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The usual theory of thermoelectric power fails to account for the
marked rise in this quantity which has been found recently for
some semiconductors as the temperature is lowered below room
temperature. This paper develops the recently suggested explana-
tion that the thermoelectricpower Q is the sum of the usual elec-
tronic term Q„resulting fromthe spontaneous tendency of the
charge carriers to diffuse from hot to cold, and a phonon term Q„,
resulting from the drag on the charge carriers exerted by the
phonons streaming from hot to cold in thermal conduction. An
equivalent description of the term Q„can be given in terms of the
contribution to the Peltier heat Aux in an isothermal specimen, due
«phonons dragged along bythe electric current. As a prelude to
the discussion of Q„, the existing theory of Q, is 6rst subjected to
some refinements required by recent developments in semicon-
ductor theory. The theoryof Q„ is then formulated in a simple
but general way by making use of an approximate proportionality
between heat current and crystal momentum in the phonon
~y~te~. Using recently-derived results on the probability that a

very low-frequency phonon will be scattered by other phonons, an
explicit expression for Q„(T) is derived, which should be valid in
the range of moderately low temperatures and low carrier concen-
trations. At lower temperatures, but still far above the range
where the thermal conductivity is appreciably size-dependent,

Q„ is dominated by the scattering of phonons from the boundaries
of the specimen; the theory of this effect is worked out in detail.
Although Q„ is independent of carrier concentration when the lat-
ter is low, a considerable decrease is predicted at high carrier con-
centrations, or at very low temperatures, because of a saturation
effect. The effect of Fermi degeneracy on all these phenomena is
discussed. Available data on p germanium show all these effects
and can be 6tted by the theory. The comparison indicates that a
large proportion of the low-temperature lattice scattering of holes
in p germanium is by shear modes. Although m germanium seems
less suited for quantitative comparison, it, also, shows all the
predicted effects.

I. INTRODUCTION

HE thermoelectric powers of a number of single
crystal specimens of germanium have recently

been measured by I'rederikse' and by Geballe and Hull'
over the range from room temperature to that of liquid
hydrogen. Both workers find, for specimens of high to
moderate resistivity, a marked rise in the numerical
value of the thermoelectric power at 1ow temperatures,
a rise quite incomprehensible in the framework of the
usual theory' ~ of thermoelectric power. A similar eGect
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G. W. Hull, Phys. Rev. 94, 1134 (1954).

s C. Wagner, Z. physik. Chem. B22, 195 (1933).' R. H. Fowler, Proc. Roy. Soc. (London) A140, 505 (1933).' V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 69, 259
(1946); 92, 226 (1953).
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has been observed by MansieM and Salam' for single
crystals of molybdenite. The explanation, suggested
independently by I'rederikse' and the author, ' seems to
lie in the role played by the thermal vibrations of the
lattice. In the presence of a temperature gadient these
are not isotropic; in fact, the phenomenon of thermal
conduction implies that the waves travel preferentially
from hot to cold. The scattering of charge carriers by the
phonons is therefore not random, but such as to push
the carriers more often toward the cold end than the
reverse. Zero current results only when the cold end
acquires enough of an excess of carriers so that their
electrostatic Geld counterbalances the combined eGect
of this phonon drag and the normal tendency of carriers
to disuse from hot to cold."Thus the observed thermo-

e R. Mans6eld and S.A. Salam, Proc. Phys. Soc. (London) B66,
377 (1953).

C. Herring, Phys. Rev. 92, 857 (1953).' While this manuscript was being prepared, Dr. H. P. R.
Frederikse and Dr. R. H. Parmenter independently called to my
attention two papers of L. Gurevich, J. Phys. (U.S.S.R.) 9, 477
(1945); 10, 67 (1946), which develop the theory of this phonon
drag effect in a metal. Gurevich does not discuss the effect for
semiconductors, although he mentions that it should be present.
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electric power Q can be expressed as the sum of an elec-
tronic part Q„given by previous theories, and a phonon
part Q~.

The explanation just given has been formulated in
terms of the differential Seebeck voltage Q; it may there-
fore be called the Q approach. A different, though neces-
sarily equivalent, approach is through the Peltier heat
II, which is related thermodynamically to Q. The high

Q values at low temperatures mean that the energy flux

accompanying a given electric current in an isothermal
semiconductor is much greater than that which the
electronic charge carriers of the usual theory would
transport. The proposed explanation is that in the
presence of a current the scattering of the charge
carriers by the lattice vibrations tends to increase the
amplitudes of lattice waves traveling in the same direc-
tion as the carriers and to decrease the amplitudes of
waves moving in the opposite direction. This results in a
net transport of energy by the waves in the direction of
motion of the carriers. This approach to the phenomenon
may be called the II approach. Since the Kelvin relation,
Eq. (I) below, must apply in all cases, these two
approaches must give equivalent results, and this can
be confirmed in detail using specific models such as the
one of Secs. III to V below. However, in this paper we
shall use only the II approach. Frederikse' has treated
the subject from the standpoint of the Q approach.

A few qualitative features of the suggested interpre-
tation are obvious at once, and their agreement with
observation gives one confidence to explore the pro-
posed eGect in detail. The mutual drag of charge carriers
and phonons should obviously increase the magnitude of

Q, or II, regardless of sign, i.e., for either st- or p-type
material. Moreover, as long as one sign of carrier pre-
dominates over the other the effect on Q or II should
clearly be independent of the concentration e of carriers,
at least if n is suKciently low. Finally, the eGect should
be more pronounced at low than at high temperatures
since at high temperatures the lattice vibrations are
more rapidly restored to randomness by the eGects of
anharmonicity of the interatomic forces, i.e., by
phonon-phonon collisions. All these predictions agree
with observation.

The object of the present paper is to develop the
theory of the phonon eGect quantitatively, and to see
what basic information on semiconductors can be de-
rived from a comparison of the results with experiment.
Since the attack on this problem has to be based on the
theoretical concepts available in the present-day theory
of semiconductors, it is pertinent to begin by examining
the reliability of these concepts. A general survey of the
relation of theory and experiment in regard to electronic
transport shows that for impurity semiconductors one
needs to distinguish three or four regions in the range
of possible impurity concentrations. When the impurity
(and dislocation) concentration is very low, nearly all
the charge carriers move as isolated entities in regions of
perfect crystalline material, and their motion can be

rigorously described in terms of the concepts of band
theory, at least if the mobility is high enough to justify
treating the interation with the lattice vibrations as a
small perturabation on the motion of the carriers. As
the impurity concentration is increased it becomes
necessary to take account of impurity scattering and
related eGects. While this can be done with present-day
theory, the available treatment is not altogether
satisfactory. At still higher impurity concentrations,
available theory becomes completely unreliable for
quantitative predictions This is because of what can be
crudely described as a jumping of charge carriers from
one impurity atom to the next, an "impurity band"
conduction which minges and competes with normal
conduction. " The onset of Fermi degeneracy normally
occurs in this range. When the impurity and carrier
concentrations get very igh, available theoretical
concepts start to work a little better again, as one can
treat the carriers as a degenerate Fermi gas and treat
the impurities as merely sources of scattering. However,
in this region present theory uses many unjustified
simplifications. Moreover, it is by no means clear that
one should use here the same eGective mass parameters,
etc. , as in the region of very ow impurity concentration.

The exposition given in the following sections
rejects the diGerent positions of theory in the several
regions just described, and the success achieved by the
present theory in these various regions turns out, as
expected, to be in proportion to the reliability just
estimated for present concepts in these same regions.
No attempt is made to give a detailed discussion of
thermoelectric power in the region of impurity band
conduction, although it will be clear that both the
electronic and phonon contributions will usually have
the same order of magnitude in this range as in the
neighboring regions of lower and higher impurity
concentration. Section II reviews and modernizes the
theory of the electronic contribution Q, for low to
moderate impurity concentrations. Section III is
devoted to a formulation of the phonon eGect problem
in terms of relaxation times and rates of transfer of
lattice momentum, a formulation applicable in principle
to all ranges of impurity concentration. Sections IV and
V give the detailed solution for small concentrations,
neglecting the eGects of scattering of phonons from the
boundaries of the specimen. The latter eGects, which

make Q~ size-dependent at low temperatures, are taken

up in Sec. VI. Section VII discusses, for concentrations
below the impurity band range, a saturation effect
which decreases the phonon contribution when the
carrier concentration becomes sufficiently high or the

"K. Shifrin, J. Phys. (U.S.S.R.) 8, 242 (1944};H. M. James
and A. S. Ginzbarg, Phys. Rev. 7?, 749 (1950};J.Phys. Chem. 57,
840 (1953); C. Erginsoy, Phys. Rev. 80, 1104 (1950); 88, 893
(1952);C. S.Hung and J.R. Gliessman, Phys. Rev. 79, 726 (1950)
C. S. Hung, Phys. Rev. 79, 727 (1950); G. W. Castellan and F.
Seitz, Semicortdtcctieg Materials, H. K. Henisch, Editor, (Butter-
worths Scientific Publications, London, 1951), p. 8; W. Balten-
sperger, Phil. Mag. 44, 1355 (1953).
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temperature sufficiently low. The region of Fermi
degeneracy is treated brieQy in Sec. VIII, where both
the electronic and phonon contributions are discussed.
All detailed comparisons of the various parts of the
theory with experiment are relegated to Sec. X, as
many of the significant conclusions of this paper come
from a comparison of diferent regions of temperature
and concentration.

first obtained (in difference form) by Lord Ke]vjnis jn
1854. The relation in Eq. (1) is now known to be a con-
sequence of Onsager's principle of microscopic reversi-
bility. " For the sake of later applications it is worth
emphasizing that the derivation of (1) remains valid for
the apparent Q and II of a rod-shaped specimen, even
when the rod is of such small diameter that boundary
effects cause this apparent Q and II to differ from the
values which would be measured on a very large speci-
men of identical material.

As Wagner' and others have pointed out, Eq. (1)
provides an easy way of calculating the thermoelectric
power of any model of a metal or semiconductor
for which the solution of the Boltzmann equation for
isothermal electrical conduction is known: one need
merely calculate II from this solution. The familiar
theory of thermoelectric power, derived from the
Lorentz-Sommerfeld theory of conduction in metals,
considers only transport by electronic carriers. For a
nondegenerate semiconductor with a single sign of
carrier predominating this gives the electronic contribu-
tion

ltsII = 6J tb (2)

where ep is the Fermi level, eb is the energy of the edge
of the band (valence or conduction) in which the carriers
move, and hey, the average energy of the transported
electrons relative to the band edge, is a quantity of the
order of kT and therefore usually rather smaller than
~p —eb. From this alone it is fairly obvious that no rea-
sonable assumptions regarding band structure and
scattering processes will suflice to bring (2) into agree-
ment with the sharp rise of Q at low temperatures which
has been found experimentally for germanium. Never-

's W. Thomson, Mathematical artd Physical PaPers (Cambridge
University Press, London, 1882), Vol. I, p. 232.

's L. Onsager, Phys. Rev. 37, 405 (1931),' 38, 2265 (1931);
H. B.Callen, Phys. Rev. 73, 1349 (1948).For a detailed discussion
of the Kelvin relations and full bibliogra hy see S. R. de Groot,
ThermodyrIamics of Irreversible Processes Interscience Publishers,
Inc. , New York, 1951), Chap. VIII.

II. ELECTRONIC THEORY VERSUS EXPERIMENT

Let Q be the absolute thermoelectric power of any
substance and let II be its absolute Peltier coefficient,
dehned as the energy Qux per unit current when the
energy zero is taken at the Fermi leve), or more properly,
the electrochemical potential of the electrons. At any
absolute temperature T these quantities are known to
obey the relation

FIG. 1. Schematic forms of the locus in K space of states with a
given value of energy, near the band edge value, for three possible
cases: a, single-valley, many-sheeted case; b, many-valley, single-
sheeted case; c, single-valley, single-sheeted case, the model most
often assumed in the literature. The band edge points K;, at which
the energy is an extremum, are identi6ed by heavy dots.

theless, we shall discuss the terms of (2) in some detail,
partly to reinforce this point, and partly because it will

be necessary later on to have as accurate an expression
as possible for the electronic contribution to Q.

Consider first the term es —es in Eq. (2). In order to
evaluate this from measurements of Hall coeKcient or
density of carriers one must make some assumption
about the effective mass of the carriers. Now it is
known" that the electronic energy band structures of
silicon and germanium are more complicated than has
usually been assumed in semiconductor theory, although
the exact structures have not yet been established con-
clusively. Some of the models which are likely to occur
for germanium, silicon, and similar semiconductors are
illustrated in Fig, 1. One possibility is that the band
edge is a triply degenerate state with wave vector
K= 0, slightly split by spin-orbit coupling. For this case
the locus in K-space of states of a single energy near the
band edge consists of three concentric surfaces of (in
general) complicated shapes [Fig. 1(a)j. Another
possibility, illustrated in Fig. 1(b) is that the band edge
consists of a number of states with diferent wave
vectors K„AO, symmetrically related to one another;
the locus of a given energy consists of a number of
identical ellipsoids centered around the points I„.A
third possibility, not shown in the picture, is that there
are a number of such band edge points with a twofold
degeneracy at each I„, slightly lifted by spin-orbit

coupling; the energy locus is a family of identical pairs
of complex surfaces. If one attempts to use, for these

substances, formulas of the conventional model LFig.

