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The methods of previous papers by the authors are applied to a simplified impurity calculation. This is
the case of a localized perturbation in a simple cubic lattice. We consider the effect of the perturbation on
a single band which is describable in terms of a Wannier function which only has nearest neighbor inter-
actions. The results of this calculation are compared with some approximate treatments of impurity

calculations.

I. INTRODUCTION

N two previous papers,!? the authors have proposed
a treatment of the impurity problem in solids. This
method consisted of expanding the perturbed wave
function in terms of a linear combination of the Wannier
functions of the unperturbed crystal. The coefficients
in this linear expansion were shown to satisfy a set of
simultaneous linear equations which had the form of
difference equations. The method used to solve these
equations was a Green’s function method for the dif-
ference equations. The procedure was applied to simple
cases drawn almost exclusively from one-dimensional
crystals. These are quite unrealistic and it is desirable
to work through, by this method, a three-dimensional
impurity problem.

Fortunately, there exists a three-dimensional im-
purity problem which can be carried through analyti-
cally in some detail. This does not correspond to any
crystal found in nature but it will have features in
common with more realistic computations. The problem
concerns itself with the effect of an impurity on the
wave functions of a single band in a simple cubic latfice.
This band is assumed to be cosine-like in the x, y, and 2
directions of reciprocal space. This is to say that the
dependence of energy on the propagation vector is a
sum of cosines of k., k,, and %,. If this is the case, the
evaluation of the Green’s function for the difference
equations can be carried out analytically and the solu-
tions can be studied in detail.

We are able to study the manner in which the bound
state appears below the band as we vary the perturba-
tive potential. The wave function of the bound state
can be found numerically. This enables us to compare
the wave function found in this precise manner with the
wave functions found by approximate procedures. In
particular, we can compare it with the wave function
that appears from replacing the exact difference equa-
tions by approximate differential equations. Another
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approximation can be studied. This approximation
consists of cutting the crystal off after a finite number of
lattice spacings. We shall be able to see how valid it is
to replace the infinite crystal by a small finite crystal.
In addition to the bound states, the scattering problem
in this lattice can be carried through. It is hoped that
this simple example will illustrate the use of the method
of treating the impurity problem proposed in the
previous papers and will also indicate features which
we might expect to find in more precise impurity
problems.

II. STATEMENT AND DIRECT SOLUTION OF
THE PROBLEM
We shall assume that we have a simple cubic lattice
whose primitive translations are given by

qur=’?Ri+qu+7’Rk. (1)

Here R is the lattice spacing and i, j, and k are unit
vectors in the #, ¥, and z directions respectively. Each
lattice site will be further assumed to have full cubic
symmetry. Let us imagine that associated with this
solid there is a band of energies which has associated
with it Wannier functions® which have full cubic sym-
metry with respect to the lattice site about which they
are defined. These energies are the eigenstates of some
one-electron Hamiltonian. We assume in addition that
the Wannier functions only have interactions between
each other when they are nearest neighbor or closer.
If we denote the Wannier function associated with the
lattice site R,,, by a(r—R,,) and the one-electron
Hamiltonian by H, this means that the only nonvanish-
ing matrix elements of the Hamiltonian are given by

8(0)= f a(t—Ryu) Ha(r—R,,)dv,

8(1):fa(r“Rmr)Ha(r‘RpH,q.r)d'” (2)

=fa(r—qu,)Ha(r—Rp,q+1, ~dv, etc.

We wish to study the effects of a perturbation on this
perfect periodic lattice. We restrict ourselves in this

8 G. H. Wannier, Phys. Rev. 52, 191 (1937).
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section to a perturbative potential which extends over
only one lattice site. If we call the perturbative potential
V (r), this means that the only nonvanishing matrix
component of the perturbative potential is

V(0)= f a(r—0)V (£)a(x—0)do. @3)

The perturbative potential has, for convenience, been
assumed to be centered at the central lattice site.

Following the procedure outlined in an earlier papert
by the authors, we expand our perturbed wave function
in terms of the Wannier functions of the band which
we have described:

Y(0) =2 (0,4,7) Up,qra(t—Rp,q.1). 4

¢ is the perturbed wave function and the U’s are
unknown coefficients which are to be determined by
minimizing the expectation value of the perturbed
Hamiltonian. This minimization gives rise to a-set of
difference equations for the U’s [Egs. (8) of ()]
which in this case reduce to

[8(0)_E] Up. e + g(l)[UpH. e ~+ Up~1. ar
+ Up. a+1, 7‘+ Up, a1, r+ Up, a 'r+1+ Up, q r—l:] = 01

unless p=g=r=0, (5)

[8(0)+V (0)— EJUs,0,0+81)[Us,0,04+U—1,0.0
+ Uo, 1, o+ Uo, -1, o+ Uo, 0, 1+ Uo. o,—-1:| =0.

E is the energy of the perturbed state. If the perturbative
term were set equal to zero, the solutions to this dif-
ference equation would just give rise to the Bloch solu-
tions to the unperturbed lattice and the energies would
be just the energies in the energy band which would be
given by

E= 8§(0)4+28(1)[coskiR+ cosk.R+-cosksR].  (6)

Here k1, ks, ks can take on arbitrary values. We must
now look for the solutions to the difference equations for
the states when the perturbation does not vanish.
Instead of solving the problem of the perturbed lattice
by the method proposed in (I), we solve it in this
section by direct solution of the difference equations.
We do this since we shall treat in a later section the case
of the finite lattice and this method of solution easily
gives us the proper results for this case. In a later
section, we shall solve the same problem by the method
proposed in (I) which will be much simpler for the case
of an infinite lattice.

Our problem has the symmetry properties of the
cube, and our solution to the problem must form a
basis function for one of the irreducible representations
of the cubic group. We know that we are looking for a
function which forms a basis for the identity represen-
tation of the cubic group. We know this because any
other representation of the cubic group would have a
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vanishing contribution from the Wannier function at
the origin and hence would not be perturbed by our
localized potential. We therefore know that we are
looking for a function which is an even function of p,
of g, and of . This is the same type of symmetry shown
by the s function; only here since we do not have
spherical symmetry, we must not expect that the func-
tion Uy,,,, » will show spherical symmetry.

The difference equations (5) fortunately can be
solved, though the solution does not appear in the
literature. The writers are indebted to Dr. H. C.
Schweinler for pointing out that an analogous problem
has been solved by McCrae and Whipple.* The same
method of solution can be applied to the present
problem. What we shall do is find solutions of the dif-
ference equations with the energy E for those equations
not involving the perturbation and then form a linear
combination of them to satisfy the special equation
which involves the perturbation V(0). For boundary
conditions, we shall assume that U,,,, » vanishes on the
faces of a cube which extends N atoms in the plus #
direction and in the minus x direction and the sime
distances in the plus and minus y and z directions.

The method of solution introduces an apparent lack
of symmetry between the three directions in space:
one axis, which we shall take to be the 7 axis, must be
treated differently from the others. Though the solution
appears unsymmetrical, this is only in the way of
writing it, not in the solution itself. Let us take a func-
tion

- [(2m+1)7r 2n+Dr
R BT ] cos[ 2N q]

Xsinh[ (r—N)g], r>0. (7)

Here m and # are integers which take values up to
N—1. This function satisfies the boundary conditions
in the « and y directions and also in the positive 2
direction. If we substitute this into the first of Egs. (5),
we find that we have a solution provided

E= 8(0)+28<1)["°S[(2_”;?I]

o]

—+cos

~+coshg } 8)

For a given energy value, the quantity 8 is determined
from Eq. (8) in terms of m, #, and E. Now let us make
up a solution as a sum of (V—1)2 such terms, all corre-
sponding to the same E; it will clearly be a solution of
the first of Egs. (5), and we have merely to satisfy the
second. However, before we go on we must look at the
symmetry properties of the solution.

The solutions in Eq. (7) have even symmetry with re-
spect to the p and ¢ axes. In order to give the solution

4W. H. McCrea and F. J. W. Whipple, Proc. Roy. Soc. Edin-
burgh, 60, 281 (1940).
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the proper symmetry with respect to the 7 axis, we must
for negative values of 7 replace sinh(r—N)B8 by
sinh(—7—N)B. We shall then have a condition of
joining these two solutions along the plane =0, as
well as the condition which we must satisfy at p=g¢
=7=0. We can now write our solution in the form

; [(Zm—l— Dr
s ar= X (m)c(myn) cos Tp]

2n+1w
Xcos[—(—n—z_*—yv—)—q] sinh[ (»—N)B], r=0. (9)

In the summation, # and % are to run up to the values
N—1, and the ¢’s are coefficients to be determined. The
solution above applies only when 72> 0; for negative 7
we use sinh[ (—r—N)B]. The quantity 8 is to be deter-
mined in terms of m and » by the use of Eq. (8). We
shall now apply the condition of continuity over the
plane r=0, but for the case where p and ¢ are not both
equal to zero.

