6.03598
6.05199
6.07105
6.09323
6.11864
6.14738

2.00467
2.01870
2.04218
2.07524
2.11809
2.17102
2.23440
2.30867
2.39434
2.49193

—0.989724
0.958469
0.905221
0.829081
0.730171
0.610259
0.472749
0.322087
0.163016

0

—2.96512
2.87966
2.77647
2.67805
2.59608
2,53541
2.49670
2.47833
2.47766
2.49193

—4.05126
4.18630
4.37338
4.59107
4.82782
5.07734
5.33599

'

5.60149
5.87231
6.14738

20.2463
20.2319
20.2166
20.1902
20.1557
20.1125
20.0602
19.9977
19.9242
19.8382

12.2369
12.1973
12.1301.
12.0332
11.9033
11.7354
11.5227
11.256$
10.9286
10.5297

6.2123
6.0899
5.8615
5.5122
5.0528
4.5232
3.9750
3.4495
2.9670
2.5310

2.0395
1.6461
1.2968
1.0101
0.7637
0.5518
0.3794
0.2493
0.1578
0.0970

0.1885
0.0957
0.0417
0.0176
0.0075
0.0033
0.0014
0.0006
0.0003
0.0001

0.0001
0.0003
0.0008

0.0005
0.0028
0.0105
0.0308
0.0760
0.1648
p.3222
0.5783

0.0060
0.0919
0.4324
1.2157
2.5141
4.2069
6.0338
7.7273
9.1118

10.1240

3.3607
9.0311

13.0116
15.3151
16.7710
17.9117
18.9414
19.8877
20.7274
21.4437

27.4244
31.5395
34.5446
36.3957
37.5463
38.2989
38.8170
39.1894
39.4661
39.6770

0.0001

0.0002
0.0009
0.0031
0.0089
0.0219
0.0480
o.o952

0.0001
0.0031
0.0212
0.0767
0.1840
0.3252
0.4426
0.4615
0.3227

0.0329
0.1116
0.9467
2.4522
4.2783
6.0693
7.6018
8.8013
9.6920

10.3376

9.0014
14.3040
16.8182
18.0484
18.7207
19.1300
19.4010
19.5917
19.7318
19.8380

)&(I+1)j as q goes to zero, then E„=E„for all g.
Here I.=e'qQ/4I(2I —1).

The factored secular equations, listed in Table I,
have been solved numerically for ten values of g for

spins 5/2, //2, 9/2. The resulting eigenvalues are listed

in Table II under E'. Values for E' for spin 9/2 have
been obtained previously to five signifi. cant figures. "

B. Intensities
Each line in the spectrum is a superposition of the

four transitions &m &m'. The sum of the four
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transition probabilities will be proportional to

W=2D cos'8+p sin'8[G+2J cos2$j, (6)

where H' is the rf-field exciting the transitions. If 8 and
@ are the polar angles of H' with respect to the principal
axes, then FIG. 1. Zeeman splitting

™
of pure quadrupole spec-
trum.

i l ii

0 f 234
- -fTl

+m
a. LEVEL DtAGRAM

In the above formulas we have taken ns and nz' to be
one of the two pairs belonging to the same group among
the four levels +m, &ms' and have set I+=I &iI&.

We note that 8' contains all of the orientation de-
pendence of the intensity of a given line. Hence, Gtting
the observed dependence on orientation of the relative
intensity of a line to Eq. (6) will serve as a check on
the assignment of mm' values to that line.

Values of D, G, and J are given in Table III for the
transitions of observable intensity. In selecting the
transition listed in the table, v'8' has been used as a
measure of the signal to noise ratio of a line and hence
its observability. Also tabulated are the averaged tran-
sition probabilities W appropriate to a polycrystalline
or powdered sample:

2D+ 1G

The results embodied in Table III show that the
allowed transitions,

I
Am

~

= 1, are dominant for all
values of q. There are several "forbidden" transitions
for which the breakdown of the selection rule

~
Am~ =1

may be sufficiently strong to permit observation. These
are the (5/2, 1/2) transition for I=5/2, 7/2, 9/2, and
the (7/2, 3/2) transition for I= 7/2, 9/2, both for vari-
ous values of g. Similar results have been obtained in
the special case considered by Lamarche and Volkoff. "
For all lines except those with I=9/2, (m, m') = (1/2,
5/2), g&0.5, the intensity is a maximum when H is
parallel to the x axis and for the exceptional cases when
H' parallels the y axis.