1(c)] which contain effective mass as a parameter, it
turns out that different formuals require diferent
effective masses, since they involve diferent types of

averages over the parameters describing the multivalued

nonspherical energy surfaces. For example, we may
define a "density-of-states mass" m&~' by

cV(e) = (4ar/h') (2ttt'~')'*i e—es i,
'4 W. Shociriey, Phys. Rev. 78, 173 (1950); F. Herman and J.

Callaway, Phys. eRev. 89, 518 (1953).
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where N(e)de is the number of levels per unit volume in
the range e to e+de. This stt'~& equals the inertial effect-
ive mass m* for the conventional model; if each surface
of constant e is a single ellipsoid, m& ' equals the geo-
metric mean of the three principal eGective masses
ns;*; if each surface of constant e is a set of S„similar
ellipsoids centered on the cubic axes of the Brillouin
zone, as in Fig. 1(b), N(s) is N, times as great as for one
ellipsoid, so ns(~& must be E,' times the geometric mean,
etc. A diGerent type of eGective mass measurement
comes from the inertial eGect on the high frequency
dielectric constant, measured by Benedict and Shock-
Iey."The inertial mass m (~& which this effect measures
may be defined as the average, over all the carriers, of
the ratio of force applied to rate of change of crystal
momentum. For ellipsoidal energy surfaces, whether
single or multiple, m' & ' is the arithmetic mean of the
curvatures m;* ' of the plots of e~ against wave number
E in the principal directions. We therefore have m (~&

&ns( ) for any multiellipsoid model, both because of the
relation of arithmetic and geometric means and be-
cause of the multiplicity of the ellipsoids. In fact, it can
be proved that m(~' &m( ' whatever the shape or
multiplicity of the constant energy surfaces near the
band edge, e.g. , the nonellipsoidal shapes suggested by
Shockley. "However, Eq. (3), and with it the concept of
m(~', is only useful for a many-sheeted model like Fig.
1 (a) if the spin-orbit splitting is ))kT or «kT. If
spin-orbit split tings of the order of kT are present, m'~)
as we have defined it may vary considerably with energy
over the thermal range.

In terms of m ~~) the usual formula" gives

[ er eb (
/kT= ln(2 (2srrrt t 'kT) */k'rt j (3)

where e is the density of carriers. Combining this with
(1) and (2), we have for the electronic contribution Q,
to the thermoelectric power, in microvolts per degree,

4.70 )& i0"
Q,=%86.2 ln

'S

Consider now how Der/kT is determined. We shall
make the common assumption, brie Iy discussed at the
start of Appendix A, that the processes responsible for
scattering the charge carriers can be described by a
relaxation time r.(K); we allow r, to depend on position
K in wave-number space. Then the first-order pertur-
bation f&" of the electron distribution function f(K) by
and electric field E obeys

f~' ~ r,E Vxf~ '~ r,E vlf l i (5)

where f"' is the unperturbed distribution function for
the electrons or holes and v~ is the group velocity of a
carrier in the Kth state. From (5) it follows that,
for a cubic crystal

acr=(n'(e —
eb) r)/( nr, ), (6)

where the angular brackets mean averages over f"&.
Note that Eqs. (5) and (6) involve no assumption re-
garding the dependence of e on K, except that of cubic
symmetry; they are therefore valid for all the types of
degenerate or "many-valley" bands, even in the pres-
ence of spin-orbit splitting.

An important class of cases for which Eq. (6) can be
evaluated is that for which r, ~

~

e—e' ~" for any given
direction of motion of the carrier within any one of the
sub-bands or valleys; r is supposed independent of
direction, but the constant of proportionality need not
be. For many-sheeted models this can of course only be
a good approximation if the spin-orbit splitting is
)&kT or &(kT. Lattice scattering by phonons of long
wavelength corresponds to r = —-'„while the extreme
case of Conwell-Weisskopf scattering 7 by ionized im-
purities corresponds to r = ~ ~ For this class of cases
Eq. (6) gives

( Der/kT[ = (5/2)+r.

A good estimate of the effective value of r which approxi-
mates conditions in any given specimen can be obtained
from the ratio of Hall mobility pl~ to drift mobility p,
since for the conventional model of Fig. 1(c)'s

sit»
+-', ln + +as lnT, (4)

m kT

(e'r ')(n') I (5/2)I'(5/2~2r)

L~(5/2+ )7
(8)

where e is in cm ' and where the upper sign is for n type,
the lower for p. This is the familiar formula s we have
merely elucidated its applicability to complex band
structures. Specifically, Eq. (4) applies to all such except
many-sheeted cases where the spin-orbit splitting is of
the order of kT, and even for these Eq. (4) may be used,
though less conveniently, by letting m (~& be a tempera-
ture-dependent quantity defined by Eq. (3) and meas-
uring Ae~ from the lowest band-edge state.

's T. S. Benedict and W. Shockley, Phys. Rev. 89, 1152 (1953);
T. S. Benedict, Phys. Rev. 91, 1565 (1953).

See, for exampIe, W. Shockley, Electrons and Holes in Semi-
conductors (D. Van Nostrand Company, Inc., New York, 1950),
p. 464.

In addition, the sign of r must be known, since a given
tsIr/tc occurs for two values of r, one &0 and one )0.
Although the relation (8) requires modification" for
band structures of the types shown in Figs. 1(a) and
1(b), the modification for Fig. 1(b) can be shown to be
slight unless the anisotropy of the ellipsoids is extreme.
Although the variation of 7-, with e may sometimes
depart considerably from power-law form, a number of
calculations which have been made for different r, 's
have given values of Der/kT which, for given p~/p,

"E.Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950);
H. Brooks, Phys. Rev. 83, 879 (1951)."Reference 16, p. 280."C. Herring (to be published).



THERMOELECTRIC POWER OF SEMICONDUCTORS ii67

have usually been within about 0.2 unit of the values
obtained by eliminating r between the right-hand
expressions (7) and (8). The table recently published by
Johnson and Lark-Horovitz, ' based on the usual com-
bination of lattice with Conwell-Weisskopf scattering,
also gives values within this limit.

The actual range of values of Aeq/kT is a little differ-
ent from the range 2.0 to 4.0 which one can get by
combining ordinary lattice scattering (r= ——,) with
various amounts of Conwell-Weisskopf scattering. The
ratio Isrr/Is for high-purity p-type germanium is close to
1.8 at 300'K" "and it is likely" that this is due to 7,
decreasing more sharply with

~

e—e&
~

than corresponds
to r = —-', . A value r = —0.8 would fit this Isrr/Is, and for
this value, Aez/kT=1. 7. By about 100'K, IsJr/p, has
decreased to a value close to the 1.18 which corresponds
to r= ——,'. At the other extreme, Spitzer and Harm"
have shown that the limiting value of d, er/kT for pure
ionized impurity scattering is 3.20, not 4.0, provided
the number of ions equals the number of electrons.
The difference between this result and that obtained
from the Conwell-Weisskopf formula is due to the fact
that Spitzer and Harm take electron —electron interac-
tions into account. The value 4.0 is only to be expected
if the ions greatly exceed the electrons in number, i.e.,
for a highly compensated specimen.

At high carrier and impurity concentrations, we may
well question the legitimacy of computing the position
of the Fermi level as was done for Eq. (4), and of treat-
ing the impurities merely as a source of scattering. To
get an idea of the size of the error in Eq. (4) due to
fuzzing of the band edge, etc. , we may try to modify the
relation of m to ep by the Debye-Huckel correction. '4

However, to be consistent we must also correct 0 e~ for
the potential energy which the carriers transport. For
the simplest case r =0 the effect on II, due to the change
in ep turns out just to compensate that due to the change
in Ae&, this suggests that the correction to Eq. (4) is
small under all nondegenerate conditions. When im-

purity band conduction becomes appreciable, however,
the theory leading to Eq. (4) is of course very question-
able.

The dashed line in Fig. 2 shows values of Q, computed
from Eq. (4) for a typical high-purity specimen of p-type
germanium, for reasonable guesses at ns'~' and Aez.
For this sample e was obtained from Hall measurements

"F. J. Morin, Phys. Rev. 93, 62 (1954).
"M. B. Prince, Phys. Rev. 92, 681 (1953)."A different interpretation is indicated by recent work of

Harman, Willardson, and Beer, Phys. Rev. 94, 1065 (1954) and
a forthcoming publication. According to these authors, the primary
cause of the large room-temperature Hall coeKcient is the parallel
participation of high- and low-mass holes, as required by the
two-band model of reference 32. I am indebted to Dr. Beer for
supplying me with details of this work in advance of their pub-
lication."L.Spitser, Jr. , and R. Harm, Phys. Rev. 89, 977 (1953).

'4 See for example R. H. Fowler and E. A. Guggenheim, Statis-
Ifcal Thermodymamfcs (Cambridge University Press, London,
1939).

with correction for the roughly known" ' ratio of Hall
to drift mobility. The observed Q values, shown for
comparison in the full curve, show a marked rise at
low temperature, which occurs very much sooner than
the rise in the theoretical Q, due to depletion of the
concentration of free carriers. It is clear that the ob-
served values could be fitted to Eq. (4) only by assuming
fantastic —and highly temperature-dependent —values
of m'~& or the exponent r in Eq. (7). Provided the im-

purity content is not too high, all specimens both of p-
and e-type germanium studied in references i and 2
show the same marked deviation from Eq. (4) at low
temperatures. Inhomogeneity of the samples can hardly
be blamed for the high Q values; not only would inhomo-
geneity be hard to reconcile with the consistency and
reproducibility of the data but, as a consideration of
simple series and parallel circuits shows, it would be
likely to act in the wrong direction. We are therefore
forced to consider the only other mechanism of energy
transport which can contribute to II, namely, transport
by traveling elastic waves in the lattice.

N&a& (q,n) = t exp(kco(q, n)/kT) 1j ', — (9)

where co(q,n) is the frequency of the mode. In the
presence of a current, N(q, n) will differ from Eq. (9),
but we suppose it to be still a smoothly varying function
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FIG. 2. Comparison of observed thermoelectric power Q with the
theoretical electronic contribution. Full curve: values observed by
Geballe and Hull, reference 2, for their specimen No. 7 (P-type
Ge, 1.5&10" excess acceptors/cc). Dashed curve: electronic
contribution calculated from (4), with m&~&/m=0. 6 and with
nor/hT assumed (see text) to increase from 1.7 at 250' to 2.0 an
and below 100 .

III. ELEMENTARY CONSIDERATIONS ON ENERGY
TRANSPORT BY PHONONS

We shall show first that there is an approximate
proportionality between energy Aux and crystal
momentum in the phonon system. I.et X, be the mean
number of quanta of excitation present in the traveling
wave normal mode of wave vector q and polarization a.
In thermal equilibrium, with no current, this of course
takes the Planck value
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of q. The Aux density of energy Row is

j=Q, , 1V(q,n)Iten(q, n)v(q, n)

= (2m.)
—'P )I 1Y"(q,n)h(o(q, n)v(q, n)dq, (10)

P.=Q,X(q,n) jtq= (2ir)
—') X(q,n)hqdq (12)

is the total crystal momentum per unit volume of all

modes of polarization type n, the summation being, as
before, over a density of q values appropriate to unit
volume of material.

The interest of the relation in Eq. (11) is, of course,
that crystal momentum is conserved in collisions of
phonons with the charge carriers, and also in phonon-
phonon collisions, unless these are of the Vmklapp type.
Ke may therefore calculate j by equating the rate at
which the phonon system receives crystal momentum
from the electronic carriers to the rate at which it loses
it via Vmklapp collisions, boundary scattering, etc.
Since an electric field E imparts crystal momentum to
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FIG. 3. Hydraulic analogue of the transfer of crystal momentum
P from the electronic system to lattice modes of low and high
wave number g, and the ultimate destruction of P.

where v(q, n) = V',co(q,n) is the group velocity, and where
the summation is over a density of q values corres-
ponding to unit volume of material. If we have to deal
only with modes of long wavelength, we can set &o(q,n)
= c(q,n)q, where c(q,n), the phase velocity of the mode,
depends on the direction of q but not on its magnitude.
This will certainly be the case at low temperatures, and
it will in fact turn out to be the case for our problem at
all temperatures. If the crystal is taken to be elastically
isotropic we can make the further simplification

v(q, n) =c q/q, and even for an anisotropic crystal this
may be a fair approximation to use in Eq. (10), if suit-
able average sound velocities are used. To this approxi-
mation

j=P, X(q,n) (kq)C '=PIcI2+P&CP= (PI+P&)C', (11)

where the subscripts l and t refer to longitudinal and
transverse waves, respectively, c is a suitable average of
the two sound velocities, and

eII„=Wc'ef7/p= Wm"c'(ff/~, ). (16)

The factor m*c' is much smaller than the right of Eq. (2)
for a nondegenerate semiconductor, being only of the
order of 10 4 ev for germanium. Thus for the phonon
contribution to exceed the electronic, the weighted ratio
of phonon to electron or hole relaxation times must be
of the order of hundreds of thousands.

