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34-kev gamma ray. There is no clear evidence for
other gamma rays in this region except for the fact
that the valleys between peaks do not drop as low as
would be expected from the assumption that the peaks
should show a Gaussian-type shape.

Analysis of the measured peak areas to obtain
relative gamma-ray intensities indicates that, if an
intensity of unity is assumed for the 134-kev gamma
ray, the 81-kev line will be 0.287; the 0.695-Mev
gamma, 0.116; the 1.48-Mev gamma, 0.0226; and the
2.185-Mev gamma, 0.0589.

Errors in these values can arise because of an in-
ability to determine the exact base and shape for the
total absorption peak and because of counting rate
statistics. These errors are present both in the spectrum
under observation and in the experimental determina-
tion of the peak to total ratios. Experience gained in
the analysis of a considerable number of gamma-ray
spectra has led to the conclusion that the uncertainty
in the value quoted for the 0.695, 1.48, and 2.185 Mev
quanta is about ==8 percent and for the 81 kev quantum
about =15 percent.

W. E. KREGER AND C. S.

COOK

If it is assumed that 22 percent of the Ce! disinte-
grations produce the 134-kev transition?? and that 6.6
percent of the Ce disintegrations are internally
converted in the 134-kev transition? (leaving 15.4
percent of the transitions as photon radiation), then
the 0.695-Mev gamma ray occurs following 1.79
percent of the Pr'# disintegrations, the 1.48-Mev
gamma-ray follows 0.35 percent of the transitions and
the 2.185-Mev gamma ray, in 0.91 percent of the
transitions. This would be indicative that Pr'* decays
through the 2.28-Mev beta group 1.44 percent of the
time, and the 0.80-Mev group 1.26 percent, differing
somewhat from the figures proposed by Emmerich
et al®

From the fact that only the 81- and 134-kev transi-
tions are distinctly evident in the low-energy photon
spectrum as well as being most prominent in the internal
conversion spectrum,?? we find no evidence contra-
dictory with the decay scheme proposed for Ce** by
Emmerich et al.,* except that the 223-kev beta transi-
tion may have an intensity of as much as six percent.
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Numerical values for the energy levels, Zeeman splitting parameters, and intensity parameters of the
pure quadrupole spectrum are given for ten values of the asymmetry parameter for spins 5/2, 7/2, and 9/2.
The intensity parameters for the 7 — —m transition in a magnetic field for large asymmetric quadrupole
interaction are given. They show that the corresponding lines should be observable. A method of increasing
the accuracy of perturbation calculations is presented for the Zeeman splitting case and the strong magnetic

field case.

INTRODUCTION

INCE the first observations of nuclear quadrupole
spectra in solids by Pound! and by Dehmelt and
Kruger,? it has become abundantly clear that such

observations provide a powerful means of investigation’

of the structure of solids. The theory of nuclear quad-
rupole interactions in solids has two aspects: first, the
purely formal task of describing spectra in terms of
interaction parameters; and second, the calculation
of the interaction parameters or, conversely, the draw-
ing of inferences about structure from experimental
observations. It is toward the first aspect that this

¥ This work was initiated at the University of California,
Berkeley, while the author held an Atomic Energy Commission
fellowship and where it was supported in part by the U. S. Office
of Naval Research. The work done there was included in a thesis
submitted in partial satisfaction of the requirements for the degree
of Doctor of Philosophy.
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2 H. G. Dehmelt, Naturwiss. 37, 111 (1950).

paper is addressed, in the hope of providing a broader
theoretical basis for experiments which stress the
second aspect.

The present state of the spectrum theory may be
summarized as follows: (1) Pound has discussed the
Hamiltonian; (2) Bersohn treated the broadening of a
magnetic resonance line by a small quadrupole inter-
action;? (3) Pound gave third order perturbation for-
mulae for the splitting of the magnetic resonance line
by nuclear quadrupole interaction with a symmetric
field gradient;* Bersohn treated the general case to
third order; Volkoff e al., have discussed the explicit
orientational dependence of the first and second order
formulas;® (4) Explicit numerical formulas giving the
effect of small asymmetry on the pure quadrupole

3R. Bersohn, J. Chem. Phys. 20, 1505 (1952).

4See also E. F. Carr and C. Kikuchi, Phys. Rev. 78, 470 (1950).