If the observed frequency ratios of a pure quadrupole
spectrum are drawn as horizontal lines on a plot of
calculated frequency ratios ~s p, one set of their inter-
cepts with the calculated curves should lie on a vertical
line. One thus obtains g and then qg. Observations of the
directional dependence of intensities in a single crystal
yields the orientation of the principal axes. One can
then determine the frequency of, and optimum orienta-
tion of H' for the "forbidden" lines if these are not
observed at first.

III. ZEEMAN SPLITTING

A study of the Zeeman splitting of the pure quadru-
pole spectrum in a single crystal as a function of the
orientation of the magnetic field will yield simply and
immediately the orientation of the crystalline Geld

I

t
I

I

203 4
b. SPECTRUM

axes" as well as a check on the assignment of transi-
tions in the zero field pattern. The large quadrupole
moments of some nuclei, e.g. , Ta, have prevented the
measurement of their magnetic moments by the usual
magnetic resonance or induction techniques. The Zee-
man splitting" can probably give the magnetic moment
to greater accuracy than can be obtained at present by
optical means. "The case of the symmetric Geld gradient
is by far the simplest to analyze. The results for q/0
presented below will be useful, however, when the
nucleus in question cannot be found in a site of tetrago-
nal, hexagonal, or rhombohedral symmetry.

A. Energy Levels

A magnetic Geld Ho at arbitrary orientation to the
principal axes connects the degenerate states ~m.
Solution of the resulting secular problem yields, to
first degree in the held strength,

E+„=E+„P&gPIIp[A cos'8

+4 sinP8(B+2C cos2$) jl, (9)

In Eq. (9), 8 and P are the polar angles of Hp. Values of
3, 8, and C are listed in Table II. Figure 1 shows
schematically the fourfold splitting of each component
of the pure quadrupole spectrum. The four members of
the multiplet are symmetric about the original line in
frequency and intensity.

B. Intensities

The intensity formulas for arbitrary orientation of
the rf-field H' are extremely complicated. One can,
however, show that the intensities of the Zeeman pat-
tern are symmetric in the general case, as noted above.
Examination of the general formulas shows that all
lines of a multiplet are of comparable, but not neces-
sarily equal, intensity. Hence those multiplets which
contain allowed transitions

~

Am
~

= 1 are dominant.

I H. Kruger and V. Meyer-Berkhout, Z. Physik I32, 221 (1952).
17 B. M. Brown and D. H. Tomboulian, Phys. Rev. 88, 1158

(1952); Phys. Rev. 91, 1580 (1953).
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TABLE III. Intensity parameters, pure quadrupole spectrum.

Quan-
tity

I =5/2
Transitions

(1/2, 3/2) (3/2, 5/2) (1/2, 5/2)
Quan-

tity

I -7/2
Transitions

i7 (1/2,3/2) (3/2, $/2) (5/2, 7/2) (I/2, 5/2) (3/2, 7/2)

0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.02
0.07
0.15
0.24
0.33
0.41
0.49
0.56
0.62
0.68

7.87
7.51
7.01
6.44
5.88
5.36
4.91
4.53
4.21
3.95

~ ~ ~

0.01
0.01
0.02
0.04
0.07
0.10
0.14

4.99
497
4.95
4.93
4.92
4.92
4.93
4 95
4.99
5.03

~ ~ ~

0.01
0.02
0.02
0.03
0.03
0.04
Q.04
0;05

0.01
0.04
0.08
0.13
0.17
0.21
0.23
0.25
0.26
0.26

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0,3
Q4
0.5
0.6
0.7
0.8
0.9
1.0

1.40
2.36
2.81
2.95
2.93
2.85
2.76
2.66
2.58
2.50

4.77
4.26
3.71
3.27
2.96
2.74
2.60
2.52
2.46
2.42

0.36
0.72 .

1.09
1.48
1.87
2.27
2.65
2.99
3.27
3.50

3.98
3.93
3.90
3.89
3.92
3.96
4.01
4.05
4.08
4.08

0.14
0.28
0.42
0.56
0.71
0.85
1.00
1.15
1.30
1.45

2.33
2.34
2.34
2.35
2.35
2.36
2.37
2.38
2.40
2.42

~ ~ ~

0.01
0.02
0.03
0.03
0.03
0.03
0.02
0.01

~ ~ ~

0.03
0.10
0.17
0.22
0.24
0.24
0.23
0.21
Q. 18
0.15

~ ~ ~

0.01
0.01
0.02
0.03
0.04

~ ~ ~

0.01
0.02
0.03
0.04
0.07
0.09
0.12
0.15

Quan-
tity

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
P9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