A few words are in order at this point regarding the
meaning of the 7 occurring in Eq. (16). We note, to
begin with, that most of the crystal momentum fed in
from the charge carriers to the phonon system, or at
least a major part of it, is fed in to a very small fraction
of the normal modes, namely, those with very small
wave vectors q, of the order of the wave vector of a ther-
mal electron. The course of the crystal momentum given
to the phonon system by the charge carriers is therefore
roughly describable by the hydraulic analogy shown
in Fig. 3. Crystal momentum, represented by water, is
fed into an upper container, representing the modes of
low q. From this it can either escape to the modes of
higher g (water passing through the orifice on the right
of the upper container) or be lost forever by, for ex-
ample, scattering of the low-q phonons from the bound-
aries of the specimen (water passing through the orifice
on the left). That part of the crystal momentum which
reaches the modes of high q, represented by the lower
container, is eventually lost by Vmklapp, impurity, or
boundary scattering (water passing through the orifice
on the extreme right). Now because of their long wave-
length the modes of small q are less susceptible to all
kinds of scattering than are the rest of the modes, except

the carriers at a rate ~eeK per unit volume, where e
is the density of carriers, the former rate may be written

(d(PI+P, )/dt), = W feeE, (13)

where the upper sign is for electrons, the lower for holes,
and where f is the fraction of the crystal momentum
lost by the electrons which is delivered to the lattice
vibrations (f= 1 in the absence of impurity scattering).
For the other term, let us define an eGective relaxation
time 7 for the phonon system by setting for the rate of
loss of crystal momentum via the various types of
collisions which do not conserve this quantity,

Ld(PI+P~)/«l = —(PI+Pi)/~ (14)

We may now calculate j from Eqs. (11), (13), and
(14), eliminating E in favor of the current density
J=eeEp, , where ti is the mobility. The result is

j=~(c'f /ti) J.
The coeKcient of J in this expression is the phonon
contribution II„to the Peltier heat. It may be placed in
a form more suitable for comparison with the electronic
contribution in Eq. (2) by writing ti= (e/no*) r„hwere
m* and ~, are suitably defined averages of the effective
mass and relaxation time of the carriers, respectively.
Thus,
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at very low temperatures where boundary scattering
aGects all modes alike. This ~cans that both orihces
leading from the inner container are narrow. It is
therefore quite possible that in a steady state there will
be more crystal momentum in the modes of low q than
in those of high (more water in the inner container than
the outer). In fact, if the scattering of low-t7 phonons by
high-t7 phonons (middle leak) is sufliciently slow, the
rate of annihilation of the crystal momentum of the
high-tf phonons (leak on extreme right) may be quite
inconsequential in determining the total amount of
crystal momentum (water) in the system, i.e., r may
be determined almost entirely by the rates of the two
leaks out of the low-q system.

To orient ourselves regarding the relative rates of
the various leaks in Fig. 3 for the germanium experi-
ments we are trying to intepret, we shall consider two
limiting cases. In a thermal conduction experiment, with
no charge carriers, the thermal gradient feeds in crystal
momentum to each mode q, n at a rate which depends
only on the direction of q and not on its magnitude, as
long as Ate(tl, n) &kT."This corresponds to placing the
containers of Fig. 3 out in the rain, instead of feeding
only the inner one from a faucet. If, as we have been
speculating, the leaks from the inner container are
slower than that from the outer, a given rate of feeding
in water will yield a steady state with less water in the
containers for feeding by rain than for feeding by
faucet. In other words, the effective phonon mean free
time for thermal conduction, r„will be less than the
effective r to be used in Eq. (16).To see whether this is
in fact the case, we may try calculating Eq. (16) using
for ~ the v, determined from Debye's formula, ~'

K= —',Cc'7 „ (17)

for the thermal conductivity I(:, in which C is the
specific heat per unit volume, and c an average sound
velocity. Kith the values of & measured by Geballe" for
fairly pure germanium, values of QUA= II„/T were con-
puted from Eqs. (17) and (16), and are shown in the
lower curve of Fig. 4, together with values of Q —Q.
from Fig. 2. We have taken f= 1, its maximum possible
value, for this comparison. The suspicions outlined in
the preceding paragraph are confirmed: Use of 7, for 7.

gives values of Q„which are vastly too small.
Having thus verified that f))v.„we now explore the

other extreme. If nothing else puts a lower limit on the
loss of crystal momentum by the low-q phonons, bound-
ary scattering will. For the specimens used in most of
the work of Geballe and Hull it is reasonable to assume
diA'use reaction of phonons at the boundaries of the
specimen, and to take a mean free path I.of the order of
0.15 cm between such reflections. With c=SX10b cm/
sec., we obtain rb=L/c=3X 10 ' sec. Using this for r,

"P.G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951)."P. Debye, Uortrage Nber die kiletische Theoric der 3Eaterie led
der Etektrizitat (Teubner, Berlin, 1914), pp. 19—60.

s' T. Geballe (private comminication).
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FIG. 4. Middle curve: Empirical phonon contribution Q„ to the
thermoelectric power of the Ge specimen of Fig. 2, obtained by
subtracting the Q, curves from the observed Q curves. Upper
curve: Approximate upper limit to Q~, obtained from (16) with
f=1 and a phonon mean free path of 0.15 cm, the limit set by
boundary scattering. Lower curve: Lower limit to Q„, obtained by
inserting the mean free path for thermal conduction into (16).
The curvature of the upper plot, which divers from the behavior
of the more re6ned expression (42) derived below, is due to the use
of the assumption f= 1, which allows the irregular variation of the
mobility to be felt.

and again taking f= 1 for simplicity, we get the upper
curve of Fig. 4. YVe see that at the lowest temperatures
7. does indeed seem to be starting to approach the
boundary scattering value, but that over the range from
say 50' to 200 K, f((~&.

We have thus arrived at the following picture, which
we must develop quantitatively in the next two sections:
In an isothermal specimen carrying a current, most of
the crystal momentum of the phonon system —and
therefore most of its heat current —resides in the normal
modes of long wavelength. Except at very low tempera-
tures, crystal momentum is lost from these modes
principally by interactions with modes of shorter wave-
length, and the relaxation time for these interactions
may be used as the r in Eq. (16), even though these
interactions do not themselves destroy any crystal mo-
mentum. At the lowest temperatures, 7 is compounded
out of the relaxation time for these interactions and that
for boundary scattering. At no temperature is 7. likely
to be appreciably affected by scattering processes which
involve only phonons of shorter wavelength than those
with which the charge carriers interact; in other words,
the rate of the right-hand leak in Fig. 3 is never likely to
be important.

IV. RATE OF TRANSFER OF CRYSTAL MOMENTUM
TO PHONONS

The picture developed in the preceding section,
though valid as an over-all description, needs con-
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siderable refinement if it is to yield speci6c quantitative
results. We have just seen that the 7. to be used in
(15) and (16) is much longer than the effective relaxa-
tion time v-, for thermal conduction, because of the great
variation of the mean free path of a phonon with its
wavelength. This suggests that even among the modes
of low q, with which the charge carriers interact, we
should use a different relaxation time r(q, n) for each
mode. Thus if we define R(q,n) to be the crystal momen-
tum fed into the mode qn per unit time, and define

p(q, «&.) to be the crystal momentum of this mode, we
write

1(q, )—I "'(q, )= (q, )R(q, ), (18)

where p&'&(q, ««) = N "& (q, «&.)hq is the value in equilibrium.
The total crystal momentum of the phonons of branch
n in unit volume is

P„=(2m.) ' t p(q, n)dq=(2~) ' t r(q,n)R(q, n)dq. (19)
J ' J

In this section we shall calculate R(q,n), and in the next
one we shall combine it with r(q, n) and evaluate the
integral in Eq. (19), which we can then substitute into
Eq. (11) to get the phonon contribution to the Peltier
heat Qow. The next section will also include a discussion
of the legitimacy of using the mean free time concept
in Eq. (18).

To avoid excessive mathematical complication in the
initial development of the theory, we shall make several
simplifications in this section. Specifically„we shall
assume Maxwellian statistics and the conventional
model of Fig. 1(c).For this model only the longitudinal
modes are important. A more general treatment is given
in Appendix A, which assumes the many-valley model
of Fig. 1(b), a model for which transverse as well as
longitudinal phonons can scatter the charge carriers.
This treatment leads to expressions for R(q, n) and Q~
which are similar to those derived for the simpler model
in this section and the next, provided the eGective mass
in the simple model is taken to be a suitable average of
the effective masses in the three principal directions of a
valley, an average which may be different for longi-
tudinal and transverse modes. The many-sheeted model
of Fig. 1(a), unfortunately, seems too complicated to
treat quantitatively; however, it, too, should have prop-
erties similar to those of the simple model. In this section
where we use the simple model, we shall drop the index
0., since only the longitudinal branch is important. In
the following section, however, where we shall derive
formulas for practical application, we shall resume the
distinction between longitudinal and transverse
branches, in order to have equations which may be
placed in correspondence with those of Appendix A.

The quantity R(q) is compounded out of the dis-

tribution function of the carriers and the scattering
probability for emission or absorption of a phonon. The

former is easily obtained if we assume that the com-
bined eftect of all the scattering processes acting on the
charge carriers can be described by a relaxation time
r.(E), dependent on the magnitude but not on the
direction of the wave vector K. Then an electric field in
the x direction produces a first-order perturbation f&'&

of the distribution function of the charge carriers which,
by (5), is

f&'&(K) «c r, (K)K, exp( —O'IC'/2m*kT). (20)

In this and the following equations all factors independ-
ent of K and q are absorbed into the proportionality
sign.

For a crystal free from Qaws and impurities the
transition probability from state K to state K+q with
absorption of a longitudinal phonon q, or to K—q with
emission, is

W. ,(K~K+q) ~
(
M )'bg«(K) —«(Kwq) +&~(q)j

) N(q)
I V~L«(K) —«(K~q) ~&~(q) j, (21)

(N(q)+1)

since the squared matrix element for the transition,

~
3f

~

' is independent of K and depends on q only through
a factor very nearly proportional to q and to the occupa-
tion numbers N(q) (absorption) and N(q)+1 (emis-
sion)."For the purpose of this section and the next two,
the occupation numbers N(q) can be set equal to their
thermal equilibrium values in Eq. (9); this means that
for the present we are considering only semiconductors
with such low concentrations of carriers that the unbal-
ance of the phonon system in the presence of a current is
much less than the unbalance in the distribution of the
carriers. In Sec. VII we shall consider the case of such
high carrier concentrations that the unbalance of the
phonons is of the same order as that of the carriers.

It is generally assumed that (21) continues to
hold even when there are enough impurities present to
cause appreciable impurity scattering. In other words, it
is generally assumed that when two or more scattering
mechanisms operate, the probability for a given electron
to suer any one type of scattering is the same as it
would be if all the other types were absent, so that the
reciprocal relaxation times for the diGerent mechanisms
add. We shall use this assumption here, although its
validity at moderately high-impurity concentrations
may be questioned.

Returning to (20) and (21), we now combine
these equations to get the rate R(q) of crystal momen-
tum transfer to the Inode q. Remembering that the
equilibrium carrier distribution f&'& contributes nothing,
that f"& is an odd function of K, and that the W„W,
of (21) are unchanged if we reverse the directions

~'See for example reference 16, pp. 520—531. This propor-
tionality involves the assumption of elastic isotropy of the crystal,
but deviations from isotropy are not likely to modify it greatly.
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of both K and q, we c'an write

R(q) =Aq(dlV(q)/dry ~ q fo&

X[W.(K.—+K—q) —W.(K—+K+q) fdK

f
=q fu&(W, (K~K—q)+W. (K—+K—q)gdK

~ q ~ r, (K)E, exp( —k'E'/2m*kT)

acoustic modes of the lattice. The sum can be simplified
by interchanging the order of integration on K and q;
it is

00 co

(2w)-s R.(q)dq= (6n')-'BJ qs ' r, (E)J„, '

Xexp (—Pi'Es/2m*k T).EdEdq

= (2/37rs) BJ) Esr, (E)
0

Xexp( —O'E'/2m*kT)dE. (26)

X (qt 1V(q)+1]5(2K q —q' —2E,q)

+qE(q)8(2K q —q'+2E, q))dK, (22)

where E,=m*c/k. An approximation commonly made
in the theory of semiconductors" is to neglect the
energy change suffered by an electron when it is
scattered by a phonon. In this section we shall adopt
this approximation, which is equivalent to neglecting
the terms ~2E,q in the arguments of the 5 functions in
(22). Although the legitimacy of this must certainly
fail at sufficiently low temperatures, it can be shown
from a treatment using the full (22) that the results
obtained with the present approximation are adequate
throughout the liquid hydrogen range. " When E, is
neglected the two 8 functions in (22) become the
same. Choosing a polar coordinate system for I with
axis in the direction of q, we have

dK=E'dyd(cos8)dE=Ed pd(K q/rl)dE, (23)

Average of E, on q = K qq /q'. (24)

Thus with the equipartition value of X(q)(&)1), (22)
reduces to

R(q) =BJ(qq./q) r.(E)

p, = (e/m*) (E'r,)/&E'),

Since 7.,1.~E ' we have

(27)

(28)

(29)

f = ( / *)&E)&E' )/&E')' (3o)

f/f =&E)&E' .)/I &E')(E' .) (31)

Note that (E'r.)/(E'r, ) equals the integral in Eq. (26)
divided by a similar integral with E' replaced by E4.
Equating Eq. (26) to J times Eq. (31) we have finally

II,&&E') E'r. (E) exp( O'E'2m*kT)d—E
Jo

(32)

Let r, l, (E) be the relaxation time for scattering by low-
energy acoustic modes only, and let pl, be the value
which the mobility would have if this were the only
scattering mechanism operating. Let averages over the
Maxwellian distribution be denoted by angular brackets
Then"

Xexp( —k'E'/2m*k T)EdE, (25)

where 8 is a constant and J is the current density; the
lower limit q/2 represents the minimum value of E for
which a 19 value can be found to make the argument of
the o function vanish. The dependence of R, (q) on q
is shown in Fig. 5 for diferent assumptions regarding
7 „and also for a typical case of degenerate statistics,
worked out in Appendix A.