5 Volkoff, Petch, and Smellie, Can. J. Phys. 30, 270 (1952);
G. M. Volkoff, Can. J. Phys. 31, 820 (1953).
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spectrum exist in the literature for 7=5/22 3,6 7/2,7
and 9/2;® Bersohn has given the general formula for
small asymmetry; (5) Kruger® and Dean' have in-
vestigated the first order Zeeman effect for spin 3/2
for which the pure quadrupole spectrum can be ob-
tained exactly for arbitrary asymmetry; Bersohn has
given the effect of small asymmetry on the first order
Zeeman splitting for spin 5/2; (6) Weiss! has studied
a spin 3/2 nucleus in a symmetric electric field and
simultaneously in a magnetic field of various strengths
and orientations; Lamarche and Volkoff? have studied
in detail the case of spin 5/2 in a particular asymmetric
electric field for given orientation and arbitrary strength
of magnetic field.

A detailed derivation and discussion of the Hamil-
tonian, of various aspects of the spectrum theory, and
of the calculation of interaction parameters has been
given by the author.’® For an introduction to the sub-
ject of nuclear quadrupole resonance, see the paper of
Dehmelt.!

Experimentally, spins 7/2 and 9/2 are of importance,
for example, in the study of ferroelectrics.!®* Further,
inspection of the above summary shows that there is a
need for the study of the pure quadrupole spectrum
and its first order Zeeman splitting for electric fields of
arbitrary asymmetry. Section I of this paper consists,
then, of a review of the Hamiltonian; Sec. II gives a
numerical analysis of the pure quadrupole spectrum
for spins 5/2, 7/2, 9/2 in electric fields of arbitrary
asymmetry; and Sec. III deals with the first order
Zeeman splitting of that spectrum. For splittings of the
magnetic resonance line as great as those observed by
Knight and Cotts for Nb in KNbO;,'s third order
calculations are not adequate. For that reason, Sec. IV
contains a method of obtaining fourth order accuracy
from third order calculations. A similar method of
increasing the accuracy of calculations of the first order
Zeeman splitting of the pure quadrupole spectrum is
also presented.

Much of the work in this paper can be applied
directly to the study of ferroelectrics and antiferro-
electrics by nuclear resonance techniques.!® For such
substances the quadrupole coupling can be large, the
field gradients asymmetric, and the orientation of the
principal axes of primary importance.

6 H. G. Dehmelt, Z. Physik 133, 528 (1952).
7H. G. Dehmelt and H. Kruger, Z. Physik 130, 385 (1951).
8 Robinson, Dehmelt, and Gordy, Phys. Rev. 89, 1305 (1953).
9 H. Kruger, Z. Physik 130, 371 (1951).
10 C, Dean, Phys. Rev. 86, 607 (1952).
11 p, R. Weiss, Phys. Rev. 73, 470 (1948); 74, 1478 (1948).
12G). Lamarche and G. M. Volkoff, Can. J. Phys. 31, 1010
1953).
( 13 M. H. Cohen, thesis, University of California, Berkeley,
1952 (unpublished).
14 H. G. Dehmelt, Am. J. Phys. 22, 110 (1954).
15 R. M. Cotts and W. D. Knight, Phys. Rev. 93, 940 (1954)
and following paper [Phys. Rev. 96, 1285 (1954)].
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TaBrE I Secular equations.

Units

I Secular equation of E
5/2 E3—=7T@+9)E—20(1 —9?) =02 2L
7/2 Et—42(1472/3)E2—64(1 —2)E+105(1 +42/3)2=0b 3L

9/2 EF—11Q3 +n2) E3—44(1 —4?) E2+—43é(3 +u?)2E+48(3+7%) (1 —2%) =0 6L

@ See reference 3.
b See reference 7.

I. HAMILTONIAN

We are concerned here with that part of the inter-
action energy between a nucleus and its environment
which depends explicitly on the nuclear spin. For our
purposes, we may characterize the nucleus completely
by its spin 7, its g-factor, and its quadrupole moment
Q. The environment is specified by a constant magnetic
field Hy and by dE,/dx;, the gradient of the electrostatic
field at the nucleus produced by all charge exterior to
the nucleus (V-E=0). The relevant part of the
Hamiltonian is

2
=—g8Ho- I-K 3 F.Q_,, 1)
=2
K=eQ/41(2I—1), ()
OF, OE, OE,
Foz—, F:‘:1= (2/3)%( 41 ); (3)
9z x dy

1 /dE, 9E, OF,
F:i:2 = ( _L 2‘0 ) .
A6\ dx dy dy

The operators (Q, are such that the nonzero matrix
elements of 3C in the representation diagonalizing I, are