0.48
0.90
1..24
1.47
1.62
1.70
1.74
1.74
1.72
1.70

2.64
2.55
2.44
2.31
2.18
2.06
1.97
1.88
1.82
1.77

0.11
0.22
0.33
0.44
0.56
0.67
0.79
0.91
1.03
1.16

1.66
1.66
1.65
1.65
1.65
1.66
1.67
1.70
1.73
1.'?7

~ ~

0.01
0.01
0.02
0.02
0.03
0.03
0.04

~ ~ ~

0.02
0.03
O.OS
0.07
0.09
0.10
0.11
0.11
0.12

I =7/2
Transitions

(1/2, 3/2) (3/2, 5/2) (5/2, 7/2) (1/2, 5/2) (3/2, 7/2)

Quan-
tity

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.14
0.40
0.63
0.80
0.95
1.08
1.20
1.30
1.39
1.47

21.05
16.02
12.37
10.19
8.90
8.10
7.56
7.15
6.83
6.56

~ ~ ~

0.03
0.12
0.29
0.54
0.83
1.14
1.43
1.69
1.92

20.71
20.24
19.89
19.47
18.76
17.73
16.49
15.22
14.05
13.06

~ ~ ~

0.01
0.04
0.08
0.15
0.27
0.43

16.00
16.01
16.00
15.97
15.92
15.87
15.85
15.87
15.94
16.04

9.01
9.01
9.05
9.08
9.13
9.18
9.25
9.32
9.40
9 49

0.01
0.04
0.06
0.07
0.07
0.06
0.04
0.03
0.02
0.02

0.32
0.83
1.08
1.07
0.92
0.73
0.56
0.42
0.31
0.23

~ ~ ~

0.01
0.03
0.06
0.09
0.12
0.15
0.17
0.19
0.19

~ ~ ~

0.02
0.08
0.20
0.37
0.57
0,76
0.91
1, .00
-1.03

I =9/2
Transitions

(1/2,3/2) (3/2, 5/2) (5/2, 7/2) (7/2, 9/2) (I/2, 5/2) (3/2, 7/2)

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

0.06
0.21
0.37
0.52
0.65
0.75
0.85
0.93
1.01
1.08

~ ~ ~

0.01
0.02
0.06
0.13
0.23
0.36
Q.51
0.69
0.88

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

0.01
0.02
0.03

0.01
0.02
0.03
0.05
0.06
0.06
0.06
0.06
Q.QS
0.05

~ ~ ~

0.01
0.01
0.02
0.03
0.04
0.06
0.07
0.09

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

3.08
434
4.49
4.14
4.10
3.89
3.70
3.54
3.40
3.27

0.84
1.72
2.66
3.61
4.46
5.10
5.50
5.69
5.73
5.68

0.39
0.78
1.17
1.57
1.97
2.37
2.80
3.24
3.70
4.18

0.17
0.31
0.52

~ ~ ~

0.02
0.02

1.05
1.23
1.42
1.61
1.80

0.04
0.05
0.06
0.06
0.06

0.69 0.01
0.87 —0.01

~ ~ ~

0.01
0.03
0.05
0.08
0.11
0.12
0.13

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

14.20
12.35
10.38
8.76
7.57
6.72
6.12
5.69
5.37
5.12

11.93
11.78
11.64
11.55
11.49
11.43
11.31
11.12
10.85
10.50

7.00
7.01
7.03
7.04
7.06
7.08
7.11
7.13
7.17
7.21

0.08
027 ~ ~ ~

0.4S 0.01
0.57 0.02
0.62 0.04
0.61 0.07
0.56 0.11
0.50 0.16
0.43 0.21
0.35 0.27

O.i
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

7.11
5.61
4 54
3.93
3.60
3.42
3.32
3.25
3.20
3.17

6.90
6.77
6.71
6.68
6.61
6.46
6.25
6.02
5.81
5.63

5.33
5.34
5.33
5.33
5.32
5.31
5.34
5.39
5.49
5.63

3.00
3.00
3.02
3.03
3.04
3.06
3.08
3.11
3.13
3.17

0.12
0.30
0.40
0.40
0.35
0.28
0.22
0.16
0.12
0.09

~ ~ ~

0.02
0.05
0.10
0.18
0.27
0.35
0.42
0.46
0.47
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Orientation of the rf-field parallel to the x axis again
appears to be favorable in the majority of cases. One
cannot be certain without detailed numerical analysis.