The constant of proportionality B in Eq. (25) is inde-
pendent of q and for given electric field K it is independ-
ent of the amount of impurity scattering, etc. , contained
in 'r, (E). We can evaluate it by equating the sum of
R(q), over all q in the longitudinal branch in unit
volume, to its known value If/p, where p is the mobility
and f is the fraction of the crystal momentum lost by
the charge carriers which is delivered to low-energy

~ See for example reference 16, p. 252.
~ C. Herring (to be published).
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Fro. 5. Dependence of B,(q), the spherical average of (25) or
(A4), on Xq, where li is the thermal electron wavelength defined by
(40). Full curves: Classical statistics, Eq. (25), for various values
of the exponent r in r, a-
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effective masses assumed. Areas under diferent portions of any
curve represent relative contributions to the integral (19), hence
to Q„, if s= 0 is assumed in (36). All curves have been arbitrarily
normalized to the same area.

' See, for example, reference 16, p. 276.
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Regarding the applicability of these results to the
many-valley model, the conclusions reached in Appen-
dix A are the following: When a relaxation time depend-
ent only on energy exists, an integral expression for the
R(q, n) of each branch can be written down which is a
superposition of expressions of the form in Eq. (25) with
diferent m~'s ranging from the highest to the lowest of
the principal m* of a single valley. Here E is to be de-
fined by setting the ksE'/2ns* equal to the energy. We
may note that if the energy surfaces in a single valley
happen to be nearly spherical, Eq. (25) will be quite
good as it stands, for either branch. The constant 8
going with branch n is to be evaluated by setting the
right of Eq. (26) equal to Jf /fJ, , where f is the fraction
of the crystal momentum of the carriers which is lost
to branch n. The variation of f /)i with temperature,
amount of impurity scattering, etc. , is similar to that
given by Eq. (31) if pr, is replaced by the corresponding
partial mobility p and a constant factor of the order
of unity is inserted.

In Sec. VI we shall consider temperatures so low that
only boundary scattering is important for the phonons.
For this case the r(q, n) in Eq. (19) becomes independent
of the magnitude of q, and it is unnecessary to evaluate
the R(q, n) 's; we shall merely use Eqs. (16)and (31) with
a f determined by the dimensions of the specimen. Ke
shall then need to know the ratio of the quantities in
angular brackets in Eq. (31); values of this ratio for
several limiting cases are given in Table I.

TABLE I. Values of pzf/p from (31), and of the coeKcient of X'+
in (39), for r, ~E~".

—1.00—0.75—0.50
0

1.00
1.50

f' =I If/a

0.85
0.93
1.00
1.13
1.36
1.46

0.85
0.74
0.67
0.57
0.45
0.42

1.50
1.00
0.75
0.50
0.30
0.25

3s C. Herring, Phys. Rev. 95, 954 (1954).

V. PHONON CONTRIBUTION TO Q FOR SMALL
CARRIER CONCENTRATIONS, WITH NEGLECT

. OF BOUNDARY SCATTERING

We have now to evaluate the integral in Eq. (19) for
the total crystal momentum of the phonons in a current-
carrying specimen. In accordance with the remarks made
near the end of the preceding section, we shall use an
expression of the form in Eq. (25) for the R(q,n) of each
branch n of the acoustic spectrum. In the temperature
range where boundary and mosaic scattering of the
phonons is unimportant, we should use the law of varia-
tion of r(q, n) with T and q which is predicted by the
theory of phonon-phonon collisions. "According to this
theory most of the collisions suRered by phonons of very
small wave number q at moderate and low temperatures

are with phonons of energy kT, and very few are with
each other. It is therefore legitimate for our pur-
poses to regard each such mode q,n as having a relaxa-
tion time r(q, cr) equal to the time required for this mode
to share its lattice momentum with other modes —i.e.,
the time constant of the middle leak of Fig. 3.

At temperatures well below the Debye temperature
the theory for an elastically anisotropic cubic crystal
such as germanium predicts that as q~0,

1/r((q) A tT'q',

where ri(q) is the value of r(q, n) when e is the highest-
frequency (longitudinal) acoustic branch, and

1/r, (q)-A, T'q (34)

for the other two (transverse) branches. The coefficients
3 &, A & may depend slightly on the direction of g. For an
elastically isotropic crystal (34) is still valid, but (33)
is replaced by

L1/ri(q) 3'-~ i'Tq' (35)

(36)1/r(q, n) =A T' ' &q'+'—

A rough estimate made for germanium" suggests that
(33) should be applicable when hco, &0.15kT; (34)
should apply over a wider range, while for a typical
elastically isotropic crystal the validity of (35) would
be restricted to a rather narrower range. Whether or
not q is small enough for any of these asymptotic
expressions to apply, it is always true that 1/r(q, n) ~ T
if q and T are scaled proportionately, provided T and
ho&(q)/k are « the Debye temperature. A crystal with
a very small elastic anisotropy should have a longi-
tudinal relaxation time following (35) down to quite
small q, and then changing over to (33).

Although we are only concerned with temperatures
rather smaller than the Debye temperature, we may get
some insight into the probable direction of departures
from (33) and (34) in the upper part of this range
by considering the extreme of very high temperatures.
For this case, 1/r (q) for any given mode is proportional
to T, the q dependence being similar to that at lower
temperatures. "

Since we expect the longitudinal and transverse
relaxation times to be of the same order when &to(q)

kT, (33), (34), and (35) suggest that ri(q)»ri(q)
if kco(q)«kT, as is the case for the phonons active in
scattering the charge carriers. Thus we expect the
longitudinal modes to contribute much more than the
transverse ones to the thermoelectric power, over most
of the temperature range. At low temperatures, how-

ever, boundary scattering reduces the longitudinal
contribution much more than the transverse, so the two
contributions may become comparable. We shall there-
fore carry through the analysis of this section in a form
applicable to either branch. We shall use the adjustable
assumption,
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For simplicity A is assumed independent of the
direction of q. To a first approximation we may set
s=y=0, as this corresponds to the ideal case of longi-
tudinal modes, small g, and low T. In a more refined
calculation we may add to this contribution Q~t of the
longitudinal modes a smaller contribution Q~~, obtained
from the formulas of this section with s= —1.Departure
of s from the ideal value 0 for longitudinal modes may
occur if the important range of q's is not sufficiently
small; we expect ~s~ to be rather smaller than unity.
For a temperature range covering sizable fractions of
the Debye temperature a positive p may need to be
used. Mosaic scattering may be tak.en into account
crudely by adjusting p and s, or in a more refined way
by a theory like that of the next section.

With r(q) from Eq. (36) and R(q) from Eq. (25), the
integral in Eq. (19) for I' becomes a double integral
over K and q. As in Eq. (26), we can int:erchange the
order of integration and carry out the integration on q.
The result is

22—s 8 J
I' = ~ K4 'r (K)-

6~'(2 —s) A T' ' &"o——

)&exp( —I'Ki'/2m*k T)dK. (37)

where as before the angular brackets denote Maxwellian
averages. This applies, of course, only at temperatures
high enough for boundary scattering to be unimportant.
As is shown in Appendix A, Eq. (38) applies to the
many-valley model if a suitable average of the effective
masses in the diferent directions is used in relating E to
the energy, i.e., in Eqs. (39) and (40) below.

If for the moment v, is assumed to follow the same
law of variation with E at all temperatures, the ratio of
angular brackets in Eq. (38) is proportional to T
and f /p goes as Tl, so Q„varies as T & with g= (7/2)
——,'s —y. Though our derivation has assumed the simple
model of Fig. 1(c), or, in Appendix A, the many-valley
model of Fig. 1(b), it is not hard to see that this law of
temperature variation has a general validity. In partic-
ular, it applies to the many-sheeted model of Fig. 1(a),
provided the splitting introduced into this model by
spin-orbit coupling is either ))kT or ((kT. For if the
scattering probability for transition of a carrier from
state K to state K' depends only on K/T', K'/T*', the
function R(q,n) for one temperature will be derivable

We may eliminate 8 by using Eq. (32), if the simple
model applies, or more generally, by using Eq. (26)
equated to Jf /y, where as before f is the fraction of the
crystal momentum of the charge carriers which is de-
livered to phonons of branch o,. The phonon contribu-
tion to the thermoelectric power is related to I'~ and I' t

by Eq. (11), and is of the form Q»+Q„& ,'we find

c 'f (K' 'r, )
Q,.=11„./T=, (38)

2'(2 s)A T4 ' &p —(K'r )——

from R(q,n) for any other temperature by a simple scale
change, the q scale going as T*'. Thus the r of Eq. (16),
which is an average of the r(q, n) of Eq. (36) with
weights proportional to R(q,n) will be given by Eq. (36)
with an effective q proportional to T'. This leads to the
same exponent q as Eq. (38).

Since ideally s =y =0, the ideal value of q is 7/2. This
accords fairly well with the observation of Geballe and
HulP that for p germanium Q„goes nearly as T ".
However, there are a number of refinements which need
to be made in an accurate comparison of theory and
experiment, of which we shall consider one here and
others in the following sections, and it is therefore best
to defer a detailed comparison until Sec. IX. The re-
finement we shall consider here arises from variations in
the way v-, depends on E. These variations, which
affect both f /p and the last fraction in Eq. (38), may
arise from impurity scattering, or, for the many-valley
model of Fig. 5 (b), because the importance of intervalley
scattering decreases with decreasing T. If we approxi-
mate the behavior of r.(K) at any temperature by E'",
both these effects cause the effective exponent 2r to
increase with decreasing T. For such a law we have,
when Eq. (31) is valid,

where

f (E' 'r, ) I'(2+r —-', s) y'+'

(E'r,) r(5/2)r(5/2+r) 44.

X= (a'/2~*AT):—

(39)

(40)

is a thermal electron wavelength, and p ~ T—:is the
mobility which would occur if the only scattering of the
carriers were that by phonons of branch o.. The principal
correction required for the general many-valley model
is, according to Appendix A, the insertion of a constant
factor independent of T and of the behavior of r, (K);
this might be absorbed into the definition of p, and does
not affect the temperature dependence of Eq. (39).

If s)—1,the value of Eq. (39)decreases as r increases,
as is shown in Table I.Thus the eGect of intervalley scat-
tering, or of impurity scattering if the assumption of Eq.
(21) is valid, is to make the exponent q in Q~T &

smaller than (7/2) ——,'s —y. This is what one expects
physically. The greater the amount of impurity scatter-
ing, or the less the amount of intervalley scattering,
the larger will be the effective average E of the
carriers which contribute most to the current, hence the
larger will be the effective average q of the modes to
which most of the crystal momentum is delivered.
Although for given current this means that more crystal
momentum will be delivered to the low-energy longi-
tudinal phonons, as shown by the p&f/p, values of Table
I, it also means that the average r(q) of the modes to
which it is delivered will be less, and the latter eGect
outweighs the former because of the rapidity of the
variation of r (q) with q. Use of a more realistic law than
E" for the dependence of 7., on E turns out not to
change this conclusion qualitatively. However, it is



CON YE RS HERRING

conceivable that when impurity scattering is important
the increase in the delivery of crystal momentum to the
phonons may be greater than one would compute by the
present procedure of merely using an altered distribu-
tion of electron velocities with the same expression in

(21) for the lattice scattering probability. If this
occurs the increase in delivery may compensate or out-
weigh the decrease in the average r(q).