(m|3C|m)=—gBHy*m— KFo 3m*—I1(I+1)], (4a)
(m==1|3C|m)=—3g8(H*FiH,)
XU I+1)—m(m=t1) = KF~1(3/2)}
X ma=)[I(I+1)—m(m1)]¢, (4b)
(m=£2|3C|m)=—KF.(3/2)}
X TH1)— (m=1) (m=£2) ]
X[I(I+1)—m(m=1)P.  (4c)

II. PURE QUADRUPOLE SPECTRUM
A. Energy Levels

In this case, the magnetic field vanishes and it is
convenient to work in the principal axis system of the
tensory 9E;/dx;. Then Fo=—eq, F11=0, Fio=—(1/
4/6)eqn, where 7 is called the asymmetry parameter.
If the axis are chosen so that |9E./dx|<|0E,/dy|
<|8E./dz|, then 0<9<1. Now (—m'|3C|—m)
= (m'|3C|m), and (m'|3C|m)=0 unless Am=0, =2,
so that the secular equation factors into two identical
ones of degree 7+3%. We shall speak of each set of 7-+3%
levels as a group of levels. If we denote E,, as that eigen-
value which goes over continuously into —ZL[3m?—1I
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TasirE II. Eigenvalues E° and Zeeman-splitting parameters 4, B, C of the pure quadrupole Hamiltonian.