To do this we substitute Eq. (9) into the first equation
of (5), for the special case where r=0, remembering the
situation for negative #’s. We find at once that the
result, when we make use of Eq. (7), reduces to the
statement that the expression in Eq. (9), computed for
r=—1, must equal the same expression computed for
r=1. In other words, though the expansion in Eq. (9) is
correct only for positive #’s, this shows that it must still
converge for 7= —1 (so long as we do not have p=¢=0),
and must give the correct value at such a point. We can
then write this condition in the form

o2

> (m,m)c(m,m) cos[
2N

XcoshNB sinh3=0. (10)
We shall now show that all such equations, provided p
and ¢ are not both zero, can be satisfied by the assump-
tion,

c(m,n)=1/(coshNgB sinhg), (11)

where 3 is defined in rerms of m and # by Eq. (8).

To do this we note that in case Eq. (11) holds the
summation in Eq. (10) becomes > (m,n) cos[ (2m~+1)m/
2N ]Jcos[ (2n+1)w/2N7]. Such a sum is immediately
shown to be zero on account of the familiar theorems on
the orthogonality of the cosine functions. We thus see
that our expression (9), in which the ¢’s are given by
Eq. (11), forms an exact solution to our difference
equations (5) everywhere, except that we have not yet
considered the point p=¢=r=0.

If we substitute our solution in the second of Egs. (5)
and make use of (8) we find that we must have

V(0)2Z (m,m)[sinh N8]/[cosh Vg sinhf]=2N?8(1). (12)
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The quantity being summed depends on 7 and #
through the relation in Eq. (8). This is the eigenvalue
condition which determines the energy as a function of
the perturbative potential ¥ (0). We shall now go on and
let our lattice become infinite to see how this modifies
our expressions.

If we allow N to become infinite, Eq. (12) reduces

t
° V(0)2_ (m,n)1/sinhB=2N28(1). (13)

We can now replace the summations over m and » by
integrations over continuous variables a; and as. If we
do this, and also express the sinh in (13) in terms of the
cosh, and the cosh in terms of a;= (2m+1)w/2N and
az= (2n+1)w/2N through the use of (8), we obtain for
the eigenvalue condition (13) the result that

— da1 f [(Ez fl()()) COS(.II

—-comg)z— 1]#% =28(1). (14)

The wave function can also be expressed in terms of an
integral by substituting (11) into (9) and passing to
the limit as IV becomes infinite. In this case the wave
function U,, 4 » would be proportional to

cosalp cosaaqe"?
[aof o
sinhB

where once again 8 must be expressed in terms of a;
and ap through the energy expression. We shall defer
the study of the wave function and the energy until
the next section where we shall formulate the same
problem in terms of the method of solution proposed
in (D).

(15)

I SOLUTION OF THE PROBLEM BY MEANS OF THE

GREEN’S FUNCTION FOR DIFFERENCE EQUATIONS

In this section, we shall solve the difference equations
for the infinite perturbed lattice by means of the method
proposed in (I). In that paper, we have discussed just
the case of a perturbation localized on one lattice site.
If we apply the results for the wave function summed
up in Eq. (42) of (I) and for the eigenvalue condition
summed up in Eq. (43) of (I), we get in our case for the
wave function,

=Q/MV(O)Z I)Lexp(ik-Ry,q,) )/

[E—E)]JU(0), (16)
and for the condition determining the energy,
VO)/NME&E-EK) '=1. (17

In these expressions, the energies E(k) are given by
Eq. (6) of this paper. If we replace kR, kR and k3R
by ai, a2, and a3, respectively, we can convert these
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summations to integrations over the o’s. If this is done,
the solutions to the difference equations are given by

V(O) T ™ T
Up, q.r="Tf dalf domf das
™ 0 0 0

COspa; Cosgay COSYaLs

X U@, (18)
E— §(0)—28(1)[ cosai+cosas+cosas |
and the eigenvalue conditions become
V(O) ™ T T
f dOllf dotzf doz;;{E—- 8(0)
w 0 0 0
—28(1)[cosay~+cosag+cosas [}1=1. (19)

The eigenvalue condition when written in this form
looks different from the eigenvalue condition expressed
in Eq. (14). It is easy to show, however, that by inte-
gration over a3, Eq. (14) may be obtained from Eq. (18).
The integration over a; is a simple integral.

The wave function and eigenvalue condition could be
evaluated by numerical integration in the form indi-
cated. This however is not a convenient form in which
to do the integrals. In the Appendix, we show a method
by which these conditions can be rewritten which will
reduce both of these integrals to single integrals. Taking
the results from the Appendix we find that the solution
to the difference equations is given by

Up,or=V"(0) U(O)f e B (O I(DI(f)dt, (20)
0
and the eigenvalue condition by

V' (0) f i E [ Io() Pdi=1. (21)

The I’s are the Bessel functions of imaginary argument
and we have let

V'(0)=V(0)/28(1) and E'=[E—E&(0)]/28(1).

This is a more convenient form in which to do the
integrals and they can easily be done numerically.

We are now in a position to study the dependence of
the energy E’ on the perturbative potential V’(0). We
first notice that if the energy E’ is greater than 3, the
integral (21) diverges. This can most easily be seen by
considering the asymptotic form of the function Io(Z).
For large values of ¢, the asymptotic form of Io(?)
contains a factor e’. This means that the integrand in
(21) will go as exp[(3—E’)t]. Thus for E'<3 the
integrand will become infinite as we approach the
upper limit and the integral will diverge. This result
can also be seen by consideration of the integral in the
form (14). In this case for E'<3 the integrand will
develop a singularity which makes the integral infinite.
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F16. 1. Energy of bound state as a function of
perturbative potential.

Thus for this case there is no solution to our problem.
The case where E'=3 is easy to interpret. This corre-
sponds to the case E= §(0)+6&(1), which is the value
of the energy at the center of the Brillouin zone, from
(6). If &(1) is positive, this is the top of the energy
band, and in this case we find a discrete state only
when E is above the top of the band; when &(1) is
negative, it is the bottom of the band, and we have a
discrete state only below the bottom of the band. This
of course is as it should be. Since the integral in Eq. (21)
is positive by its definition, this means that from Eq.
(21) we have a solution when V' (0) has the same sign as
&(1) [V’ (0) positive]. We shall not take up the opposite
case, where the discrete level appears at the value of
energy corresponding to the corner of the Brillouin
zone rather than the center, but it can easily be handled
by putting in a change in the sign of the U’s associated
with adjacent lattice points.

The value of the integral in Eq. (21), when carried out
numerically for the case E'=3, turns out to be 0.4990.
As the value of E’ increases above three the value of
the integral decreases. Thus in order to satisfy Eq. (21)
the perturbative potential ¥’ (0) must increase. In other
words, in order to have a discrete state, V' (0) must be
at least equal to 28(1)/0.4990, which is approximately
4&(1). That is, from the difference equations we have
shown that there is no discrete state unless the per-
turbative potential is greater than a critical value.
Furthermore, we have been able to evaluate this critical
value, for the simple cubic lattice with nearest neighbor
interaction. The total width of the band in this case is
128(1) [since each of the cosines in the energy ex-
pression (6) can go through the values from —1 to 1].
In other words, the quantity V' (0) must be equal to at
least a third of the width of the band, in order that
there be a discrete state.

In addition to the value E'=3, the integral in Eq.
(21) has been carried out for a number of other values of
E! greater than three in order to study the dependence of
energy of the bound state on the perturbative potential.
In Fig. 1 we plot the energy of the bound state E’ in
terms of the perturbative potential ¥’(0). We notice
that in the graph the bound state appears to leave the
graph quadratically with the perturbation. We also
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notice that as we increase the perturbation the energy
of the bound state becomes linear with the perturbation
V’(0). Both of these facts can be checked by considera-
tion of the expressions which determine the energy in
terms of V(0).