We shall try to make some rough quantitative esti-
mates of the efI'ect of temperature variation of the
carrier scattering law on the temperature variation of
Q~. Consider first the effect, in pure p-type germanium,
of intervalley scattering, if the model of Fig. 1(b)
applies, or of optical mode scattering, if Fig. 1(a) is

applicable" with spin-orbit splitting &)kT. We have
seen in Sec. II that this can be described roughly by
letting r vary from —0.8 at 300'K to —0.5 at 100'K.
For such a variation we find from (39) and Table I that
the effective temperature exponent tl for Q„over this
range should fall below 7/2 by 0.1 or 0.15 if s=0, or
that it should fall below 3 by 0.3 or more if s=1.
Similar crude estimates of r and the lowering of q can
be made from mobility data on samples with impurity
scattering. " '4 According to the existing theory of im-

purity scattering, ""an amount of impurity scattering
sufhcient to reduce the mobility to half that in pure
material should reduce the ratio of Hall to drift
mobility to a minimum value only slightly above
unity. If we therefore assume that this amount of
impurity scattering raises the effective r from ——,

' to 0,
we can deduce from the observed temperature change
required to increase the role of impurity scattering by
this amount that for s=0 the temperature exponent g
should fall below 7/2 by an amount of the order of 0.1
or 0.2 when the mobility has been reduced to half or so
of the lattice mobility. At this stage, as Table I shows,

Q~ should be about 15 percent below the value in pure
material. If s= 1 the reduction of g below 3 is 0.3 or so,
and Q„ is about s the value for pure material when the
mobility has been reduced to half.

VI. EFFECT OF FINITE SIZE OF THE SPECIMEN

The analysis of the preceding section, giving a
variation of Q„as an inverse power of T, was based on
the assumption in Eq. (36) for the variation of phonon
relaxation time with temperature and wave number.
This assumed law will break down at very low tempera-
tures because of scattering of the phonons by the bound-
aries of the specimen. Such boundary scattering is the
obvious explanation for the fact' that at the lowest
temperatures Q„ falls below the power law extrapolation
(see for example Fig. 4). It was therefore predicted while

the experiments were in progress that in this tempera-

"Suggested by C. Kittel, Phys. Rev. 94, 768 (1954).
'4 P. P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).
's H. Jones, Phys. Rev. 81, 149 (1951);V. A. Johnson and K.

Lark-Horovits, Phys. Rev. 82, 977 (1951); E. Conwell, Proc.
Inst. Radio Engrs. 40, 1331 (1952).

Cl7 bl CtTbt I ) (41)

where c~ and ct are mean longitudinal and transverse
sound velocities respectively, and where for a specimen
of square cross section with completely diffuse scatter-
ing at the boundaries I. is 1.1 times the square side.
Noting that both for the simple model and for the many-
valley model of Appendix A the variation of fi/p and

f,/p with temperature and composition is proportional
to that of Eq. (31), we have from Eqs. (16) and (1):

asymptotic Q„=W (I/iJT) (foci+f,c,) f'T *', (42)-
where as before fi, fi are the fractions of the crystal
momentum of the carriers lost to longitudinal and
transverse acoustic modes, respectively, and where f'
is the ratio of angular brackets in Eq. (31). This quan-
tity f', tabulated in Table I, depends on the amount and
kind of impurity scattering. The absolute value of Q„
for a given lattice mobility pl, depends slightly on the
ratio of fi to f, ; it would be independent of this ratio
if c~ were the same as ct.

Since, as Fig. 4 shows, Q~ is still far below the asymp-
tote in Eq. (42) at the lowest temperatures used by

'" H. B. G. Casimir, Physica 5, 495 (1938).

ture range the eGective thermoelectric power could be
appreciably changed by changing the diameter of the
specimen. This prediction was confirmed. The interest
of this boundary eGect lies in the opportunity which it
provides not only to check the general theoretical
picture we have presented, but also to extract from the
experimental data some new information on the proper-
ties of the semiconductor. We shall therefore devote
this section to analyzing the effect of boundary scatter-
ing in some detail. We shall consider here only the case
of low carrier concentrations, so that Fermi degeneracy
and the saturation eGect discussed in the next section do

- not occur.
We can get a little orientation on the problem of

boundary scattering by recalling, and slightly amplify-
ing, the simple calculation which was made in Sec. II
to establish an upper limit to Q„.This calculation, after
suitable refinement, gives the asymptote which Q„must
approach at very low temperatures. The necessary re-
finement is easy to make. We replace the expression in
Eq. (16) by a sum of two terms, one for longitudinal and
one for transverse phonons. We neglect anisotropy of
sound velocity within each branch. The values 7b) 7bt

to be used for the mean phonon relaxation time f are of
course averages over the boundary scattering times of
phonons with different directions of motion. Fortunately,
however, these averages are to be made with a weight-
ing factor q,'/q', as Eqs. (19) and (25) show; since this is
the same weighting factor as occurs in the theory of
thermal conduction, "we can use the relation between
7.b and the dimensions of the specimen which has been
derived by Casimir" for the latter case. This type of
analysis gives
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Geballe and Hull, it is clear that to get a theoretical Q„
for these temperatures we shall have to consider the case
where boundary scattering and phonon-phonon scatter-
ing are of comparable importance. However, there are
two points worth noting in the simpler theory. One is
that at the lowest temperatures the contribution of
transverse phonons to Q„may well be comparable with
that of longitudinal ones, and so it may be that even at
temperatures where Q„ is well below its asymptote the
transverse contribution is perceptible. The other is that,
as Table I shows, a semiconductor with ionized im-

purity scattering predominant should have a higher
asymptotic Q„ than one with lattice scattering only,
while one with neutral impurity scattering predominant
should be intermediate. This eGect of impurity scatter-
ing is opposite to that obtained from the theory of Sec.
IV for temperatures above the boundary scattering
range. This is to be expected: for the higher range of
temperatures the decrease of the mean 7(q) with in-

creasing impurity scattering outweighs the increase in
the total crystal momentum delivered to the phonons
by a given current, at least if (21) is valid; when
boundary scattering is dominant, however, r(q) is con-
stant and the latter effect predominates. Ke shall see
that this reversal in the eGect of impurity scattering
occurs at temperatures where Q„ is well below its
asymptote.

Let us now try to calculate Q„when boundary scatter-
ing and phonon-phonon scattering are of comparable
importance. The usual procedure in cases of this sort is
to assume that the reciprocal relaxation time for each
mode is the sum of the contributions which the two
types of scattering would yield separately. However, as
we shall show, this assumption is not accurate enough
for our present purpose. A better procedure is to con-
sider how the crystal momentum in a volume element
hq of q space is distributed spatially over the cross
section of the specimen. In the presence of a current J,
crystal momentum is fed into this range of modes at a
rate which is independent of position and proportional
to the quantity R(q) defined in Section IV. Phonon-
phonon scattering removes crystal momentum from
these modes in every element of the volume, at a rate
proportional to the local density DP(q;r) of crystal
momentum. Boundary scattering also removes crystal
momentum but only from regions adjoining the
boundaries; the rate is proportional to the value of
AP at the boundary and to the component of phonon
velocity toward the boundary, if the latter is positive,
while the rate is zero if the normal velocity is negative.
For the simplest geometry, that of a plane-parallel slab
with faces normal to the y axis, current in the x direc-
tion, we have in a steady state:

(2s-)—'R(q) 6, c(rf„/q) rfhP/By AP/—r (q) =0, (43)—

where r(q) is the phonon-phonon relaxation time and
where we assume for simplicity that the group velocity

p
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Fn. 6. Full curves: ratio p~ of the longitudinal phonon contribu-
tion to Q„ for a specimen of finite diameter to the value for an
in6nite specimen, as a function of the quantity f& de6ned by (46),
for different values of the exponent r in r, ~ ~e—es~". Dashed
curve: corresponding ratio pf, for the transverse phonon con-
tribution, abscissa f& given by Eq. (47).

is cq/q. If q„)0 the boundary condition is that AP must
vanish on the back. surface, which we take for simplicity
to be the plane y= 0. The solution. of Eq. (43) is then

where
hP= BPst 1—exp( —yq/g„cr)$,

SP,= (2~)-'Rra, .

(44)

(45)

TABLE II. Values of p& plotted in Fig. 6.

0,003
0.01
0.03
0.1
0.3
1.
3.

10.

0.981
0.953
0.898
0.778
0.604
0.371
0.195
0.085

r=O

0.989
0.969
0.928
0.835
0.676
0.440
0.238
0.1Q&

Thus for large y/cr, hP is distributed uniformly over the
specimen except for a small region near the back face
(i.e., the face q points away from), while when y/cr is
very small hP increases nearly linearly from back to
front. Consequently, for a given total crystal momen-
tum in a specimen of given size, the rate of removal by
boundary scattering is twice as great for large v- as for
small.

The ratio p of the Q„of a finite specimen to that of an
infinite specimen is simply the ratio of the integral of
AP over the cross section and over q to the integral of
AP&. An approximate evaluation of this ratio is given in
Appendix 8, the evaluation being exact as T—&0 and in
error as T—+~ by only 10 percent or 20 percent of the
deviation of the ratio from unity. For longitudinal
modes —s=0 in Eq. (36)—p~ is a function of the dimen-
sionless variable,

37rctX'/32' (T'——L ~ 1/T4L,

where X is the thermal electron wavelength in Eq. (40).
Physically $i is the ratio of the phonon-phonon scatter-
ing time to /Lc four phonons of wave number (32/3s.)'/X.
Graphs of p~ against $~ are given in Fig. 6 for three
values of the exponent r in r, rc

~
e—es

~

", and some of the
values are given in Table II. The calculation for trans-
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verse modes (s= —1) is similar: p~ depends on

$,= 37rc() /SA, T'L ~ 1/T"'L. (47)

Figure 6 shows a plot of p~ for the case r=0; this is the
most important case since boundary scattering becomes
important for transverse modes only at very low temper-
atures, where neutral impurity scattering often domin-
ates v, .

In future comparisons of theory and experiment
along the lines of that given in Sec. IX below, it may
turn out that important inferences can be drawn from
the abruptness or gradualness of the onset of boundary
scattering. It is only in regard to this feature that the
various assumptions used in the theory can be tested,
since any theoretical expression for Q„(L,T) which is
asymptotic to Qp(~, T) at high T and to Eq. (42) at low
T will give roughly the right sort of bending over of the
plot of Q„against T. The variation of abruptness of
onset with diRerent choices of I, A ~, At is of course
covered by Eqs. (46) and (47) and Fig. 6. We may also
ask, however, how the abruptness varies with the value
of the exponent s in Eq. (36), or with variation of the
nature of the boundary scattering, e.g. , if the boundary
scattering takes place at grain or mosaic boundaries, or
at finely distributed foreign inclusions. The answer to
the latter question is supplied, at least in some cases, by
the remarks made after Eq. (45). For under conditions
where one should assume additivity of phonon-phonon
and boundary scattering probabilities, boundary scat-
tering is twice as eRective at high T, for a given effective-
ness at low T, as when Eq. (44) applies. Thus making
the boundary scattering take place uniformly through-
out the volume makes the onset as T is lowered more
gradual. The eRect of varying the exponents can be
surmised from a comparison of Eq. (46) with Eq. (47)
and of the full with the dashed curve in Fig. 6. The onset
of boundary scattering is more abrupt for s= —1 (trans-
verse) than for s=O (longitudinal), both because Eq.
(47) has a higher exponent of T than Eq. (46) and be-
cause the initial downard bend of the dashed curve is
more abrupt than that of the full curve. One can easily
see, after a little reAection on the form of the curve of

r(q) against q and its shift with temperature, that this
trend to a more gradual onset with increasing s must
hold over the entire range of possible values of s. Ex-
plicit quantitative calculations, not reproduced here,
have given additional confirmation of this fact.

The theory of this section contains only one constant
not previously introduced, namely, the boundary
scattering length I.. This constant is determined by the
size and shape of the specimen if it can be assumed that
the scattering of elastic waves impinging on the surface
of the specimen is completely diffuse; in any case, a
calculation on this assumption gives a lower limit to J.
Three facts make the assumption of diRuse scattering
plausible for specimens like those of reference 2. The
first is the approximate agreement of the theory of
Casimir, ' based on this assumption, with thermal con-

duction experiments" on rods of quartz, potassium
chloride, sapphire, and diamond, at temperatures low
enough to be in the boundary scattering range. The
second is that the surfaces of the specimens of reference
2 were sandblasted. The third is that when a longi-
tudinal wave impinges on the surface, a good part of
the reQected energy will reside in transverse nodes, and
if the temperature is not too low this part of the energy
Aux will quickly be randomized by phonon-phonon
scattering.