I m 7 Eo A B C I m 7 pou A B Cc
5/2 5/2 0.1 5.00278 6.2469 — — 7/2 1/2 01 —5.04097 0.2220 16.6392 —3.8223
0.2 5.01113 6.2375  0.0002 — 0.2 5.15658 0.1512  18.1007 6.7962
0.3 5.02512 6.2215  0.0011 — 0.3 5.33044 0.1023  19.6395 8.7475
0.4 5.04481 6.1982  0.0035 0.0002 0.4 5.54610 0.0607  20.8895 9.9385
0.5 5.07034 6.1670  0.0086 0.0007 0.5 5.79112 0.0349 21.8100  10.6626
0.6 5.10185 6.1268  0.0179 0.0018 0.6 6.05702 0.0198 22.4699  11.1165
0.7 5.13952 6.0767  0.0332 0.0039 0.7 6.33822 0.0112 229450  11.4133
0.8 5.18353 6.0154  0.0567 0.0075 0.8 6.63098 0.0063 23.2926  11.6162
0.9 5.23412 5.9417  0.0907 0.0136 0.9 6.93270 0.0036 23.5518  11.7604
1.0 5.29150 5.8545  0.1379 0.0229 1.0 7.24157 0.0020 23.7490  11.8664
3/2 01 —0985095 2.2206  0.1565 0.0026 9/2 9/2 01 6.00143  20.2463 — —
0.2 0941470  2.1387  0.5870 0.0182 0.2 6.00572  20.2319 — —
0.3 0.872088  2.0202  1.1959 0.0510 0.3 6.01289  20.2166 — —
0.4 0.781033  1.8830  1.8751 0.0942 0.4 6.02297  20.1902 — —
0.5 0.672723  1.7416  2.5387 0.1353 0.5 6.03598  20.1557 — —
0.6 0.551343  1.6048  3.1340 0.1620 0.6  6.05199  20.1125 — —
0.7 0.420564  1.4768  3.6373 0.1652 0.7 6.07105  20.0602 — —
0.8 0.283469  1.3587  4.0435 0.1399 0.8 6.09323  19.9977  0.0001 —
0.9 0.142591  1.2496  4.3583 0.0846 0.9 6.11864  19.9242  0.0003 —
1.0 0 1.1480  4.5918 — 1.0 6.14738  19.8382  0.0008 0.0001
1/2 01 —4.01768 0.2409  9.0955 —1.1827 7/2 0.1 2.00467  12.2369 — —
0.2 4.06966 0.2162  9.3570 2.2692 0.2 2.01870  12.1973 — —
0.3 4.15303 0.1824  9.7237 3.1952 0.3 2.04218  12.1301  0.0005 —
04 4.26378 0.1464 10.1289 3.9390 0.4 207524 12.0332  0.0028 0.0002
0.5 4.39762 0.1131  10.5222 4.5125 0.5 2.11809  11.9033  0.0105 0.0009
0.6 4.55051 0.0850 10.8752 4.9437 0.6 217102 11.7354  0.0308 0.0031
0.7 4.71895 0.0626 11.1772 5.2640 0.7 2.23440  11.5227  0.0760 0.0089
0.8 4.90006 0.0454 11.4283 5.5010 0.8 2.30867  11.2568  0.1648 0.0219
0.9 5.09153 0.0325 11.6339 5.6771 0.9 2.39434 109286  0.3222 0.0480
1.0 5.29150 0.0230 11.8008 5.8086 1.0 249193  10.5297  0.5783 0.0952
7/2 7/2 0.1 7.00233  12.2467 — — 5/2 01 —0.989724 6.2123  0.0060 0.0001
0.2 7.00935  12.2369 — — 0.2 0.958469  6.0899  0.0919 0.0031
0.3 7.02106  12.2203 — — 0.3 0.905221  5.8615  0.4324 0.0212
0.4 7.03753  12.1966 — — 0.4 0.829081  5.5122  1.2157 0.0767
0.5 7.05881  12.1656  0.0002 — 0.5 0.730171  5.0528  2.5141 0.1840
0.6 7.08501  12.1265  0.0005 0.0001 0.6 0.610259  4.5232  4.2069 0.3252
0.7 7.11622  12.0786  0.0013 0.0002 0.7 0.472749 39750  6.0338 0.4426
0.8 7.15260  12.0210  0.0030 0.0004 0.8 0.322087  3.4495  7.7273 0.4615
0.9 7.19432 119521  0.0063 0.0009 0.9 0.163016  2.9670  9.1118 0.3227
1.0 7.24157  11.8704  0.0121 0.0020 1.0 0 2:5310 10.1240 —
5/2 0.1 1.00834 6.2360  0.0005 — 3/2 01 —2.96512 2.0395  3.3607 0.0329
0.2 1.03351 6.1925  0.0078 0.0003 0.2 2.87966 1.6461  9.0311 0.1116
0.3 1.07589 6.1154  0.0386 0.0019 0.3 2.77647 1.2968 13.0116 0.9467
0.4 1.13601 5.9991  0.1183 0.0078 0.4 2.67805 1.0101 15.3151 2.4522
0.5 1.21447 5.8383  0.2762 0.0228 0.5 2.59608 0.7637 16.7710 4.2783
0.6 1.31176 5.6295  0.5395 0.0527 0.6 2.53541 0.5518 17.9117 6.0693
0.7 1.42809 5.3736  0.9249 0.1035 0.7 2.49670 0.3794 18.9414 7.6018
0.8 1.56325 5.0765  1.4331 0.1784 0.8 2.47833 0.2493  19.8877 8.8013
0.9 1.71652 4.7485  2.0456 0.2762 0.9 2.47766 0.1578  20.7274 9.6920
1.0 1.88669 44025  2.7277 0.3900 1.0 2.49193 0.0970 21.4437  10.3376
3/2 01 —2.96971 2.15875 09293 —0.0138 1/2 01 —4.05126 0.1885 27.4244 9.0014
0.2 2.88628 19362  3.0617 0.0618 0.2 4.18630 0.0957 31.5395  14.3040
0.3 2.76651 1.6823  5.3001 0.0564 0.3 4.37338 0.0417 34.5446  16.8182
0.4 2.62743 1.4480  7.0760 +4-0.1041 0.4 4.59107 0.0176  36.3957  18.0484
0.5 2.48217 1.2436  8.3145 0.4516 0.5 4.82782 0.0075 37.5463  18.7207
0.6 2.33975 1.0632  9.1305 0.9604 0.6 5.07734 0.0033 38.2989  19.1300
0.7 2.20609 0.8998  9.6656 1.5779 0.7 5.33599  0.0014 38.8170  19.4010
0.8 2.08487 0.7493 - 10.0346 2.2449 0.8 5.60149 0.0006 39.1894  19.5917
0.9 1.97813 0.6112 10.3166 2.9078 0.9 5.87231 0.0003 39.4661  19.7318
1.0 1.88669 0.4870 10.5589 3.5256 1.0 6.14738 0.0001 39.6770  19.8380

X (I4+1)] as n goes to zero, then E,=E_, for all y. in Table IT under E°. Values for E° for spin 9/2 have

Here L=¢Q/4I(2I—1). been obtained previously to five significant figures.!®
The factored secular equations, listed in Table I, B. Intensities
have been solved numerically for ten values of 5 for Each line in the spectrum is a superposition of the

spins 5/2, 7/2, 9/2. The resulting eigenvalues are listed four transitions ==m*5 4=m’. The sum of the four
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transition probabilities will be proportional to
WH?=% | (=m' |H'-1| £m) |2, ©)

where H' is the rf-field exciting the transitions. If § and
¢ are the polar angles of H’ with respect to the principal
axes, then

W =2D cos?0+% sin?[ G+2J cos2¢ ], 6)
D= (Imﬂn’z)zy G= (I—m,m’+)2+ (I~m,m’—')2,
J=I_mmt)Tmm™). (1)

In the above formulas we have taken m and m’ to be
one of the two pairs belonging to the same group among
the four levels &=m, =m’ and have set J+=I%+44[v.