For this simplest case the transition probabilities for
the multiplet fmf, fm'f become

where

~ (G+2J)
3f,

(1+ lr I') (1+ I s I')

sinOLI„, „+e'&+I, e '~]

2f fI *f cose+ faE
f j

(12)

In Eq. (11), s is the same quantity for the levels &m'
as r is for the levels &m. Further, 3f is a 2)&2 matrix,
the indices of which indicate the signs of nz and m'. In
Eq. (12), f

dE
f

is the magnitude of the Zeeman shift
(i.e., half the level separation) in units of gPIIO. We must
distinguish two cases before writing M explicitly' . in
case I, f ml and

f

m'
f

belong to the same group; in case
II, they do not. Noting that M++=M and M+
=M +, we obtain

~++'= fr*+sf' ~ +"= f1+r*s f'

1—rsl' M r'= fr —sl'
(13)

All "allowed" transitions are of type I; all observable
"forbidden" transitions are of type II.

C. Large Quadruyole Couyling

There are cases when the quadrupole coupling is so
large that the frequencies of the pure quadrupole spec-
trum lie beyond the reach of conventional nuclear
resonance or induction equipment, say greater than j.o'
cps. Then, however, it becomes possible to observe in
single crystals transitions between the levels &m in a
strong magnetic Geld, the frequencies of which are
2f&E f. Such measurements could yield a value for
the magnetic moment, for g, and for the orientation of
the principal aces. The mixing of the &m states by Ho
is su%.ciently strong for intermediate and large values

The quantities needed to evaluate lV through Eqs
(11), (12), and (13) may be found in Tables II, III~
and IV.

As examples of the use of the matrix 3E, consider the
multiplets &7/2, +5/2 and +7/2, &3/2. In the
former case, 7/2 and 5/2 are in different groups and we
must use M' r; in the latter case, 7/2 and 3/2 are in the
same group and we must use 3P. Let 8'= Z3f. Then

~7/2, 5/2 ~—7/2, —5/2 Z7/2, 5/2~++ )

W 7/2 5/2 —P 7/2 5/2 —Z7/2 5/2cYI+ )I II

~7/2, 3/2 ~—7/2, —3/2 Z7/2, 3/2~++ )

7/2 3/2= ~7/2 3/2= Z7/2 3/2cVi. + I

TABLE IV. Matrix elements of the angular momentum.

Quan-
tity

I =5/2
m =I/2 3/2 5/2 m =C/2

I =7/2
3/2 5/2 7/2

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
Q4
0.5
0.6
0.7
0.8
09
1.0

P 49
0.46
0.43
0.38
034
0.29
0.25
0.21
0.18
0.15

2.99
2.96
2.92
2.87
2.82
2.78
2.73
2.69
2.66
2.63

1.49
1.46
1.42
1.37
1.32
1.27
1.22
1.17
1.12
1.07

0.40
0.77
1.09
1.37
1.59
1.77
1.91
2.01
2.09
2.14

2.50
2.50
2.49
2.49
2.48
2.48
2.47
2.45
2.44
2.42

~ ~ ~

0.01
0.03
0.06
0.09
0.13
0.18
0.24
0.30
0.37

p 47
0.39
0.32
0.25
0.19
0.14
0.11
0.08
0.06
0.04

3.96
3.88
3.78
3.70
3.63
3.59
3.5$
3.53
3.52
3.51

1.47
1.39
1.30
1.20
1.12
1.03
0.95
0.87
0.78
0.70

0.96
1.75
2.30
2.66
2.88
3.00
3.07
3.08
3.07
3.03

2.50 3.50
2.49 3.50
2.47 3.50
2.45 3.49
2.42 3.49
2.37 3.48
2.32 3.48
2.25 3.47
2.18 3.46
2.10 3.45

002
Q P9 o ~ ~

Q 2P s ~ ~

0.34 0.01
0.52 0.01
0.73 0.02
0.96 0.04
1.19 0.05
1.42 0.08
1.63 0.11

Quan-
tity

Im. m'