VII. THE SATURATION EFFECT IN THE
NONDEGENERATE RANGE

In the caluclations of the two preceding sections it
has been assumed that the probability of emission or
absorption of a phonon by a charge carrier is the same
as it would be if the phonon system were in thermal
equilibrium. In Sec. IV, where this assumption was
introduced, it was mentioned that it is asymptotically
valid for sma11 densities of charge carriers, but must fail
for sufficiently high densities. It is easy to see that when
this assumption breaks down, Q„will be less than the
value given by the theory of the preceding sections.
Consider first the II picture. Suppose the charge carriers
are drifting in the positive x direction under the action
of an applied field. If there are more phonons moving in
the positive than in the negative x direction, then scat-
tering processes in which the x component of velocity of
a carrier is increased will be more frequent than if the
phonons were in thermal equilibrium, while those in
which the x component of velocity is decreased will be
less frequent. For a given velocity distribution of the
carriers, therefore, the resistance oRered by the lattice
vibrations to the motion of the carriers will be less than
if the phonons were in equilibrium, and concomitantly
the carriers will deliver less crystal momentum to the
phonons. Thus the phonon contribution II„ to the
Peltier Aux will be less than one would calculate on the
assumption of phonon equilibrium. One can reach the
same conclusion using the Q picture: if the density of
charge carriers is sufficiently high the thermal conduc-
tion current carried by the low-energy phonons in a
temperature gradient will be decreased by the inter-
action of these phonons with the charge carriers, and
the phonons mill therefore exert less drag on the carriers
than they would if the perturbation of the phonon dis-
tribution by the carriers were neglected. In this section
we shall try to discuss this eRect quantitatively. '8

As was mentioned in Sec. III, the eRect we wish to
discuss occurs when, for an isothermal current-carrying

' W. J. de Haas and Th. Biermasz, Physica 5, 47, 320, 619
(1938); R. Berman, Proc. Roy. Soc. (London) A208, 90 (1951);
Advances in Physics 2, 103 (1953); Berman, Simon, and Ziman,
Proc. Roy. Soc. (London) A220, 171 (1953). The latter authors
have estimated the reQection for diamond to be roughly midway
between diffuse and specular.

38 A study of the influence of this efI'ect on the electrical con-
ductivity and its frequency dependence has been carried out by
B. Goodman (unpublished). I am indebted to Dr. Goodman for
information about this work.
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specimen, "the unbalance of the phonons is of the same
order as that of the carriers. " This suggests that we
begin by formulating a quantitative definition of "un-
balance. " This is easily done when, as in the present
problem, the most important interactions between the
various parts of a statistical assembly conserve a vector
quantity such as crystal momentum. In the usual for-
mulation of statistical mechanics for a complicated
assembly, it is shown that if energy is the only extensive
quantity which is conserved in the motion of the
assembly and in its interaction with external systems,
such as thermal reservoirs, there is a one-parameter
family of equilibrium distributions, the single parameter
being temperature, an indirect measure of energy con-
tent. But if several extensive quantities are conserved,
the possible equilibrium distributions contain a corres-
ponding number of parameters. "Thus if all the inter-
actions of electrons and phonons with each other con-
served crystal momentum as well as energy, the possible
equilibrium distributions would be described by param-
eters T, g, such that in a given distribution the prob-
ability of any quantum state of total energy E and total
crystal momentum p wouM be proportional to expc (—E
+ (3 p/kT) Note that . g has the dimensions of velocity.
In particular, a charge carrier distribution of this sort,
with a given value of g, could be in equilibrium with a
phonon distribution having the same g. A repetition of
the usual Fermi-Dirac and Einstein-Bose derivations
gives for the single-particle distribution functions of
electrons and phonons, "respectively,

('e(K) —op —
g hK)

f(K; 5,T)= expl 1+1, (48)

7Vhen an in6nitesimal current Rows in an isothermal
conductor the Ii, and g~ just defined are infinitesimal.
On equating Eq. (48) to the usual expression f&')+f&'&

for the electronic distribution function in the presence
of a Geld E one 6nds easily

p,.(K) =~ (.z/~*). ,(K)=. ,(K), (50)

where the upper sign is for electrons, the lower for holes,
and where vD is an eGective drift velocity of the carriers
in states K and —K. Here we have for simplicity
assumed the conventional semiconductor model of Fig.
5 (c), with effective mass m~, and have assumed a relaxa-
tion time r, (K) to exist. Similarly we find from Eq. (49)

L~(q) j'~P. (q) q
' "(q)&.(e)

P.*(q)=
ATq '

q AT
c, (51)

where Ap(q) is the excess crystal rnornentum in the qth
mode, given by Eq. (18), v(q) is its relaxation time, c is
a mean sound velocity, and R(q) is as before the rate at
which the electronic system feeds lattice momentum
into the qth mode. Note that in our problem Ap
~ q, '/q', so p„„is roughly independent of the direction
of q.

In the approximation we have been using in the
preceding sections, R(q) is given by Eq. (25) or (A4) and
p„,(q) is thus an integral over the various p„(K).When
the various p„, become comparable with the p„,
however, the k(q) of Eq. (25) or (A4) must be replaced
by an expression which vanishes when g~= g,. Since the
g's are infinitesimal, the correct expression must have
the form,

p:(q) = C(q, K)rA.*(K)—p..(q)ldK,
f

(52)
(h (q) —5.&qi

E(q; g, T)= exp~
E uT

(49)

39 J. W. Gibbs, Elementary Principles in Statistical Mechanics,
in Collected Works (I,ongmans, Green, and Company, New York,
1928), Vol. 2, pp. 37—40.

where as previously e~ is the Fermi level, e(K) is the
energy of an electronic state of wave number K, etc.
Although these equations represent an equilibrium
distribution only when all interactions conserve crystal
momentum, they form a useful reference point even in
the presence of other types of motivations and inter-
actions (impurity scattering, electric field, Umklapp
collisions, etc.), because they show the relation between
the electron and phonon distribution functions which
the electron-phonon intereaction is attempting to
establish. Thus if we take all g's to be in the field direc-
tion x, we may define an unbalance velocity p, for each
electronic state K by Eq. (48), and similarly a p„ for
each phonon mode q by Eq. (49), and may describe the
electron-phonon interaction as one which attempts to
equalize the P„and P„,of each carrier-mode pair which
interact.

where C can be taken from Eq. (25) or (A4). Since the
approximation of the preceding sections- consisted in
neglecting the P„, in the integrand of Eq. (52), we have
for the ratio of the Q„derived from Eq. (52) to the Q„&"
derived previously

Q„ I ( J'Cp„dK)
~dq ~ ~C'p, ."'dKdq. (53)

Q "' ~ &1+J'CdK)

Here we distinguish p„"', the value calculated ne-
glecting saturation, from p„, the true value. Although
we shall not attempt such a refinement, the latter should
strictly be calculated from an integral expression analo-
gous to Eq. (52) but with the roles of K and q inter-
changed.

We shall not try to evaluate Eq. (53) to as high a
degree of refinement or for such a variety of conditions
as we have employed in the preceding sections; this is
partly because of the greater computational de.culty of
Eq. (53) and partly because for conditions where Eq.
(53) is significantly below unity some of our basic as-
sumptions are probably not very accurate, e.g. , the



CON YERS HERR I NG

neglect of the inAuence of impurities on the band struc-
ture W. e shall content ourselves with assuming p„=p„&o&
and treating only longitudinal modes for the case v, =
constant, a case which is probably not too far from the
truth throughout a good part of the concentration range
of interest. For this case, by Eq. (50), P. is independent
of K, and it can be factored out of Eq. (53). On com-
paring Eqs. (25) and (32) with (51) and (52), with
the P„, in the integrand of the latter omitted, we find,
for longitudinal modes q,

8or ('cd& fi )~edK= —
~ ~qr(q) exp( —-', X'q'), (54)3(/Tp, i

where as before e is the density of carriers, X is the
thermal electron wavelength in Eq. (40), pz is the value
the mobility would have if only low-energy phonons scat-

tered, and fi' is the fraction of the crystal momentum
which would be delivered to longitudinal modes under
these conditions. Since the most interesting saturation
eGects occur at low temperatures where boundary scat-
tering may be appreciable, it is desirable to use an
expression for r(q) which at least approximates those of
the preceding section. Ke shall therefore assume

1/r(q) =A iT'q'+ (ci/L). (55)

This is a crude version of the additive probability
assumption which in the preceding section we rejected as
inadequate. However, it is good enough for the present
purpose, and it is easy to see that an approach parallel-
ing that of Eq. (43) would lead to great mathematical
complications. Insertion of Eqs. (55) and (54) into
Eq. (53) and changing of the variation of integration to
exp( —4th'g') give, for the case r,=constant,

I

J~ $1+(X'ci/4LA iT') (—lnx) '+ (4or/3) (cPrieV/A i/oT4pi)x( lnx) f—7 'dx
yg 0

(56)

evaluation of Eq. (56). The behavior of these is qualita-
tively understandable. Increasing the amount of bound-
ary scattering decreases each r(q), hence decreases Eq.
(54). Since the decrease in this quantity is always by a
greater ratio than the decrease in this quantity divided
by one plus itself, the denominator of Eq. (53) decreases
more than the numerator. Thus for a given A~, the
greater the boundary scattering, the larger Eq. (53).

The same sort of reasoning gives us some insight
into the extent of the errors introduced by the assump-
tion P„=constant. The quantity J'CdK is given by Eq
(54) independently of the law of variation of P, , which
enters only as shown in Eq. (53). Since J'CdK decreases
with increasing q except when r(q) is close to the bound-
ary scattering value, we may expect that at not too low
temperatures any increase in the

~ P„~ of states of large
Krelative to those of 'small K' will increase Q„/Q„to&.
Now there are two things which may cause P„to depart
from constancy. One is that the combination of lattice
and impurity scattering may cause the e6'ective expo-
nent r in r.(K) ~ K'" to differ from the value zero which
we have assumed in this section. From what has just
been said we may describe this eGect by saying that the
more impurity scattering, the less saturation. The other
effect is the difference between p., and p„&o& in Eq. (53) .
It is clear that P„ is larger than the P„'o& given by Eq.
(50) with the unsaturated r., since the phonons do not
slow down the charge carriers as electively as previously
assumed. Therefore the ratio Q„/Q„&o& will be greater
than it would be for P„=P„&o&, i.e. , the calculation
leading to Eq. (56) slightly overestimates the amount
of saturation.

It can be verified that if, for given Q„&o&, we make the

The denominator of Eq. (56) represents the value of pi,
the ratio of Q„i (without saturation) for a finite speci-
men to that for an infinite specimen, as given by the
present approximation in Eq. (55). The ratio in Eq.
(56) can therefore be described as a function of the two
parameters pi and is/et, where

fit= (3/4 )o(AT'pr, A i/f'c peh')

1 (Ty' (k/e) 1

4or l To& Q & (To) P (To)7
(57)

by Eq. (38), where To is any convenient reference tem-
perature at which it is legitimate to take p=pz (so
r= —s), and where Q~~&'&(To) is to be evaluated for

GQ

Figure 7 shows some plots of Q„i/Q„i&o& against n/Nt
for various values of p&, as obtained by numerical
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FIG. 7. Full curves: saturation ratio „Q& ( TL,n) /Q&& o&for non-
degenerate statistics, as a function of carrier density e, measured
in units of the N1 of Eq. (57). Here Q„&& ) is Q~&(T,L,O), and the
three curves are for different values fo pi =Q„~(T,L,O)/Q„i(T, co,0). —
Dot-dash curve: same for case of pure boundary scattering
(pt~0), abscissa e/)~a~, where $i is given by Eq. (46). Dashed
curve: saturation ratio for degenerate statistics, I.= 0(7, as a func-
tion of q&/2ICz, qi given by Eq. (61).
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decrease of r(q) with q more gradual by using an s(0 in
Eq. (36), the value of Eq. (53) will be increased.

Finally, we note that if transverse modes contribute
appreciably to Q„, Q„/Q„is' will be less than the Q 1/
Q~btsl computed here, because the transverse modes
saturate less readily than the longitudinal.

VIII. EFFECTS OF FERMI DEGENERACY
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All the calculations of Sec. II and Secs. IV through
VII have assumed the charge carriers to obey Maxwell-
Boltzmann statistics. We wish now to examine brieRy
the way in which the electronic and phonon contribu-
tions to the thermoelectric power are modified when the
carrier density is so high that degenerate Fermi statis-
tics must be used. Our treatment of this case will be
very rough, for two reasons: in the first place, as was
pointed out in the introduction, we do not yet know
how to treat degenerate semiconductors accurately;
secondly, the phonon contribution, which is theprincipal
concern of this paper, is much less important at high
carrier densities than at low, partly because of the
saturation effect discussed in the preceding section.