We note that W contains all of the orientation de-
pendence of the intensity of a given line. Hence, fitting
the observed dependence on orientation of the relative
intensity of a line to Eq. (6) will serve as a check on
the assignment of mm’ values to that line.

Values of D, G, and J are given in Table IIT for the
transitions of observable intensity. In selecting the
transition listed in the table, »*I¥ has been used as a
measure of the signal to noise ratio of a line and hence
its observability. Also tabulated are the averaged tran-
sition probabilities W appropriate to a polycrystalline
or powdered sample:

W=2D+1G. (8)

The results embodied in Table IIT show that the
allowed transitions, [Am|=1, are dominant for all
values of 9. There are several “forbidden” transitions
for which the breakdown of the selection rule |Am|=1
may be sufficiently strong to permit observation. These
are the (5/2,1/2) transition for 7=5/2, 7/2, 9/2, and
the (7/2,3/2) transition for I=7/2, 9/2, both for vari-
ous values of 5. Similar results have been obtained in
the special case considered by Lamarche and Volkoff.??
For all lines except those with 7=9/2, (mm')=(1/2,
5/2), n>>0.5, the intensity is a maximum when H’ is
parallel to the x axis and for the exceptional cases when
H’ parallels the y axis.

If the observed frequency ratios of a pure quadrupole
spectrum are drawn as horizontal lines on a plot of
calculated frequency ratios vs 7, one set of their inter-
cepts with the calculated curves should lie on a vertical
line. One thus obtains # and then ¢Q. Observations of the
directional dependence of intensities in a single crystal
yields the orientation of the principal axes. One can
then determine the frequency of, and optimum orienta-
tion of H' for the “forbidden” lines if these are not
observed at first.

III. ZEEMAN SPLITTING

A study of the Zeeman splitting of the pure quadru-
pole spectrum in a single crystal as a function of the
orientation of the magnetic field will yield simply and
immediately the orientation of the crystalline field
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axes'® as well as a check on the assignment of transi-
tions in the zero field pattern. The large quadrupole
moments of some nuclei, e.g., Ta, have prevented the
measurement of their magnetic moments by the usual
magnetic resonance or induction techniques. The Zee-
man splitting!® can probably give the magnetic moment
to greater accuracy than-can be obtained at present by
optical means.!” The case of the symmetric field gradient
is by far the simplest to analyze. The results for »==0
presented below will be useful, however, when the
nucleus in question cannot be found in a site of tetrago-
nal, hexagonal, or rhombohedral symmetry.

A. Energy Levels

A magnetic field Hy at arbitrary orientation to the
principal axes connects the degenerate states ==m.
Solution of the resulting secular problem yields, to
first degree in the field strength,

Ein=E.'FgBH[A cos¥

4% sin®0(B4-2C cos2¢) 1}, (9)
A= (IMmz)z, B= (Im, —/m+)2+ (Im, —m_)2,
C=ln—wtln_n. (10)

In Eq. (9), 6 and ¢ are the polar angles of Ho. Values of
A4, B, and C are listed in Table II. Figure 1 shows
schematically the fourfold splitting of each component
of the pure quadrupole spectrum. The four members of
the multiplet are symmetric about the original line in
frequency and intensity.

B. Intensities

The intensity formulas for arbitrary orientation of
the rf-field H' are extremely complicated. One can,
however, show that the intensities of the Zeeman pat-
tern are symmetric in the general case, as noted above.
Examination of the general formulas shows that all
lines of a multiplet are of comparable, but not neces-
sarily equal, intensity. Hence those multiplets which
contain allowed transitions |Am|=1 are dominant.

16 [, Kruger and V. Meyer-Berkhout, Z. Physik 132, 221 (1952).
17 B, M. Brown and D. H. Tomboulian, Phys. Rev. 88, 1158
(1952) ; Phys. Rev. 91, 1580 (1953).
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TasLE III. Intensity parameters, pure quadrupole spectrum.