The most convenient expression from which to study
the dependence of the energy on perturbation near the
point where the bound state first leaves the band is Eq.
(19). Let us define the integral which multiplies V7(0) /*
as I(E’). What we must first do is to find the difference
between I (E’) and I(3). I(3) is, of course, the value of
the integral which determines the value of the per-
turbation which first gives rise to a bound state. By
comparison with Eq. (21), we see that 7(3) =#%(0.4990).
From Eq. (19) we see that the aforementioned difference
is given by

I(E’)—I(3)=frdalfwdagfwdm

X A{[E’'— cosa;— cosaz—cosas | !

—[3—cosa;—cosaz—cosaz ]} (22)
We are to study this difference for values of E’ very
close to 3. Because of this the principal contribution to
this difference will come from values of ai, as, and as
very close to zero. We shall expand the cosines in terms
of the first two terms of their power series and introduce
polar coordinates in the space of a1, as, and a3, defining
7= a2+ a?+az? If this is done, Eq. (22) can be rewrit-
ten as

1(E)—1(3)= (4/8) f ([E—3+n/2]

— G )%dr.  (23)
We have extended the upper limit to infinity since we
know that the principal contribution to this integral
comes from small values of the argument on account of
the small size of E'=3. In Eq. (23), the fractions can be
given a common denominator. When this is done, the
integral reduces to an elementary integral which gives
the result:

IE-1()=(—w D E-3 @)
Let us now substitute this result into the eigenvalue
condition (19):

v’ ©)/m*]L— (@*/¥2) (B'—=3)™+-1(3) ]=1.

We can now solve this relation for E'—3 in order to
obtain the result:

E'—3=2m{1/V"(0)—I(3)/r}2

(25)

(26)

The second term in the curly brackets we recognize as
the value V’(0) of the perturbation potential which
first produces a bound state. Since the value of 7/(0)
for a value of energy near 3 will differ from this by a
small quantity this expression can be rewritten (correct
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to terms of the second order)

E'—3=22(I(3)/m){V'(0)—=x/I(3)}2.  (27)

We have thus demonstrated our contention that the
energy of the bound state behaves quadratically with
the perturbative potential as the bound state leaves
the bottom of the band. Of course, this quadratic de-
pendence is with the difference between the potential
and the value of the potential that first produces a
bound state.

We are also interested in the dependence of the
energy on perturbation for large values of E’. Returning
to Eq. (19) the integrand is seen to become essentially
independent of the o’s for large values of E’. Thus, in
this case, Eq. (19) reduces to

LV (0)/=*Jl=*/E']=1, V'(0)=E". (28)

We have plotted the straight line defined by Eq. (28) in
Fig. 1 and it can be seen that the curve of energy versus
perturbation approaches this straight line asymptoti-
cally for large values of V’(0).

We have now completed the discussion of the de-
pendence of the energy on the perturbing potential. In
the next section, we shall study the dependence of the
wave function on the perturbative potential and com-
pare these results with those of the differential equation
approach to the impurity problem.

1IV. THE WAVE FUNCTION FOR THE
IMPURITY LEVEL

In this section, we shall study the wave function of
the bound state as expressed in terms of the coefficients
of the Wannier functions. These coefficients are given
by either Eq. (15), (18), or (20). Before we give the re-
sults of these computations it is instructive to do the
problem by the differential equation approach in order
to have an approximate solution with which we can
compare our exact solution. This differential equation
approach was briefly described in (I) and we shall make
use of the equations as written there.

The coefficients of the Wannier functions U, 4, » when
expressed as a function of the continuous variables p,
¢, and 7 can be shown to satisfy approximately the dif-
ferential equation,

2

VUA[Eo+V (r)JU=EU (29)

8mPm

This is essentially Eq. (12) of (I). We have specialized
that equation to the case at hand. For our case, near
k=0 there is only one effective mass since for small
values of k the band is spherically symmetric. Eo is the
value of the energy at the bottom of the band and V (r)
is the perturbing potential. In the problem as solved by
the difference equations, the only property of this
potential that we have used is the fact that it only has
matrix elements between two Wannier functions
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located at the central lattice site. In order to carry out
this differential equation approach, we must specify
this potential in more detail. We shall assume that it is
a three-dimensional square well.

If we look for a solution of Eq. (29) which is inde-
pendent of angle, the radial Schrédinger function will
satisfy the equation,

__h2 d2
—(@U)+VrU=ErU.
8nm dr*

(30)

We have adjusted our zero of energy to lie at the bottom
of the band. Now if V is zero, as we have outside our
potential well, the quantity U satisfies the differential
equation for a free particle, so that it can be written in
the form exp(ikr), where k= (2r/h) (2mE)*. Inside the
potential well, in a similar way, where we shall assume
the potential energy to be —V,, we have a solution of
the form exp(iker), where ko= (2/h) 2m(E+-Vo)?). For
a bound state, we must assume that E4 V' is positive,
but that E, the kinetic energy outside the potential well,
is negative. Inside, then, we must use the solution
rU=sinke; for only by using such a solution will the
actual wave function U be finite at the origin. We must
use outside a solution exp(—vr), where y= (2r/h)
X (—2mE)}, the energy being negative. These two
functions must join smoothly at the boundary of the
well. Now the exponential must be sloping down at the
boundary of the well, or in the limit where v is very
small it will have a horizontal tangent. Thus we cannot
join the functions smoothly unless the sine function
has gone through at least a quarter wavelength within
the well, so as to rise to its first maximum at the
boundary of the well. In this limit, then, where E is
zero, and the wavelength within the well is (2mV )%,
the condition for the existence of a bound state is that
4R, should be at least a wavelength, or that Vo must
be at least 4%/ (32mR?). (R is the radius of the square
well.) The fact that the differential equation approach
gives a finite value of the perturbation necessary for the
appearance of a bound state agrees with the result of
the last section. Actually, closer examination of this
approach would even show that for small increases of
Vo over the critical value, the energy will be propor-
tional to (Vo— Verit)?, but at sufficiently great V, the
energy will be proportional to V. The wave function
will become more and more concentrated in the poten-
tial well as V), increases, falling off more and more
rapidly in the exponential region outside the well,
where it has the form exp(—+7)/r. Finally, for an ex-
tremely deep well, the wave function will be negligible
outside the well, and will become identical with that of
a particle in a well with infinitely high barriers at the
boundary.

Before going on to a detailed discussion of the wave
function, it is interesting, though probably not very
significant, to compare the condition for the critical
value of ¥ (0) which we find from the difference equation
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approach with the corresponding value for the square
potential well and  Schrédinger’s equation. We have
seen that in that case we have a discrete state provided
Vo, the depth of the potential well, is greater than
1?/(32mRy?), where R, is the radius of the well. To
compare these, we must first substitute for the effective
mass: if the energy as a function of k is given by Eq. (6)
then the effective mass is —#?/28(1)R? (the negative
sign because it is positive at the bottom of a band, which
comes at k=0 is §(1) is negative). If we had a Schrod-
inger equation with thiseffective mass, then, we find that
the critical value of Vy is (7%/4) (R*/Rs*) §(1). We may
ask what value Ry, the radius of the square well, must
be, in order that this critical value of V, should agree
with 48(1), the approximate critical value of V(0).
Clearly Ro= (w/4)R, so that Ry is of atomic dimensions,
R being the interatomic distance in the simple cubic lat-
tice. The volume of the sphere within which the poten-
tial is Vo is (4n/3)R¢, which equals (7*/48)R3, or
roughly 2R3, or twice the volume per atom in the simple
cubic lattice. It seems likely, therefore, that the solution
of Schrodinger’s equation for such a potential well might
give a fair approximation to the solution of the differ-
ence equations.

In order to calculate the coefficients of the Wannier
functions (U, 4,»), we shall use the form in Eq. (20). We
shall not present here the normalized values of the
coefficients Uy, o, » but instead the values of the integral
in Eq. (20), namely ~

f i T, () (), (1) dt. (31)

For any given value of E’ this gives the proper de-
pendence of the coefficients of the distance from the
origin. It does not however (since the wave function is
not normalized) give the proper dependence of a given
coefficient on the energy. In Table I we give the results
of the calculation of the quantity in Eq. (31) carried out
numerically using Simpson’s rule. The table gives the
values of the quantity in Eq. (31) for points along the x
direction where y and z are equal to zero, for a number

.of values of the energy. From Fig. 1 we can of course

get the corresponding value of the perturbing potential.
In Fig. 2, we plot the quantity pU, 0,0/ U1, 0,0 as a func-
tion of p for various values of £’ on semilog paper. With
this type of plot we can compare the results of our
rigorous solution of the difference equations with the
results of the differential equation approach.