Wright' has given an expression for the thermo-
electric power of the conventional semiconductor model

I Fig. 1(c)$, for arbitrary degree of degeneracy. Just as
in Sec. II, if the charge carriers have a relaxation time
r, dependent only on energy the conventional model
may be expected to give the same Q, as the models of
Figs. 1(a) and 1(b), provided that any spin-orbit
splitting of the former model is either very large or very
small. If r, rc

i
e—ebs", Wright's expression for eTQ, is

the same as Eq. (2) with

where

ir5+2r) F„+1
her=&i

L3y2r) P„+

Pdt (er eb)
F.(1.*)= i

"s 1+e"—r* kT

and where the upper sign is for e type, the lower for p.
As in Sec. II, eg is the Fermi level, ~~ the band edge
energy. The P„for half-integral v values can be obtained
from the tables of McDougall and Stoner." Figure 8
shows the Q. values calculated in this way from Eqs. (2)
and (58), for r=0 and 1, as functions of 1* Curves of. Q,
es T can be calculated from these, for any desired case,
by using the relation of 1* to T given by the dashed
curve. The mobilities of typical specimens just starting
to become degenerate, analyzed in terms of the Conwell-
Weisskopf-Brooks formula, '" suggest values of r in the
range 0.8 to 1.2. As extreme degeneracy is approached,
however, it is not likely that r gets any closer to the
Conwell-Weisskopf limit 1.5, because the scattering by
the impurity ions becomes more nearly isotropic and
less dependent on energy as their screening radius be-

I I. McDougall and E. C. Stoner, Trans. Roy. Soc. (London)
A237, 67 (1938).

0 1

-3 —2 -1 0 1 2
0 0

3 4 5 6

FxG. 8. Full curves: Q. for the simple model with degenerate
statistics, as a function of f*=& (eb —sb)/kT, for two values of the
exponent r in r, ~ i&

—&bi". Dashed curve (two scales on right):
relation of f* to T/Tb, where Tb= (e/S 30X., 10'4)bm/mur&

comes shorter. Moreover, as we have already noted for
the non-degenerate case, electron-electron scattering
makes r closer to zero than in the one-electron theory.

We turn. now to the phonon contribution Q~ under
conditions of Fermi degeneracy. If the saturation effect
of the preceding section were absent, the principal
effect of degeneracy ought to be to increase the effective
average q of the modes to which the carriers deliver their
crystal momentum, hence to decrease the effective r(q)
and so decrease Q~ below the value given by Eq. (38).If
we make the assumption, now definitely risky, that lat-
tice and impurity scattering act independently, so that
(21) holds, the effect can be evaluated quantita-
tively. Although saturation is usually quite advanced
before strong degeneracy sets in, a calculation neglecting
saturation is still of some value, as it sets an upper
limit to Q„. The calculation is easy if

e'er

—ebi&)kT
)&Pro(q), where the o1(q) are the frequencies of the
phonons which do most of the scattering. The calcu-
lation for this case is given in Appendix A, and leads to
Eq. (A10). The relation of this equation to Eq. (38) or
(A8) is simple: the ratio of averages in the last factor of
Eq. (38) has been replaced by the ratio of the same
quantities evaluated at the Fermi surface; this takes
account of the shorter phonon lifetime due to the larger
q's with which the degenerate electrons interact. This
excitation of larger q values is shown in more detail by
the sample plot ln Fig. 5 of R, (q) for a degenerate speci-
men, a plot derived from Eq. (A4). However, it must be
remembered that Eq. (A8), and hence Eq. (A10), cease
to be valid when the degeneracy is so advanced that the
phonon energies are not «AT. For such high degeneracy
the average q of the phonons effective in lattice scatter-
ing will be smaller than we have assumed, and the last
factor in Eq. (A10) should be replaced by something
larger, probably of the order of (rrb*c'/kT)'+1'. However,
Q„continues to decrease, since under these conditions
7.,&

' decreases with increasing degeneracy, at least
when (21) is assumed to hold.

In actual cases the phonon part of the thermoelectric
power will of course be reduced by the saturation effect.
The expression in Eq. (53) of the preceding section gives
the factor by which the calculation of the preceding
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t CdK= (cI'tie/kTJ)[q'R "'(q)/q. ']r(q), (59)

paragraph must be reduced. For the present case we
have, analogously to Eq. (54),

Inserting Eq. (60) into (Eq. (53) we find, after an ele-
mentary integration

Q.I/Q. I
"&=1—(qt/R'~)

+ si (qi/E p)' in[1+ (2Ep/qt) j. (62)

where E ( ) is the value computed with neglect of satura-
tion. The latter quantity is given by Eq. (A4) of Appen-
dix A. We shall consider here only the simplest case, that
of complete degeneracy, longitudinal phonons (s=0),
and single-valley spherical energy surfaces. For this case
q'R Is&/q ' is proportional to q up to a value of q equal
to twice the radius Ep of the Fermi surface, and is zero
for q&2Ep. In other words, the dashed curve of Fig. 5
would be simply a triangle if degeneracy were complete.
The factor of proportionality in R ( ) can be evaluated
by the condition,

(2ir) ' R,(q)dq= (r,/r, z),sets',

where as in Sec. IV 7-,z, is the relaxation time for scatter-
ing by the low-energy longitudinal modes. With s=0 in
Eq. (36) for r(q) the expression in Eq. (59) reduces to

) CdK=qi/q, (q(2Rp)
(60)

where
=0, (q& 2E&;),

ql fir (rE/rez)E&EX kcPNe/peiE'A IT'. (61)
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FIG. 9. Contours of constant saturation ratio Q„g/Q„g(') in the
a—T plane, for the case mI &=ra, m*=0 3&t&, (&„&"&(80.')=1000
pv/deg. The dashed curve is the boundary between degenerate
and nondegenerate conditions, arbitrarily de6ned as the locus of
values for which the Fermi level coincides with the band edge.
The full lines are taken from Eq. (57) and Fig. 7 (nondegenerate)
and from Eqs. (6I) and (62) (degenerate). The dotted lines indi-
cate qualitatively the connection of the regions of validity of the
degenerate and nondegenerate formulas. Boundary scattering has
been neglected.

As is increases, qt/E~ decreases, since it goes as e/e&, " if
r,t is proportional to EF '. Thus Eq. (62) predicts less
saturation the larger e. This is clearly because increasing
ICp increases the mean q of the participating phonons,
and so, by decreasing the mean r(q), makes the phonons
harder to saturate. The eGect would be even more pro-
nounced if we assumed an exponent s&0 in Eq. (36).
However, as is shown by the sample contours of con-
stant saturation ratio in Fig. 9, saturation is always
marked at degenerate densities.

It must be borne in mind that the calculations of this
section, including in particular Fig. 9, have many
limitations. We have assumed the conventional model
of a semiconductor, and so have negelcted such things
as perturbation of the band structure by the impurity
ions, electron interactions, and nonadditivity of scatter-
ing probabilities. Moreover, our calculations of Q~I's&

and Q~I/Q„iis& are crude in that they assume
~
es —

es~

»kT but kcÃ&&«kT. Finally, both Eq. (56) and Eq.
(62) must become untrustworthy when they predict
extremely small saturation ratios, since they are based
on the assumption that the crystal momentum of a low-

energy phonon disappears when it suGers a collision;
actually, it is merely delivered to higher-frequency
modes with rather short relaxation times. Very roughly,
we may say that the saturation eGect should not de-
crease Q~I below the value of Fig. 4 corresponding to the
use in Eq. (16) of the conductivity relaxation time r,
given by Eq. (17). However, this limit is not likely to
be reached when the contribution of transverse modes
to Q„ is appreciable, since these saturate much more
slowly than the longitudinal ones we have treated.

IX. COMPARISON WITH EXPERIMENT

The theoretical notions which have been presented in
the preceding sections account qualitatively for most of
the features of the thermoelectric power data of Geballe
and HulP. Specifically, they account for the rise of the
thermoelectric power Q as T is lowered (Sec. IV) the
bending over at the lowest temperatures (Sec. V), the
decrease of the low temperature Q when the diameter of
the specimen is reduced (Sec. V), the approximate lack
dependence of Q on carrier concentration I at low ts

(Sec. IV), and the decrease of Q at high ts (Secs. VI and
VII). Table III summarizes the way in which the princi-
pal adjustable constants of the theory enter into these
various phenomena. Only those constants are listed
which are not usually well known from other types of
measurement and which have a major, rather than just
a minor, effect on the phenomenon under consideration.
In each entry an effort has been made to arrange the
constants in order of decreasing importance. In the
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middle two rows the value of Q„at moderate tempera-
ture and low m is assumed known. In the last two rows
(degenerate) the effective masses have been primed to
emphasize the fact that they need not be the same as
for nondegenerate material.

Because of the probable availability in the near future
of more accurate and detailed experimental data, it
seems best to give merely an illustrative discussion of
the data of reference 2, without attempting to extract
accurate values of the constants or to discuss the unique-
ness of the f'it critically. We shall try to show only (i)
that approximate quantitative agreement of theory and
experiment is possible with entirely reasonable values of
the constants; (ii) that even the gross features of the
data lead to some significant new conclusions about
germanium; and (iii), that the study of thermoelectric
power at low temperatures is a promising tool for getting
a great deal of useful information on semiconductors.

Most of the comparisons to be made below will be for
p-type rather than r&-type germanium. This is because
it is more likely for p- than for n-germanium that the
band structure is one to which most of the analysis of
this paper is applicable in the medium- and high-
temperature range. Specifically, the band structure of

p germanium is very probably either of the many-valley
type of Fig. 1(b), or of the single-valley degenerate type
with a fairly large spin-orbit splitting and energy sur-
faces which near the band edge are nearly concentric
spheres. "In the former case all the analysis of this paper
applies at any temperature, and in the latter case it
should apply when kT is small compared to the spin-
orbit splitting, a condition which should be fulfilled
below 100'K, though perhaps not at room teInperature.
For e-germanium, on the other hand, the disparity be-
tween the effective masses measured in the cyclotron
resonance experiment" and the inertial average meas-
ured by Benedict and Shockley" suggests that the
model for this case may be of the degenerate many-
valley type, with a spin-orbit splitting small enough so
that departures from constant curvature in the e—E
relation may be appreciable at 100'K. If this is the case,
the mathematics of this paper is inapplicable except at
very low temperatures. Even if the structure is of the
simple many-valley type, Fig. 1(b), the extremely high
anisotropy" "of the effective mass will make the value
of the m* of Appendix A very uncertain.

1. P-Type Germanium, Low n

In the range around room temperature the phonon
contribution Q„ is negligible compared with the elec-
tronic term Q, . As Geballe and HulP have shown, the
data in this region can be fitted by using Eqs. (4) and

(7) for the Q. of the holes, and combining this, when in-

trinsic conduction is appreciable, with a similar formula

"Lax, Zieger, Dexter, and Rosenblum, Phys. Rev. 93, 1418
(1954).

4s S. Meiboom and B.Abeles, Phys. Rev. 93, 1121 (1954).

TABLE III. Constants determining various features of the
thermoelectric power Q(&s, T,L)

Feature or region

High T, low e, Q,
Medium T, low n, Q„
Low T, low e, eBect of

size on Q„
Saturation of Q2, ~, non-

degenerate
High T, degenerate, Q,
Medium T, degenerate,

Qu

Principal constants

m&~&, (C sr/kT) or r
A gm*jfg
Lff,, and perhaps

A &m*'*L, (1 f&)L—
m*

m(N)', r
A &m*'/m&»'if&,
m &&v&'/m*'

3(m" l/m&~&if&, etc.

Eqs.

(4)
(38)
(46)

(47), (38)
(57)

(58)
(A10), (61), (62),

for the Q, of the electrons, according to the rule for emf's
in parallel. They found m&~&/m=0. 75&0.15, assuming
the eRective exponent r in r, ~

~

e—es~" to vary from
—0.5 to —0.8 in the way proposed in Sec. II above. The
result is not especially sensitive to this assumption. This
is roughly consistent with an inertial mass m(1'=0.3m
and a six-valley model. If on the other hand one assumes
a similar inertial mass but a band edge at E=O with
spin-orbit splitting, as cyclotron resonance experi-
ments"" suggest, " the only possibility for fitting the
thermoelectric data is to have the spin-orbit splitting
small enough to cause appreciable departures from Eqs.
(3) and (6).

In the range around liquid air temperature Q„can be
determined fairly accurately as Q —Q„with Q, from Eq.
(8) with the previously determined m&~& and r. Geballe
and Hul12 have plotted, in their Fig. 6, values obtained
in this way, and we have already remarked, in Sec. V,
the approximate agreement of the predicted and ob-
served values of the exponent &7 in Q„~ T s. Although
we shall see below that boundary scattering and possibly
even the contribution of the transverse phonons can
aRect » appreciably, the absolute value of Q„at say
80'K is only slightly different from the contribution of
Eq. (38) of the longitudinal phonons in an infinite
medium. By Eqs. (38), (39), and (40) this value there-
fore determines the quantity 3&(m*)'+'*'/f&, if r and s are
known or assumed. For the purest specimens we may
take r= ——,'at 80'. For the ideal case s=0, the last
factor of Eq. (38) reduces to —san', and with y =0 we have

3&m*/f&m= h'c&s/6kT'pmQ„&.