I1=5/2 3 I1=7/2
Quan- Transitions Quan- Transitions
tity 7 (1/2,3/2) (3/2,5/2) (1/2,5/2) tity n (1/2,3/2) (3/2,5/2) (5/2,7/2) (1/2,5/2) (3/2,7/2)
D 01 002 .- J 01 140 036 014  -.-
02 007 .- e 02 236 072 028 0.01
03 015 ... 0.01 03 281 109 042 0.02
04 024 001 002 04 295 148 056 003
0.5 033 001 002 0.5 293 187 071 003 e
06 041 002 0.03 06 28 227 085 003 0.01
07 049 004 003 07 276 265 100 003 001
08 056 007 004 08 266 299 115 002 0.02
09 062 010 0.04 09 258 327 130 001 003
1.0 068 0.4 0.5 1.0 250 350 145 ... 0.04
G 01 7.87 499  0.01 W 01 477 398 233 003
02 7.51 497 004 0.2 426 393 234 010  ---
03 701 495  0.08 03 371 390 234 017 0.01
04 644 493 013 04 327 389 235 022 0.2
05 58 492 0.17 05 29 392 235 024 0.3
0.6 536 492 021 06 274 396 236 024 004
0.7 491 493 023 0.7 260 401 237 023 007
08 453 495 025 08 252 405 238 021 0.09
09 421 499 026 09 246 408 240 018 0.12
1.0 395 503 026 1.0 242 408 242 015 0.15
J 01 048 011 ... 1=9/2
0.2 0.90 0.22 e Quan- Transitions
0.3 124 033 cor tity g (1/2,3/2) (3/2,5/2) (5/2,7/2) (7/2,9/2) (1/2,5/2) (3/2,7/2)
0.4 1.47 0.44 0.01 D 0.1 0.14 .. .. .. 0.01 ...
0.5 1.62 0.56 0.01 0.2 0.40 0.03 e N 0.04 0.01
0.6 1.70 0.67 0.02 0.3 0.63 0.12 ... .. 0.06 0.03
0.7 1.74 0.79 0.02 0.4 0.80 0.29 e v 0.07 0.06
08 174 091  0.03 05 095 054  0.01 e 0.07  0.09
09 172 103 003 06 1.08 0.83  0.04 e 0.06 0.12
10 170 116  0.04 07 120 114 0.8 e 004 0.15
_ 08 130 143  0.15 .eo 003 017
w 01 264 166 - 09 139 169 027 .- 002 0.19
02 255 166  0.02 1.0 147 192 043 ... 002 0.9
03 244 165 003
04 231 165 005 G 01 2105 2071 1600 9.01 0.32 o
05 218 1.65 007 0.2 1602 2024 1601 901  0.83 0.2
06 206 166 009 0.3 1237 1989 1600 9.05 1.08  0.08
07 197 167  0.10 04 1019 1947 1597 9.08 1.07  0.20
08 1.8 170  0.11 0.5 890 1876 1592 9.3 092 037
09 182 173 011 06 810 1773 1587 918  0.73  0.57
10 177 177 012 07 7.56 1649 1585 925 0.56 0.76
1=7/2 0.8 7.5 1522 1587 932 042 091
Ouan Tandtions 09 683 1405 1594 940 031  1.00
e /2.3/2) (3/2.5/2) (5/2.1/2) (1/2.5/2) (3/2,1/2) 1.0 656 13.06 1604 949  0.23  1.03
D 01 006 - 0.01 J 01 308 08 039 017 .-
0.2 021 001 .- 002  -.- 0.2 434 172 078 031  0.02
03 037 002 .- 003 001 03 449 266 117 052 002  ---
04 052 006 .- 0.05 0.1 04 414 361 157 069 001 001
05 065 013  --- 0.06  0.02 05 410 446 197 087 —001 0.03
06 075 023 .- 0.06  0.03 06 389 510 237 105 004 005
07 085 036 - 0.06  0.04 0.7 370 550 280 123 005 0.8
08 093 051 001 006 0.06 08 354 569 324 142 006 0.11
09 101 069 002 005 007 09 340 573 370 1.61 006 0.12
1.0 108 088 003 005 0.09 1.0 327 568 418 180 006 0.3
G 01 1420 1193 7.00 008 .- W 01 711 690 533 300 012 .-
02 1235 1178 701 027  -.- 02 561 677 534 300 030 0.02
0.3 1038 11.64 7.03 045 0.1 03 454 671 533 302 040 0.5
04 876 1155 7.04 057  0.02 04 393 668 533 303 040 0.10
0.5 757 1149 706 062  0.04 0.5 360 661 532 304 035 018
0.6 672 1143 708 0.61  0.07 0.6 342 646 531 306 028 0.27
0.7 612 1131 711 056  0.11 0.7 332 625 534 308 022 035
08 569 1112 713 050 0.16 08 325 602 539 311 016 0.42
09 537 1085 717 043 0.1 09 320 58 549 313 012 046
1.0 512 1050 721 035  0.27 1.0 317 563 563 317 009 047
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Orientation of the rf-field parallel to the x axis again
appears to be favorable in the majority of cases. One
cannot be certain without detailed numerical analysis.