TasirE L. f;*dte™E" [ Io()]*I,(¢) as a function of E’ and p.

o
k 3.0 3.1 3.2 3.5 4.2 5.0
0 0.4990 0.4311 0.4001 0.3410 0.2646 0.2137
1 0.1658 0.1123  0.0935  0.0645 0.0371 0.0238
2 0.0778 0.0376 0.0270 0.0141 0.00564  0.00278
3 0.0501 0.0154 0.00929 0.00350 0.000924 0.000343
4 0.0411 0.00717 0.00365 0.000964 0.000162 0.0000439
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F1c. 2. Coefficients of the Wannier function in the (100)
direc’tion (#(Up,0,0/Us,0,0)) as a function of p for various values
of E'.

We have seen above that the differential equation
approach would give as the wave function exp(—~7)/7.
This would mean that if the exact solutions of the dif-
ference equations were well approximated by the solu-
tion of the differential equation when these results were
plotted semilogarithmically, as they are in Fig. 2, the
result would be a straight line. We have not plotted the
points Upg o0 since the differential equation solution
which falls off exponentially does not apply at this
point. We notice that for E'=3 the graph is very
nearly linear and horizontal. This is what would be
predicted by the differential equation approach (y=0).
For E’>3 the linearity becomes quite good for points
removed from the impurity atom (ie., p=2, 3, 4 lie
nearly on a straight line). We can actually compare
these results with another approximation which we
mentioned in (I).

In (I) we expanded the denominator in the expression
for the Green’s function in a power series in k. This type
of expansion would give an approximation to the solu-
tion of the difference equations for the values of the
energy close to the point where the bound state appears
beneath the band. This resulting approximate form of
the Green’s function is Eq. (46) of (I). If we specialize
this expression to the case we consider in this paper, we
get the result that

Up,qr= (P2+q2+’2)ﬁ%

Xexp{—[2(E'—3) B[p+¢+71).  (32)
We notice that this result agrees in form with the result
of the differential equation approach. It is based how-
ever on the difference equation approach since it
involves an approximation to the Green’s function.
Furthermore, in order to derive this expression no
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assumption had to be made about the form of the
potential besides those made in the original difference
equations. This expression also gives the dependence
of the falloff of the wave function with distance on the
energy. We can actually compare the slopes on the
semilog plot with those approximated by the expression
(32). Equation (32) predicts a slope,

(loguoe)/[2(E'—3) TA. (33)

For E’=3.1 this gives a value 0.193; for E'=3.2 the
value is 0.275. The corresponding slopes calculated
from the actual values of Uy, 0 are 0.209 for E'=3.1
and 0.285 for E'=3.2. We can see therefore that the
approximation to the slope gives a value to within 5
percent of the true value.

We also notice that both Eq. (32) and the differential
equation approach make an additional prediction about
the wave function. These expressions predict that the
solutions of the difference equations should be spheri-
cally symmetric. In order to check this dependence on
angle, for E'=3.5 we have computed the values of (31)
for other directions than the 100 direction. The results
are given in Table IT. We have plotted in Fig. 3

(P gyt f T OO (0)ds,

which is proportional to the distance from the origin
multiplied by U, », versus the distance from the origin
[(p*+¢@+7)¥]. The plot is again on semilog paper.
The straight line in the plot connects the points in the
100 direction. If the approximate expressions were valid
and the coefficients of the Wannier function did display
spherical symmetry, then all the points in the graph
would be on a single straight line. It is clear from the
graph that this is not the case. The approximate ex-
pression seems to give the proper dependence on

TABLE IL. Iy, o »r= J;°dle 2"t ,(£)I ()], (¢) for E'=3.5 as
a function of p, ¢, and 7.

IPJI.r

0.3410
0.0645
0.0141
0.00350
0.000964
0.0242
0.00765
0.00236
0.00318
0.00120

. 0.000527
0.0125
0.00486
0.00172
0.00228
0.000935
0.000435
0.00122
0.000553
0.000277
0.000150
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SIMPLIFIED IMPURITY CALCULATION

distance in a given direction but fails to give the proper
dependence on direction. We can, therefore, see from
this simple example that the differential equation
approach gives results that are qualitatively correct
but faulty in some of the aspects of the wave function.
In all of the preceding we have assumed that the per-
turbative potential extends over only one lattice site.
This is, of course, a rather unrealistic assumption. It
has, in addition, the bad feature that the only bound
state is a state which is completely symmetric under the
operations of the point group. In order to have bound
states with higher types of symmetry, we must have
our perturbative potential extend over more lattice
sites. In the next section we shall carry out the impurity
problem for a more extended perturbation. We shall
let it extend over the nearest neighbors of the central
lattice site. Unfortunately, we shall have to assume a
shape for the potential. This we shall do in a com-
pletely arbitrary manner, the object being to illustrate
the use of the general procedure for solving for states
of higher types of symmetry rather than to have a
model which has any exact physical counterpart.

V. A MORE EXTENDED PERTURBATION

If our perturbative potential V' (r) extends over more
than one lattice site, we must solve the general difference
equations which are Egs. (8) of (I). In (I) we showed
that we could solve these equations in the form of Eq.
(38) of that same paper. For the special case under
consideration in this paper, these equations reduce to

1 T T T
Upy a, 7‘+* Z (P’ﬂ’ T’yp ,(Z” r”)f dalf daZf d(]lg
s 0 0 0

Xexm[(lJ—P’)aHr (g—¢)art (r—r")es]

E’'— cosa;— cosas— cosas
XV 5 0",q" VU, =0. (34)
In this equation,
Va5 10 )= f (= Ry )V (1)
28(1) e
Xa(r'—Rpu,qu'r//)d‘U. (35)

We shall now specialize this relation by assuming that
the only nonvanishing matrix elements of the per-
turbation are

V(0 ! ()14 0)d
O35 [ate-0v@atc—oyan,

1
V=

( ) a(r— Rl, 0, O)V(r)a(r—Rl, 0, o)d'U

(36)

R01o — o, 1,0)00
zg(1)f a(t=Ro, o)V (£)a(t—Ry, 1 )d

=etc.
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Fi1c. 3. The coefficients of the Wannier function times the distance
from the origin as a function of the distance from the origin.

The “etc.” in the last equation means that there are
further nonvanishing matrix elements where both
Wannier functions are located at the six nearest neigh-
bors of the central atom and that the values of these
matrix elements are the same as those which are indi-
cated. We have assumed that our potential has full
cubic symmetry and that there are only two distinct
nonvanishing matrix elements of our perturbation;
V’(0) and V’(1). From this we can conclude that the
solutions of this perturbed periodic potential problem
must form bases for the irreducible representations of
the full cubic group.

In (I), we saw that the method of solving the set of
simultaneous equations embodied in Eq. (34) of this
paper was to cause the determinant of the coefficients of
the U’s to vanish for those U’s which were associated
with the lattice sites over which the perturbation ex-
tends. In the case of the perturbative potential of limited
range which we set up in the last paragraph, this would
mean that we would have to solve a set of simultaneous
linear homogeneous equations of the seventh order.
This is because V() only has matrix elements for
Wannier functions on the central lattice site and the
six nearest neighbors. Symmetry further reduces the
order of this set of equations since we know that the
wave functions must form bases for irreducible repre-
sentations of the full cubic group.

Let us first look for those solutions which have the
symmetry of the p states with respect to the cubic
group. This implies a certain relation between the U’s.
Let us set up the state which has the symmetry of the
z-like p state. (The p states are of course triply de-
generate, the y-like and the z-like being degenerate with

* the a-like.) The relations that this implies between our
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U’s are
UO, 0,1= — UO, 0,—1,

Us00=U_1,00=Uq1,0=Uo-1,0=0,
Uo, o,o=0.

(37

We can now insert these restrictions into Eq. (34).
Since there is now only one independent coefficient, the
Egs. (34) reduce to one equation.