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

—0.40
0.77
1.09
1.37
1.60
1.78
1.93
2.04
2.13
2.21

m =i/2

0.43
0.31
0.20
0.13
0.09
0.06
0.04
0.03
0.02
0.01

4.90
473
4.61
4.53
449
4.47
4.47
4 47
447
4.47

0.01
0.02
0.05
0.07
0.09
0.09
0.09
0.07
0.04

~ ~ ~

3/2

1.43
1.28
1.14
1.01
0.87
P 74
0.62
0.50
0.40
0.31

1.83
3.00
3.60
3.86
3.95
3.94
3.89
3.82
3.75
3.68

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

0,01
0.01
0.02
0.03
0.05
0.06

I =9/2
5/2

2.49
2.47
2.42
2.35
2.25
2.13
1.99
1.86
1.72
1.59

0.08
0.30
0.66
1.10
1.58
2.04
2.45
2.77
3.02
3.18

—0.96
1.75
2.31
2.69
2.94
3.10
3.21
3.29
3.34
3.38

7/2

3.50
3.49
3.48
3.47
3.45
3.43
3.39
3.36
3.31
3.24

~ ~ ~

0.01
0.02
0.05
0.10
0.17
0.27
0.40
0.56
0.75

0.01
0.04
0.02—0.04
0.16
0.32
0.51
0.73
0.95
1.16

9/2

4.50
4.50
4.50
4 49
4.49
4.48

4.47
4.46
4. 45

~ ~ ~

0.01
0.01
0.02
0.03

~ ~ ~ ~ ~ ~

001 ~ ~ ~

0.02
0.04
0.07
0.11 ~ ~ ~

0.15 0.01
0.19 0.01
0.24 0.02

0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
0.9
1.0

—1.84 —0.02
3.02 0.04
3.65
3.98
4.17
4.28
4.34
439
4.42
4.44

0.26
0.64
1.08
1.54
1.96
2.31
2.59
2.81

~ ~ ~

0.01
0.03
0.07
0.12
0.16
0.18
0.17
0.11

~ ~ ~

~ ~ ~

0.01
0.02
0.03
0.05
0.09
0.13

of q that all I+~~transitions m —+—m should be ob-
servable. Depending on the values of m and g, it is
sometimes favorable to have H'lls and sometimes paral-
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lel to x or y.

5',=
II+I I'j'

W, = (8+2C),
L1+ Ir I']

1+rP IP

W„=- (8—2C).
I:1+lrl'j'

(14)

(16)

Again the intensity formulas for arbitrary orientation
of 8' are extremely complicated. Unless some knowledge
of the orientation of the principal axes is available, say
from symmetry considerations, the above intensity
formulas will not be of use until after analysis of the
orientation dependence of the frequencies.

IV. ACCURACY OF PERTURBATION THEORY

A. Zeeman Sylitting

We take as the unperturbed Hamiltonian the pure
quadrupole energy; the perturbation energy is —gPI Hp.

Let E (") be the mth order term in the perturbation
theoretic expansion of the energy levels. It can be shown
that

(n) ( 1)nF (a) (17)

B. Strong-Field Case

Let E signify reRection of the coordinate system in
the a —y plane. Then in the expressions 4(a), 4(b), and

by induction on the general form of the rsth order term.
The proof rests on the behavior with respect to change
of sign of m of the matrix elements of the Hamiltonian
in the representation diagonalizing it to first order. A
demonstration of Eq. (17) will not be given here; the
corresponding theorem for the strong field case will be
discussed more fully in Sec. B.

For accurate determination of the first order Zeeman
parameters one needs as wide a range of field strengths
as possible. At first glance it would appear that the
magnetic field strength can be increased only until the
second order effect is of the order of the experimental
error. However, Eq. (17) shows that the second order
term cancels out of v, —v, and hence first order
calculation of the separation between a symmetric
pair in a multiplet gives second order accuracy. The
working range of field strength extends until third order
terms are of the order of the experimental error when
first order calculations are used.

4(c) for the matrix elements of SC, Hp* -+ Pp-*,

J +~ —+—F~~ upon application of E. Inspection of the
matrix elements shows that

Therefore
X „„(Hp,F„)=X„„.(EHp, EF„).

E (Hp, F„)=E„(RHp,RF„). (19)

In the strong-field case, we take Hplls and g8E*H—p as
the unperturbed Hamiltonian. The latter is nonde-
generate and hence perturbation theory yields an ex-
pansion in powers of J"„and inverse powers of IIO for
the energy. The dependence on F„of a typical term
might be

(Fo)'(F-i)'(F+i)'(F-p)" (F+p)' (20)

with the condition that"

b c+2d —2e= 0. — (21)

Therefore b —c must be even and the sign change in
each term caused by E. is determined by the sign change
of Ho' ——+Ho. We conclude, therefore, that

(n) ( 1)n—i+ (n) (22)

Thus the third order calculations of Bersohn' give
fourth order accuracy when the results of theory and
experiment for v, —v, ~ are compared. This in-
creased accuracy becomes important for quadrupole
interactions of the order of that observed for Nb" in
KNbOp where

I
e'(7Q/h I

= 23.1 Mc/sec. " In most ferro-
electrics and antiferroelectrics one could expect to en-
counter similarly large couplings.

'8 Equations {20) and {21) become especially clear when one
uses the perturbation techniques described in reference 13.
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