For this simplest case the transition probabilities for
the multiplet |m|, |m'| become

1(G+27)
A+[7[HA+]s])
SING[ Ly, €'+ Lon, —m— €™ ]

r= . (12)
20 | Ium®| cosb+ | AE,|]

M, (11)

where

In Eq. (11), s is the same quantity for the levels Z=m’
as r is for the levels &=m. Further, M is a 2)X2 matrix,
the indices of which indicate the signs of # and »'. In
Eq. (12), |AE.,| is the magnitude of the Zeeman shift
(i.e., half the level separation) in units of g8H,. We must
distinguish two cases before writing M explicitly: in
case I, |m| and |m’| belong to the same group; in case
ITI, they do not. Noting that M, =M__ and M, _
=M_,, we obtain
My I=[r*+s|? M = 14r%s[?
(13)

M+_I=Il-7’312, M+_II:]7’—S|2.

The quantities needed to evaluate W through Egs-
(11), (12), and (13) may be found in Tables II, IIT,
and IV.

As examples of the use of the matrix M, consider the
multiplets =+7/2, #5/2 and =7/2,43/2. In the
former case, 7/2 and 5/2 are in different groups and we
must use MI; in the latter case, 7/2 and 3/2 are in the
same group and we must use MT. Let W=ZM. Then

Wae,s12=W _1y9,—579= Z1y, 52M 1 + 11,
W _zs2,502=Wrpa,—s2=Z 12, 52M 11,

Wase,s2= W _j9,—32= Za, 32 M 441,
W _ass,30=Wrje,—s3j0=Zrs2, 32M + L.

All “allowed” transitions are of type I; all observable
“forbidden” transitions are of type II.

C. Large Quadrupole Coupling

There are cases when the quadrupole coupling is so
large that the frequencies of the pure quadrupole spec-
trum lie beyond the reach of conventional nuclear
resonance or induction equipment, say greater than 10%
cps. Then, however, it becomes possible to observe in
single crystals transitions between the levels &= in a
strong magnetic field, the frequencies of which are
2|AE,|. Such measurements could yield a value for
the magnetic moment, for %, and for the orientation of
the principal aces. The mixing of the == states by Ho
is sufficiently strong for intermediate and large values
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TaBLE IV. Matrix elements of the angular momentum.

Quan- I1=5/2 I1=7/2
tity n m=1/2 3/2 5/2 m=1/2 3/2 5/2 7/2
Lim* 0.1 049 149 250 047 147 250 3.50
0.2 046 146 250 039 139 249 3.50
03 043 142 249 032 130 247 3.50
04 038 137 249 025 120 245 3.49
0.5 034 132 248 019 112 242 349
0.6 029 127 248 0.14 103 237 348
0.7 025 122 247 011 095 232 348
08 021 117 245 008 087 225 347
09 018 112 244 006 078 2.18 3.46
1.0 015 107 242 004 0.70 2.10 3.45
Inmt 01 299 040 --- 396 0.96 0.02
02 296 077 001 3.8 175 0.09
03 292 109 003 378 230 020 ---
04 287 137 006 370 266 034 0.01
05 2.8 159 009 3.63 288 0.52 0.01
0.6 278 177 013 359  3.00 0.73 0.02
07 273 191 018 3.5  3.07 096 0.04
08 269 201 024 353 308 1.19 0.05
09 266 209 030 3.52 3.07 142 0.08
1.0 263 214 037 351 3.03 1.63 0.11
In-m~ 0.1 —040 0.01 —096 001 ---
02 077  0.02 1.75 004 ---
03 1.09 0.05 231 002 0.01
04 137 007 --- 2.69 —0.04 0.02
0.5 160 0.09 001 294 0.16 0.04
0.6 178 0.09 001 310 032 007
07 193 009 002 321 051 0.11
08 204 007 003 329 073 015 0.01
09 213 0.04 005 334 095 0.19 0.01
1.0 221 -+ 006 338 116 024 0.2
Quan- 1=9/2
tity 7 m=1/2 3/2 5/2 7/2 9/2
Inm* 01 043 143 249 350 450
02 031 128 247 349 450
03 020 114 242 348 450
04 013 101 235 347 449
0.5 0.09 0.87 225 345 449
0.6 006 0.74 213 343 448
07 004 062 199 339 448
08 003 050 1.86 3.36 447
09 002 040 1.72 331 446
1.0 001 031 159 3.24 445
Ipm-m* 01 490 1.83 008 ---
0.2 473 3.00 030 0.01
03 461 3.60 066 0.2
04 453 386 1.10 0.5
0.5 449 395 1.58  0.10
0.6 447 394 204 017 ...
0.7 447 3.80 245 027 0.1
0.8 447 382 277 040 0.01
09 447 375 3.02 056 0.02
1.0 447 3.68 3.18 075 0.03
Lnm—m~ 01 —184 —0.02 ---
02 3.02 004 001
03 3.65 026 003 -
04 398 0.64 007 ---
05 417 108 012 001
0.6 428 154 016 0.02
0.7 434 196 0.18 0.03
0.8 439 231 017 0.5
09 442 259 011 0.9
1.0 444 281 .. 0.13