V’ (1) T T T
U,, 0,1—{ f dalf dagf dois
7|'3 0 0 0

1—cos2a3
X }UO, 0,1=0. (38)

E’— cosa;— cosas— cosas

This gives at once for the eigenvalue condition for the
triply degenerate p states that

V’(l) T T T
1—-'— f dalf dagf da3
w Jy 0 0

X

1—cos2as

(39)

E'— cosa;— cosaa— cosarg

We can of course carry out the same process which
brought us from Eq. (18) to Eq. (20) and finally express
the eigenvalue condition in the form,

v [ O ThOTLOM=1. @)

In (I) we also showed that the wave function for regions
beyond the extent of the perturbation was expressible
in terms of the coefficients of the Wannier functions
within the region of the perturbation. In the case at
hand, for the p states, this would mean that

Upar=V'"()Us01 f YT~ T (1))
0

‘ XI,OI,(8)ds. (41)
Using the fact that I,(f)=1_,(f), we can easily show
that the solution to the difference equations (41) shows
the symmetry of a p state with z-like symmetry. The
states degenerate with this state can be obtained by
permuting the indices p, ¢, and 7.

We know that there are two d-like irreducible repre-
sentations to the cubic group. We can look for bound
states of these symmetries. The first are the d functions
with symmetry properties like xy, xz, and yz. If we
determine the relations between values of the coefficients
of the Wannier functions for the seven lattice sites over
which the perturbation extends for this type of sym-
metry, we find that all seven coefficients vanish. This
means that there is no triply degenerate d-like bound
state.

G. F. KOSTER AND J. C.
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The other representation of the cubic group with
d-like symmetry is doubly degenerate and has basis
functions which transform as x?—4? and 322—72 Let us
consider the partner in this irreducible representation
which has «?—3?like symmetry. The relations between
the seven coefficients of the Wannier functions which
this symmetry induces are

Ug,0,1=Ug0-1=Uoq,0,0=0,

(42)
Ul. 0,0= U-—l, 0,0~ UO, ,0= — UO,——-I, 0-
If we use these relations in Eq. (34), we notice that we
only have one independent coefficient of the seven under
consideration. We can proceed as we did for the p-like
states and obtain for the eigenvalue condition,

V(1) f T O To() P+ 1) 1o 1)

=2[I,()Pydi=1. (43)

We can also, once again, write the solutions of the dif-
ference equations in terms of the coefficients of the
Wannier functions for those lattice sites over which the
impurity extends. For the x>—y? states this gives us

Upor= VI(I)UI, 0, Ofw eI 1 ()I(O)T (1)
0

F (VD) — T, 1 (DI(2)
— I, (DI, ()} dt.

The other partner in this irreducible representation
would of course have the same eigenvalue condition,
but the solutions to the difference equations would be
given by

Upar=V'(1)Uy,, Of e YT, (OI,(Dr11(2)
0

(44)

+lp(t)Iq (t)Ir—l (l) - %I:H—l(t)Iq (t)lr (t)
- %Ip—l (t) [q(t)lr (t) - %[p (t>1q+1 (l)Ir (t)

=51, (DI () }dr. (45)
This is the state with 322—7% symmetry.

We have now found the eigenvalue conditions for five
bound states: three p-like states and two d-like states.
We might expect that the solution of our simultaneous
linear equations for the seven lattice sites over which
the impurity extends would give rise to a total of seven -
states. This is indeed the case. The two solutions which
we are lacking have s-like symmetry. For these solutions
we can again find the relations that symmetry intro-
duces between the coefficients of the Wannier functions.
In this case they are as follows:

(46)

U1, 0,0= va1, 0,0 Uo, 1,0~ Uo,_1,0= Uo, 0,1~ Uo,o —1.
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The remaining coefficient Uy, o, 0 need not vanish because
of symmetry. We see that for the case of s-like sym-
metry we have two independent coefficients instead of
only one as we had for the p- and d-like states. If we
now put these relations in Eq. (34), we obtain a pair of
simultaneous linear equations for the two independent
U’s.

{ 1— V’(O)fuo e—E"[Io(t)]"dt} Uo,o,0

- { WO () f " e L0 L0 } Us0.0=0,
@)

- { WOV'(©) f ’ e—E't[Ioa)]m(t)dt] Usas

vl

+ ()T, (t)+4Il(t)Il(t)]dt] I Uy o,0=0.

]

e E Ty ()L () 1o(2)

In order to find the energies of the bound s-like states,
we must make the determinant of the coefficients
vanish. This would be done by the variation of E'
giving rise to two s-like states of different energies. The
solution of the difference equations for regions outside
of the perturbation would take the form, in this case,

Up,ar=V'(0)Uo,, of e E L0, (O, ()dt
0

+6V’(1)U1,0'0f E—Elt{lp*.llq_r
0
+Tp1q.+Perd. (48)

In Eq. (48) the symbol “+Per.” means that one is to
add the terms with p, ¢, and 7 cyclically permuted. We
can see from Eqs. (47) and (48) that if we let the per-
turbation extend over only one lattice site, as we did in
the earlier section, we should obtain Eq. (20) for the
solution of the difference equations and Eq. (21) for the
eigenvalue condition. This means, of course, that we
set V'(1) equal to zero.

This is about as far as we can carry the discussion of
the states arising from this perturbation without some
further assumption. The additional assumption that we
make is that there is a known ratio between V/(0) and
V’(1). In order to calculate the energy levels of the
bound states numerically, we assume that

V' (0)=2V"(1). (49)

This is, of course, completely arbitrary but it will
enable us to study the energies of the bound states as
a function of V7(0).

Using the expressions in Eqgs. (40), (43), and (47) for
the eigenvalue conditions we have calculated the ener-
gies of the bound states as a function of ¥’ (0). The re-
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sults are shown graphically in Fig. 4. In this figure, we
plot the energies of the bound states versus the matrix
element of perturbation on the central atom [V’(0)].
The straight lines on the graph are the asymptotes of the
energies of the bound states. The lowest s-like state
becomes asymptotic to the line E'=V’(0) while the
energies of the higher s- and the p- and d-like states
become asymptotic to the line E'=V'(1)=3V"(0). We
can see at once from the graph that for small values of
the perturbation there will be no bound state. For a
certain critical value of the perturbation a bound, s-like
state will appear. For some higher value of the per-
turbation a second s-like state will appear as a bound
state. Increasing the perturbation finally causes the
appearance of bound p- and d-like states. The order in
which these higher states become bound is probably a
function of the shape of potential we have assumed,
and is not general. Even in the model we have assumed
we notice that, whereas the higher s state comes out of
the band before the p-like state for higher values of the
perturbative potential, it crosses over the p-like state
and finally lies above this p state in energy. It always
remains, however, below the d-like state.

The fact that an s state is the first one to become
bound upon increasing the perturbation is not sur-
prising, since this is the only type of symmetry which
allows us to have a nonvanishing coefficient of the
Wannier function at the central atom. It is this central
atom which has the largest perturbation associated with
it and consequently it is very favorable energetically to
have the wave function with a nonvanishing value
at the central lattice site. Changing the ratio of ¥’ (0)
and V' (1) would not have any effect on the qualitative
appearance of this graph. Since the eigenvalue condi-
tions for the bound p- and d-like states depends only
on the value of V’(1) increasing V’(0)/V’(1) would
have the effect of requiring a larger value of V/(0) to
cause the appearance of bound states of these sym-
metries. This means that the three high states s/, p, and
d would be shifted to the right on the graph if we
increased the ratio in Eq. (49).

This completes the discussion of the bound states
which appear under the assumption that our wave

v'(o)
55 65 75 85 95
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Fic. 4. Energy of the bound states of s, p, and d-like symmetry as
a function of the perturbative potential.
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function vanishes at infinity. In the next section, we
discuss the case where we assume somewhat different
boundary conditions. We shall assume that our wave
function vanishes on the surface of a cube of finite size
which surrounds the impurity.

VI. BOUNDARY CONDITIONS ON A FINITE CUBE

In the previous sections, we demanded that the
solution for the bound state of our perturbed problem
vanish at infinity. We might well ask how quickly the
energies of the bound states would converge to the
energy of the bound state of the infinite crystal, if we
demand that our wave function vanish at the surface
of a cube and then let the cube increase in size. In order
to do this, we return to Eq. (5). These are the difference
equations which are to be satisfied subject to the
boundary condition that U, . vanish when either p,
g, or r are &= N. This means we are solving the problem
of an impurity which extends over only one lattice site
within a box of dimensions 2NV X2N X2N. If we look
back at Sec. II, we find that we have already accom-
plished this before we let our boundary conditions go to
infinity. The eigenvalue condition for this case was
given in Eq. (12). This equation can be rewritten in
the form

N-1  N—1  tanhNBu,
V()X () X (m)———=N?,
0 0

sinhBmy

(50)

where the dependence of 8, on its indices is given by
Eq. (8); that is,

@m+1)w @n4-D)m

COS .

2N 2N

coshBpms=E’'— cos

(51)

In order to calculate the dependence of the energy
on the perturbation for various values of N, all we
need do is solve Eq. (51) for the various values of
coshB,., corresponding to a given value of E’ and then
carry out the summation in Eq. (50) to find the value of
the perturbation corresponding to this value of E’. This
has been done for a number of values of N. In particular,
the values of NV used were 3, 6, and 10. The results are
plotted in Fig. 5 where we have plotted the energy of

3.2t

‘34

36

38~

40

4.2l

F16. 5. Energy of the bound state as a function of perturbation for
boundary conditions on a cube of half width N.
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the lowest state (bound state) as a function of the
perturbative potential as well as a function of & for
the values indicated. This diagram is, of course, com-
pletely analogous to Fig. 1 and we have included on
this graph the case of V= . We notice that as we
increase the size of the crystal the curves approach the
curve for N=c very rapidly. The curve for N=10 is
indistinguishable from the case of the infinite boundary
conditions. We can also notice from these graphs that
for larger values of the perturbation the difference
between the curves for the various values of V becomes
smaller and smaller.

These results are not difficult to interpret. We are
dealing with a bound state. This means that the wave
function falls off as a function of the distance from the
origin. Thus, in the case of the infinite crystal, by the
time the distance from the origin is about ten lattice
sites, the coefficients of the Wannier function have fallen
off to essentially zero. Taking as our boundary condi-
tions the vanishing of the wave function at any point
beyond this should give the same results as the infinite
case, since the wave function is essentially zero anyway.
We also know that, as we increase the value of the per-
turbative potential, the coefficients fall off more and
more rapidly as a function of distance. For the case of
an infinite perturbation, the wave function of the bound
state would be completely localized at the central
lattice site, regardless of the size of the cube which we
used for the boundary conditions. This means that, as
we increase the size of the perturbation, we should
expect that the value of NV would make less and less
difference in determining the energy of the lowest state.

These results are actually of some interest since they
illustrate the validity of an approximation method. The
energies which we obtained from Eq. (50) are, of course,
the same as we should have obtained by solving the
secular equation in Eq. (5) where we cut off the sec-
ular equation after some finite size. In this case, we let
the size be (N —2)3. (Symmetry would reduce this order
considerably.) This is, of course, quite different from
solving the determinant of the Green’s function method,
since this is equivalent to solving the secular equation
like Eq. (5) only of infinite size. This finite secular equa-
tion forms the basis of an approximation, therefore, and
we can see that this approximation will be quite good,
provided the coefficients of the Wannier functions for
the atoms most distant from the perturbation have
dropped off to a very small value. This method of ap-
proximation is used quite often in the discussion of
F-centers in alkali halides. In particular, Inui and
Uemura® have calculated the energy levels of F-centers
using just the approximation which we mentioned.
They calculated these energy levels by solving the
secular equation, cutting it off after some finite number
of neighbors. In the case mentioned, they cut the secular
equation off in one case after nearest neighbors and in

( 5:51‘.) Inui and Y. Uemura, Progr. Theoret. Phys. (Japan) 5, 252
1950).
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another case after second nearest neighbors. From their
results it appears that they are getting reasonably good
results by cutting off the wave function after second
nearest neighbors judging by the improvement of the
second nearest neighbor results over the nearest
neighbor results. This would lead one to suspect that
the effect of the perturbation is sufficiently strong to
make the approximation they have used quite valid.

VII. EFFECT OF THE PERTURBATION OF THE
WAVE FUNCTIONS IN THE BAND

In this section, we shall discuss the case where the
energy of the perturbed state lies in the allowed band
of energies. This is the case where —3<E' <3. In
order to do this, we shall apply the method developed
in (II). If we follow the method of that paper, we
assume that our solution to the difference equations
consists of two parts. The first is the incident Bloch
wave and the second is the wave scattered by the
impurity. For the problem at hand the solution of the
difference equations is given by

Up, ¢ r=exp(ik-Ry, ¢, ) +2 (2,0 1) 00,0,

XK (Rp, ar RP', ', r’)~ (52)
This is Eq. (25) of (II). The ¢’s are unknown coefficients
to be determined and represent the strength of the
scattered wave. The quantity Kz (R, ¢ -—Rp o) is
the Green’s function which is useful for the case of
energies lying in the band. For our simplified impurity
calculation, we can see from the Appendix and (II)
that this Green’s function will be given by

Ko Ry an)=(1/5)5 () f (expliEi—iE(R))

X{exp(k-R, 4 )}dt (53)

= (N/17) f ; AL ()T (8)J - (8) exp[ZE't].

In deriving this form of the Green’s function we have
converted the summation over k to an integration and
have then made use of the explicit form of E(k) given
by Eq. (6) to carry out this integration in order to
arrive at the Bessel functions in the right-hand side
of (53).

In order to solve the scattering problem, we must
find the ¢’s. In (II) they were shown to satisfy a set of
simultaneous linear inhomogeneous equations [Eq. (19)
of (IT)7]. In this section, we shall specialize to the case
of the impurity extending over only one lattice site.
If this is done, the only quantity which appears of all
the ¢’s is ¢o,0,0=c(0) and this is given by the condition,

{-—N—i— V7 (0) (N /4) f " ULTo 0T expED | 6(0)

=—V'(0). (54)
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TaBLE IIL I.= f3°dt[Jo(t) B cosE't; I,= f3°dt[Jo(t) P sinE' as a
function of E'.

E I I,

0.0 0.8963 0.0000
0.2 0.8970 0.0740
0.4 0.8967 0.1530
0.6 0.8999 0.2416
0.8 0.9071 0.3557
1.0 0.8691 0.6027
1.2 0.6171 0.6268
14 0.5063 0.6057
1.5 0.4631 0.5988
1.6 0.4259 0.5909
1.8 0.3602 0.5762
2.0 0.3038 0.5621
2.2 0.2537 0.5496
24 0.2055 0.5378
2.5 0.1826 0.5321
2.6 0.1585 0.5260
2.8 0.1062 0.5167
3.0 0.0134 0.4926

In terms of ¢(0), the solution to the difference equations
is given by

Up, ¢ +=exp(ik- Rn o)
+e(0) (N /4) f " T IO 70 eplED. (55)

We can see from this that the quantity ¢(0) is the am-
plitude of the scattered wave. The square of its ab-
solute value, which is the intensity of the scattered
wave, is then given by

1) P={[1/V' ()= L. P+I12}.

Equation (56) was obtained from Eq. (55) and I,and I,
are given by

(56)

,i 0
—K(0)= fo AT ()T expGED)

_ f AL T o)) FLcosE t4-i SnE/]=T AT, (57)
0

The quantities I, and I, were approximately evaluated
by the Whirlwind computer at M.I.T.® Simpson’s rule
and an interval of 0.2 in ¢ was used. The integral was
carried out to t=48 at which point the convergence was
fairly good. The results are given in Table III. From
the table, we can see at once that there is some error
in the calculation of these integrals as a function of E’.
In (II) we showed that for energies outside the band
the imaginary part of the Green’s function must vanish.
This means that for E’=3, I, should be zero instead
of 0.013. In addition in the Appendix we have shown

6 Availability of Digital Computer Laboratory time for this
problem was made possible by the U. S. Office of Naval Research.
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that for E' >3 we should have the equality
f die B T,() P
]

1 po w
=7 fo dtei= [ Jo() = f A Jo(f) P sinEt.  (58)

0

Comparison of Tables IT and IIT shows that for E'=3
the integral involving the Bessel function of imaginary
argument gives the value 0.4990 whereas the integral
involving the Bessel function of real argument gives the
value 0.4926. We see therefore that the numerical
evaluation of the integrals in this section is probably
accurate to within about 2 percent, but this is sufficient

for our purposes. In Fig. 6 we have plotted the values "

of |[¢(0) |2 as a function of the perturbation for a number
of values of the energy using Eq. (56).