of n that all I43% transitions m ——m should be ob-
servable. Depending on the values of m and 7, it is
sometimes favorable to have H'||z and sometimes paral-



1284

lel to x or y.
4lr|2
=, (14)
[1+]r|2]2
_ I e (13)
© [ ’
_ﬂ(g_gc) (16)
ULt '

Again the intensity formulas for arbitrary orientation
of H' are extremely complicated. Unless some knowledge
of the orientation of the principal axes is available, say
from symmetry considerations, the above intensity
formulas will not be of use until after analysis of the
orientation dependence of the frequencies.

IV. ACCURACY OF PERTURBATION THEORY
A. Zeeman Splitting

We take as the unperturbed Hamiltonian the pure
quadrupole energy ; the perturbation energy is — g8I- H,.
Let E,™ be the nth order term in the perturbation
theoretic expansion of the energy levels. It can be shown

that
(17)

by induction on the general form of the »th order term.
The proof rests on the behavior with respect to change
of sign of m of the matrix elements of the Hamiltonian
in the representation diagonalizing it to first order. A
demonstration of Eq. (17) will not be given here; the
corresponding theorem for the strong field case will be
discussed more fully in Sec. B.

For accurate determination of the first order Zeeman
parameters one needs as wide a range of field strengths
as possible. At first glance it would appear that the
magnetic field strength can be increased only until the
second order effect is of the order of the experimental
error. However, Eq. (17) shows that the second order
term cancels out of vy, m’— ¥—m,—ms, and hence first order
calculation of the separation between a symmetric
pair in a multiplet gives second order accuracy. The
working range of field strength extends until third order
terms are of the order of the experimental error when
first order calculations are used.

Ep®=(—1)"E,™,

B. Strong-Field Case

Let R signify reflection of the coordinate system in
the x—y plane. Then in the expressions 4(a), 4(b), and

M. H. COHEN

4(c) for the matrix elements of 3C, H¢* ——H?,
F.1——F4; upon application of R. Inspection of the
matrix elements shows that

3 (Ho,F 1) = 3Coums (RHo,RE ). (18)

Therefore

E—n(Ho,F,)=E,(RH,,RF,). (19)

In the strong-field case, we take Ho||z and —gBI*H, as
the unperturbed Hamiltonian. The latter is nonde-
generate and hence perturbation theory yields an ex-
pansion in powers of F, and inverse powers of H, for
the energy. The dependence on F, of a typical term

might be
(Fo)*(F-1)*(F 1) (F-2)*(F12)%, (20)
with the condition that!®
b—c+2d—2¢=0. (21)

Therefore b—c¢ must be even and the sign change in
each term caused by R is determined by the sign change
of Hy*=-4H,. We conclude, therefore, that

E_p®=(—=1)""1E,™, (22)
Thus the third order calculations of Bersohn® give
fourth order accuracy when the results of theory and
experiment for v, m'— V_m—m+ are compared. This in-
creased accuracy becomes important for quadrupole
interactions of the order of that observed for Nb% in
KNbO; where |e*¢Q/k| =23.1 Mc/sec.!s In most ferro-
electrics and antiferroelectrics one could expect to en-
counter similarly large couplings.
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18 Equations (20) and (21) become especially clear when one
uses the perturbation techniques described in reference 13.