Let us see what we can learn about the nature of
scattering in a solid from this simple example. We
notice that the intensity of the scattered wave is
independent of the k vector of the incident wave. The
scattered intensity depends only on the energy of the
incident wave. This result arises from the fact that our
impurity extends over only one lattice site and is not
peculiar to the particular form of the energy band which
we have assumed in this paper. In any problem of scat-
tering in a solid in which the impurity is localized to
one lattice site, the scattered intensity will be inde-
pendent of the k vector of the incident wave. Another
feature of the intensity of the scattered wave can be
seen from Fig. 6. We notice that for E'=3 (when the
energy is at the top or bottom of the band) there is a
singularity of the scattered intensity for a certain value
of the perturbative potential. For E'=3 we notice that
this singularity arises when I,=1/V"(0). This however
is nothing more than the condition that a bound state
appear. Thus we see that for that strength of per-
turbation for which a bound state can first appear at
the bottom of the band the scattered intensity for
energies at the bottom of the band becomes infinite.

60~

-3 F1c. 6. Intensity of
the scattered waves as a
function of the pertur-

- bative potential for va-

rious values of the

energy of the incident

wave.
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This same effect is familiar in scattering in free space.
If we scatter a plane wave from a square well potential
in three dimensions a similar thing happens. The scat-
tering cross section for zero energy becomes infinite for
that value of the well depth for which a bound state is
first allowed.” We can see how this will arise even for
the general case of scattering in solids.

In (II), we saw that the ¢’s were given by the solution
of the set of simultaneous equations [Eq. (19) of that
paper]. The condition for the solution of this set of
simultaneous inhomogeneous equations is that the deter-
minant of the coefficients of the ¢’s must not vanish. It
has already been pointed out in that paper that for ener-
gies lying outside the bands the vanishing of this deter-
minant is just the eivenvalue condition for the appear-
ance of bound states. If we choose an energy at the bot-
tom or top of a band and then vary the perturbative
potential, there will be a value of this potential for which
the bound state can first appear, and this value of the
perturbative potential will cause the determinant of the
coefficients of the ¢’s to vanish. This will mean that the
¢’s will become infinite as the perturbative potential
approaches this value. This can most easily be seen
from the well known method of expressing the solution
of a set of simultaneous linear inhomogeneous equations
as the ratio of two determinants. The denominator is
the determinant of the coefficients of the unknowns, and
the numerator is the determinant of the coefficients of
the unknowns where one column has been replaced by
the inhomogeneous terms. As the coefficients of the
unknowns approach values which make their deter-
minant vanish, in general the unknowns will develop
singularities.

We have seen in this section that the method of
treating scattering in a solid can be applied to the sim-
plified impurity calculation presented in this paper.
This example shows us that the scattering is strongest
for those energies in the band which lie near the energies
of the bound states which appear as a result of the
perturbation. There appears to be reason to believe
that this result can be generalized to more realistic
impurity calculations.

VIII. DISCUSSION

From the preceding discussion, we get a fairly com-
plete understanding of the problem of a single perturb-
ing atom in a simple cubic lattice, and a general idea of
the effect of a perturbation extending over a number of
lattice sites. The results of the single perturbed atom
when compared with the differential equation approach
turned out to be at least qualitatively close to this
approximate approach. We may assume that the same
thing will hold without qualitative change in other
types of lattices. We may expect, therefore, that if a
perturbation extends over a number of lattice sites for

7N. F. Mott and H. S. Massey, The Theory of Atomic Collisions
(Oxford University Press, London, 1949), pp. 28-38.
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sufficiently large perturbations, a number of bound
states will appear. As a general rule, the discussion
which we have given makes it fairly plain that as the
perturbative potential increases, these discrete levels
may split off from the continuum successively, rather
than all at once. The various wave functions will have
different types of symmetry. These functions must
belong to the various irreducible representations of the
point symmetry group of the crystal with respect to
the center of perturbation, provided the perturbation
also has the symmetry of the point group of the crystal.
Thus, as we have seen, if the perturbative potential and
the crystal both have cubic symmetry, we shall have the
various possible symmetry types of the cubic group, one
being s-like, a threefold degenerate p-like type and so
on. We might try to apply what we learned in our simple
case to give a qualitative discussion of more physical
cases. In doing so we shall repeat many things already
known and discussed by other authors, but it may be
useful to review their discussions in the light of what
we have learned about difference equations.

The particularly interesting problem in three dimen-
sions is the Coulomb potential. The reason for this
comes from its occurrence in semiconductors. We are
not going to examine the nature of the perturbing field
to be expected in the various types of problems; this
is a problem in self-consistent fields, rather than of
solving the periodic potential problem, and we wish to
separate these two parts of the question, first under-
standing the nature of the solutions of the one-electron
Schrédinger equation before we build up determinantal
many-electron wave functions and apply a condition of
self-consistency. However, we may anticipate enough
to state the general situation encountered when an
impurity atom is introduced substitutionally into a
crystal. The result is quite different, depending on
whether we are dealing with a good conductor like a
metal, or a poor conductor like a semiconductor. Let us
assume that the impurity atom has a nuclear charge
greater or less than that of the crystal by a few units.
If there were no shielding, this would introduce a per-
turbation of the Coulomb type, which outside the im-
purity atom itself would be proportional to the dif-
ference between the nuclear charges of the impurity
atom and the atoms of the crystal. In an actual case,
most of this field will be shielded by a rearrangement of
the electronic charge. There will usually be enough
discrete levels with wave functions concentrated close
to the impurity atom so that these levels can be occupied
by electrons, or emptied, as the case may be, to make
the impurity atom approximately uncharged. In a good
conductor, the conduction electrons will rearrange their
charge distributions so as to shield this Coulomb poten-
tial almost completely, just as any electric field in a
metal is almost completely neutralized by the conduc-
tion electrons. Ordinarily in a metal, then, the per-
turbative potential arising from the self-consistent
problem is confined almost entirely to the perturbing
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atom. In other words, we have almost precisely the case
which we have been taking up in this paper, leading to
discrete levels if the perturbative term ¥V (0) is great
enough, but to no new energy levels if it is below a
critical value.

An-impurity atom in a metal, as we have just stated,
has its field almost completely neutralized even at the
position of its nearest neighbors by the conductivity,
just as we should conclude from looking at the electrical
properties of a metal from the macroscopic point of
view. In a semiconductor, on the contrary, the con-
ductivity is not great enough for this to happen, and the
problem is much more like the electrostatic one of a
charge in a dielectric. The dielectric constants of some
of the important semiconductors are very high, that of
germanium being of the order of magnitude of 16. The
electric field of a point charge in such a dielectric will
be less than in empty space, being inversely proportional
to the dielectric constant. This dielectric constant is
itself a manifestation of the self-consistent field. If we
look at it microscopically, we see that the charge
polarizes all the surrounding atoms, displacing their
electrons with respect to their nuclei so as to produce
dipoles on them; and it is well known that it is the
superposition of the fields of these dipoles which cancels
most of the field of the polarizing charge. We should
get at this effect, in a completely logical treatment of
our problem, by solving for the wave functions of the
polarized atoms in the external polarizing field, which
would be part of the self-consistent field, and by making
the problem self-consistent, which would imply that
each atom had just such a dipole moment that the
sums of these dipole fields produce the dielectric effect
by simple electrostatics. Ordinarily, however, we are
willing not to look into the problem in such a funda-
mental way, but to accept the value of the macroscopic
dielectric constant as being given, and to assume that it
correctly describes the self-consistent effect of the
polarizing charge in the dielectric.

We conclude, then, that if a dielectric contains an
impurity atom which normally has an excess or de-
ficiency of charge, the potential produced by this atom
at a distance will be that produced by its net charge,
computed for the actual dielectric constant. That is, we
shall have a Coulomb potential, but one ordinarily a
good deal less in magnitude than in free space, on
account of the large dielectric constant. We might thus
assume that it is a fairly good approximation to replace
our difference equations by the approximate differential
equation. We shall then have Schrédinger’s equation for
a hydrogen-like problem, but with a potential decreased
in proportion to the dielectric constant, and an effective
mass instead of the real mass. The solutions will then
be the ordinary hydrogenic solutions, but the wave
functions will be much more spread out, and the energies
will be less. In this case we have an infinite number of
stationary states, instead of a finite number as with the
perturbation located only on a finite number of lattice
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sites. Furthermore, we do not have any critical lower
limit for the magnitude of the perturbation potential,
below which we do not find discrete states; that is a
characteristic of the problem where the perturbations
are confined to a finite number of atoms.

We also find something in the Coulomb case which
we do not in the case of a single perturbing atom: The
differential equation forms a good approximation to the
solution of the difference equations. The reason is that
in this case the solution really varies slowly from atom
to atom, and we have seen in (I) that this is the condi-
tion for the applicability of the differential equation
method. Thus, for the ground state of hydrogen, the
wave function is exp(—+7), which remains finite at
r=0, and varies slowly from atom to atom, if yR is
small compared to unity, where R is-the interatomic
distance. We have this situation in the cases we are
interested in. This is in striking contrast to the case
of a single perturbing atom, where we have seen that
the wave function is of the form [exp(—v7)]/r. We can
thus feel that the conventional derivation of the im-
purity levels in a semiconductor, on the basis of the
hydrogenic wave function, is generally legitimate.

There is, however, a feature of the situation which
has generally been overlooked, and which can be very
important. The dielectric effect shields the field of the
perturbing atom at the positions of all of the neighbors,
but does not affect the perturbative potential on the
perturbing atom itself. In other words, the perturbation
V(0), the average of the perturbative potential over
the Wannier function located on the impurity atom,
can be just as great in a semiconductor as in a metal.
This is larger than the value which would be consistent
with the hydrogenic problem, roughly in the ratio of
the dielectric constant. In other words, the Schrodinger
problem which is really appropriate in this case is one
with a Coulomb potential at all neighboring atoms, with
a dielectric term to make it small, but in addition a
potential well at the central atom. We may now legiti-
mately combine the types of arguments which we have
used in discussing the potential well problem, and the
Coulomb problem. We may assume that unless the
potential well becomes too deep, exceeding a critical
value, the wave function and energy level will not be
appreciably affected by it. In other words, it is likely
that the hydrogenic wave function and energy level
corresponding to the Coulomb potential can, so to
speak, resist the effect of a perturbation on the central
atom, provided this perturbation is not too large. The
wave function will be modified in the immediate neigh-
borhood of the central atom, but it extends over so
many atoms that this modification is not very impor-
tant, and will not change the energy very much. If the
perturbation of the central atom becomes too great,
however, the problem will change completely. The
energy level will fall far below the hydrogenic value
(we are assuming that the perturbing potential is
negative, as it would be if the perturbing ion were posi-

KOSTER AND J. C.

SLATER

tively charged, or as in the case of a donor atom below
the bottom of the conduction band). At the same time,
the wave function will become much more concentrated
around the perturbing atom, as in the discrete level, in
the problem of the single perturbing atom.

This situation can very likely occur in practice. We
understand, in the first place, on the basis of this argu-
ment, why in so many cases we seem to get good agree-
ment, quantitative as well as qualitative, between the
simple hydrogenic theory and the observed impurity
levels in semiconductors. These are the cases in which
the perturbative energy on the perturbing atom is less
than the critical value. Different perturbative atoms,
under these circumstances, would have almost, though
not quite, the same wave function and energy levels,
the discrepancies coming only in the immediate neigh-
borhood of the perturbing atom. On the other hand, we
should also expect cases of greater perturbations, in
which the whole character of the wave functions and
energy level changes, and the energy level is much
further below the conduction bands (or much further
above the valence bands, if we are dealing with acceptor
impurities). This may well be the explanation of the
deep traps, which seem to occur particularly in silicon.
Such trapping levels seem to explain the long time
constants observed in some experiments with silicon,?
and similar levels have been postulated in silicon after
neutron bombardment;® these, of course, may well
come from interstitial rather than substitutional im-
purity atoms, and this is a problem slightly different
from those we have discussed, but the principle is not
different.

Finally, we should mention that if the dielectric
constant of a semiconductor is not very great, the
Coulomb type of problem will lead to a wave function
which is no longer extended over many atoms, but is
more concentrated. In such a case it will no longer be
justified to replace the difference equations by the dif-
ferential equation, and we must anticipate quantitative
errors in the use of the hydrogenic solution. We hardly
expect, however, any very striking qualitative change
in the situation.

The authors wish to express their gratitude to the
Project Lincoln and the Research Laboratory of Elec-
tronics computing groups for their help with the
numerical calculations involved in this paper.

APPENDIX

We recall that in (I) the quantity which formed the
Green’s function for the difference equations and played
a central role in the solution of the perturbed periodic
lattice was the quantity,

¢ik-Rp

f (dk)E————-_E(k).

8 J. R. Haynes and J. A. Hornbeck, Phys. Rev. 90, 152 (1953).
(1;ng E. Johnson and K. Lark-Horovitz, Phys. Rev. 76, 442
49).

(A1)
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R, was a lattice vector of the crystal and E (k) was the
energy in one of the energy bands as a function of posi-
tion in reciprocal space. The integration was to be
carried out over the first Brillouin zone. (The crystal
is assumed to be infinite.) Let us consider the case
where the energy E, the energy of the state we are con-
sidering, does not lie in the band. We shall assume that
it lies above the band. (The case where it lies below the
band can easily be worked out by similar methods.) In
this case E>E(k), for all values of k. Since this is the
case we can replace Eq. (A1) by

fdtf(dk)e_[E”E(k)]teik.Rp'
0

The integration over { can be carried out at once to
give the previous form of the Green’s function.

We notice, at once, that this expression in Eq. (A2)
has a striking resemblance to the Green’s function which
we proposed in (II) for the solution of the perturbed
periodic potential problem,

1 ©
_f dtf(dk)e"”i[E*E(k)]teik.Rp.
i vy

In (II), we mentioned that the Green’s function when
taken in this form could be used for the case where E
lies outside of the band even though it was originally
proposed for the case where E lies in the band. We can
show that the form of the Green’s function in Eq. (A3)
is actually the same as the form in Eq. (A2) and there:
fore also Eq. (A1). Let us imagine that we replace the
variable ¢, in Eq. (A2), by the complex variable z=x+1y.
We may now do a contour integral along a contour
which extends along the real axis from plus infinity to
the origin, from thence up the imaginary axis to plus
infinity, and finally we close the contour along a quarter
of a circle at infinity which connects the real to the
imaginary axis. Since E> E (k) for all k, the real part of
the exponent in Eq. (A2) will be negative for all values
of #7%0 on the contour we have chosen, since the contour
is contained in the first quadrant. This means that the
quantity,

(A2)

(A3)

f(dk)eA[E—E(k)]zeik~Rp, (A4)

will vanish at almost all points along the quarter of a
circle at infinity since it has an infinite real negative
part to the exponent. There is one point where it might
not vanish. This is the point, which approaches infinity,
which lies at the intersection of the quarter circle and
the imaginary axis. There is no real part to the exponent
at this point. We are saved by the fact that at this point
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the oscillating nature of the exponential function for
large values of complex exponent will cause the inte-
gration over k to give a vanishing result in Eq. (A4).
Thus we see that the contribution to the contour in-
tegral from the quarter circle will vanish. We are there-
fore left with the statement that

0
f dif (dK) e 1E—E0)]zgik Ry

+13f dyf(dk)e—i[E—E(k)]ygik.Rp (A5)
0

must be equal to 27 times the sum of the residues
within the contour. However, the quantity in Eq. (A4)
has no poles within this contour. We integrate a finite
quantity over the first Brillouin zone; therefore Eq.
(A4) must be finite. This gives us the result that Eq.
(AS) vanishes. From this fact, we conclude that Eq.
(A2) is the same as Eq. (A3) by taking the complex con-
jugate of Eq. (AS5) and replacing the variables of in-
tegration x and y by 4.

We are now in a position to apply these results to the
problem at hand. In the case of the simple cubic lattice
with nearest neighbor interactions the integrations over
reciprocal space can be carried out explicitly. In Sec. TIT
of this paper the solution to the difference equations was
given by Eq. (18). Applying the transition from Eq.
(A1) to Eq. (A2) to this case we obtain the result,

d0) © o pr
Up,or= U@)f dlff dcqf daf dos
m 0 0 0 0

X cospay cosgas cosrag

X e—[E'—~cosa1—cosa2—cos ag] t (A6)
Using the definitions of the Bessel functions of imagi-
nary argument! reduces this to

Upqr =V (O)U(O)fe° e EL,(OI,OI.(H)dt.  (AT)

Equation (AS), when applied to this case, would give
the result:

1 0
- f AT (0T (0T ). (A8)

Here we have used the definition of the ordinary Bessel
function to obtain the result. This form of the Greens’
function is valid within as well as outside of the band.
The form (A7) would, of course, be valid only outside
of the band (E'>3).

10 H. Jeffreys and B. E. Jefireys, Methods of Mathematical Physics
(Cambridge University Press, Cambridge, 1950), p. 579.