Numerical values are

c&=5.33X10' cm/sec,

&a
=3.8X10' cm'/volt sec,

Q„=9.4X10 ' volt/deg,

(63)

for specimen 8 of the Geballe-Hull paper at 80'. These
give the value 3.6X10 " cm'/deg' sec for the right of
Eq. (63). This value needs to be corrected for boundary
scattering and possibly for the contribution of trans-
verse phonons; as we shall see, the corrections are

~s Dresselhans, Kip, and Kittel, Phys. Rev. 92, 827 (1953).
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FIG. 10. Sample comparision of theory and experiment on Q„for
p type germanium with rI,=1.9)&1014 cm 3, L0=0.153 cm. Points:
observed Q (Geballe and Hull, specimen 8) minus Q, obtained from
(8) with N&~& =0.75ei, Aer=2kT. The vertical lines give the order
of magnitude of the uncertainty due to scatter in the observed
Q's; no estimate of systematic errors has been included. Full curve:
Q&~ for r= —2, computed as described in the text from the theory
of Sec. VI, with 6t to the observed value at 80', and with the
parameter choice fi(80') L/Lp= 0.46. Dashed curve: Q„~ for r =0.
The line at the right represents the values Q~~ would attain if there
were no boundary scattering; that at the left gives the lower limit
to Q~g+Q„~ when phonon-phonon scattering becomes negligible
compared with boundary scattering, as calculated from Eq. (42)
with L=Lo, (fi+f~)/I = (0/80) /p(80').

probably such as to increase the value given by some-
thing like 20 percent.

Comparisons of theory and experiment in the bound-
ary scattering range have been made for a number of
diGerent choices of the amount of participation of trans-
verse modes and various values of the ratio fIL/Lp i.e.,
the product of the fraction of the scattering of the car-
riers due to longitudinal modes by the ratio of the true
boundary scattering length to that for diffusely scatter-
ing boundaries. Figure 10 shows an example for which
almost no participation of transverse phonons is re-
quired, i.e., for which Q~& is negligible over the termpera-
ture range covered, even though fi 1—fI——is sizable.
The theoretical curve for r= ——,

' was constructed by
choosing arbitrarily a value for the P& of Eq. (46) at 80',
hence of pi (80'), determining the Q~I of an infinite
specimen at 80' so that p&Q„& (80', ~) equalled the ob-
served Q„, determining pI(T) from Eq. (46) and Fig. 6,
and finally multiplying pi by (80/T)'pQ„I(80', ao). The
value shown for fiL/Lp is, of course, merely the value
required to give the chosen )I(80') and Q~I(80', ~),
when Eqs. (46) and (38) are combined. The curve for
r =0, constructed to correspond to the same atomic con-

stants, is shown to illustrate the order of magnitude of
the eGect which might be produced by the increasing im-

portance of impurity scattering at the lower temperatures.
Several conclusions can be drawn from the compari-

sons of theory and experiment which have been made to
date, and they can all be illustrated by reference to Fig.
10. The most noteworthy and striking of these is that

an fi value at 80' of the order —,
' or less is required to fit

the data, i.e., that about half or more of the lattice
scattering at 80' must be due to shear modes. This is
qualitatively obvious from the fact that the observed
points bend away from the "infinite specimen" line so
far below where this line intersects the lower limit of the
"boundary scattering asymptote" derived from Eq.
(42). If this early bendover is not due entirely to the
saturation eGect, a possibility which seems ruled out by
Fig. 4 of reference 2, it. must mean that the contribution
Q„~ of the longitudinal modes is dominant and is ap-
proaching an asymptote considerably lower than that of
the total Q„I+Q~~. Further calculations which have been
made show that no fit is possible with fi)0.6. and if
the boundary scattering is not completely diffuse the
limit will be even lower. However, values of fIL/Lp
smaller than the 0.46 used for Fig. 10 are possible if the
contribution Q~i from transverse modes is assumed to
come in at a high enough temperature to partially com-
pensate the early bendover of Q».

The high- and low-temperature extremes of Fig. 10
are worth noting. Even at 100' the theoretical curve of
Q„I is appreciably below the "infinite specimen" line,
the diGerence corresponding to pg =0.89. This illustrates
the fact, implicit in (BS) of Appendix B, that at
high T, where only a negligible proportion of the modes
are dominated by boundary scattering, the effect of
boundary scattering on the remaining (higher g) modes,
though small, is far from negligible. The exponent q in

Q~ ~ T & over the range 80'—100' is reduced by bound-
ary scattering from 3.50 to 3.03. Note that the reduction
of g would have been twice as great if we had assumed
simple additivity of 1/r(q) and 1/r&, instead of using
the treatment of Eqs. (43) and (44).

At low T the observed points fall below the theoretical
curves, whereas ideally they should pass above as the
contribution Q~~ of the transverse modes starts to be
appreciable. This may be at least partly due to experi-
mental errors, which become larger in this range, or to
inhomogenity of the sample. If the eGect turns out to be
real it will dictate choice of a smaller value of fIL/Lp,
however, too small a value would worsen the fit at
higher T. According to the calculations presented below
in Fig. 11, the saturation eGect of Sec. VII should not
have made a major reduction in the Q„of this specimen
by 25'.

Figure 7 of reference 2 shows the effect on Q of a
moderate reduction in the dimensions of specimen 7.
As the diameter reduction was not absolutely uniform,
it is hard to estimate its eGect precisely; however, the
data given suggest that the cut down specimen had an
eGective I. about 0.78 times the original value. Figure
11 gives a comparison of the observed change in Q pro-
duced by cutting down with the change in Q~i computed
from (46) and Fig. 6. At 40' and 30' the agreement is
all that could be desired, and favors the belief that the
numerical assumptions of Figures 10 and 11 are not far
from the truth. However, the uncertainties in the
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experimental data are considerable, and as data covering
a much wider range of sizes will probably be available
soon, it is hardly worthwhile to speculate about such
things as the departures of the points from the curve
at high and low T.

Qp
Q(o) pe

)&

1|

2' 35 50 75

2. Nondegenerate p-Type Germanium, Larger n

Figure 4 of the paper of Geballe and HulP shows that
as the carrier concentration )) increases, Q~ changes little
at 6rst, but eventually decreases markedly. This is
undoubtedly the* saturation eGect of Sec. VII, and
we shall discuss it in detail presently. The slight rise
in the plotted Q„occurring just before the fall may or
may not be real. It is of the same order of magnitude
as the correction which would be produced in Q„by
taking impurity scattering into account in the calcula-
tion of Der (see Sec. II). If any part of the rise is real, it
may conceivably be due to breakdown of the assump-
tion that impurity scattering and lattice scattering act
independently, an assumption involved in our use of Eq.

0.8 =
o.e

(2)

~pl)
P

p I

0 Ip 20 30 40 50 60 70 80
TEMPERATURE IN DEGREES KELVIN

Fzo. 11. Sample comparison of observed and calculated values
of the change in Q~ due to reducing diameter of sample. Curves:
calculated from Fig. 6 with numerical assumptions of Fig. 10.
Points, Geballe and Hull, specimen 7, Lo&'&/Loo& =0.78.

(21).At suff)ciently large impurity density this specula-
tion may be broadened into the statement that im-

purity band conduction is aRecting both Q, and Q„.
The saturation eGect can be predicted quantitatively

from the theory of Sec. VII, provided we can adopt a
value for the critical density ))) defined by Eq. (57) and
for the boundary scattering reduction factor pt, in Fig. 7.
If Ts is taken in the liquid air range, so that Q„)(Tt&) is

known, the only unknown quantity in Eq. (57) is the
eRective mass )))*entering into X. For p germanium this
cannot be far from the value 0.3m, which is close to the
inertial average mass" or to the larger of the two cyclo-
tron-resonance masses. 4'44 As for p~, which in Fig. 10 is

'4 It is clear that, for the two-band model (see reference 33) the
larger mass determines the effective average wave number q of the
phonons which scat ter the holes. The reason is that only transitions
in which both initial and final hole states are of the small-mass type
can give q's significantly smaller than those going with large-mass
states of the same energy. But such transitions are rare, because
only a small fraction of the holes are in small-mass states, and these
are scattered predominantly into large-mass states, because the
latter states are so much more plentiful than the former.

0 0
) pl4 Ipl5 2 )016 2 5

)pl 7
2 5 )p)B

I) IN CM

FzG. 12. Comparison of observed saturation ratios for p type
germanium with the theory of Sec. VII. Curves: theoretical values
obtained from Fig. 7 as described in the text. Points: observed
values, from Fig. 4 of reference 2. The vertical line on each point
gives a roughly estimated upper limit to the amount by which the
"observed" ratios should be reduced to take account of the effect
of impurity scattering in increasing the theoretical Q, and thus
reducing the "observed" Q„. Ratios have been fitted to unity for
m=1.9&&10I4 cm ' except for the 20' curve, where theory and ex-
periment were made to coincide at 1.5X10".

the ratio of the value given by the curve to that on the
"in6nite specimen" line, Fig. 10 gives the values
0.24—0.27 at 35', 0.49—0.56 at 50', and 0.77—0.82 at
75', the 6rst 6gure of each pair referring to r= ——'„ the
second to ~=0. Calculations similar to those of Fig. 10
but with other reasonable choices of the adjustable
parameters have usually given values within a few
hundredths of a unit of these, so it will be reasonable, for
a rough analysis, to take the p& values at 35' and 50' to
be the same respectively as those used in Fig. 7, vis. ,
0.28 and 0.54, and to interpolate Fig. 7 to p~=0.8 for
75'. The theoretical curves so obtained are compared
with experiment in Fig. 12, assuming Q„=Q„I.

Except for the 75' data, the agreement is very good
indeed —a little too good, in fact, since practically all the
minor effects which have not been incorporated into the
theory ought to cause the present theoretical curves to
be too far to the left. These effects include the contribu-
tion of transverse modes; the effect of saturation on the
mobility of the electrons, i.e., p„Wp„ts& in Eq. (53); de-
partures from the assumption r=0; possible failure of
the phonon scattering law to assume its asymptotic
form in (33), resulting in an effective s(0 in Eq.
(36); and the previously mentioned possible increase in
the electron-lattice interaction in the presence of strong
impurity scattering. The low ratio shown by the 20'
point at the extreme left is probably due to some sys-
tematic error in the data for this specimen, as the points
for this specimen at other temperatures (not shown) are
out of line with the general trend of the other specimens.

While the present calculation with m*=0.3m gives
reasonable agreement for the saturation effect, an m*

say twice as large would, by Eq. (57), require a shift of
the calculated curves to the right by a factor 2', and so
would not 6t. In view of the one-sided nature of most of
the corrections which the theory is likely to need, it is
probably safe to say that an m*& 0.6m wouM be hard to
reconcile with the data.
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3. Degenerate P-Type Germanium

The most highly degenerate of the p-type specimens
studied by Geballe and Hull was their No. 1, with e= 7.1
X10is cm '. Their measured value, Q=296 pv/deg at
300'K, can be fitted to the conventional theory of Q„
as presented in Fig. 8, by suitable choice of the density-
of-states mass m'~&. The required value is roughly 0.8m
if r. is assumed independent of energy (r=0), 0.4m if
r, ~

~

e—ei,
~
(r = 1). According to the discussion given in

Sec. VIII, an eGective r near 1 would be reasonable, but
a value nearer to 0 is not excluded. It is interesting to
see that the range of m&~' values suggested by the
thermoelectric data includes the value found for high-
resistivity material; however, the band structure for
the degenerate material has been formed by the growth
and coalescence of impurity bands, and might easily
have a higher or lower m(

If we take this result as evidence that the conven-
tional theory of Q, is a fair approximation to the truth,
we may compute Q„by comparing Q with theoretical

Q, values at lower temperatures, fitting Q, to Q at room
temperature. This procedure gives, for the specimen
mentioned, values from 160 to 220 pv/deg for Q„(60'),
assuming the efFective r to be between 0 and 1 and to
increase or remain constant as the temperature is
lowered. Such values accord with the predictions of Sec.
VIII in being far below the value for high-resistivity
material (1900—2000 pv/deg), but they are rather larger
than expected. If at 60' we take m&~'=0. 8m, the more
favorable of the possible room temperature values, we
find from (A10) that in the absence of saturation the
ratio of Q„ for specimen No. 1 to that for a nondegener-
ate specimen should be about 0.3 at 60'. The ratio of the
Q„values just quoted is at least a quarter of this, so the
saturation ratio should be at least 4. The curves of Fig.
9, though rough, suggest that the saturation ratio for
the contribution of the longitudinal phonons alone
should be a little less, of the order of 0.1 to 0.2. More
complete data will be needed to decide whether this
discrepancy is trivial or whether it arises from the
transverse phonon contribution, from inadequacy of the
conventional theory of Q„ from incorrectness of the
assumed band structure, or from inappropriateness of
any band model for the calculation of Q~. Concerning
the underlying band structure, it is to be noted that for
a given m* a change in the number of valleys, e.g. , from
6 to 1,- has no effect on the predicted saturation eGect in
the nondegenerate range, but aGects the saturation
considerably in the degenerate range.

4. N-Tyye Germanium

The data of reference 2 on e-type germanium show
the same qualitative features as for p-type, the only
appreciable diGerences being a more gradual bending
over at low temperatures and a smaller exponent 'g in
the high-temperature law Q„~1 ~. There are several

conceivable causes for the small value 2.4 found for the
apparent q '.

(i) As was suggested above, the band structure may
be of the degenerate many-valley type, with a fairly
small spin-orbit splitting. This would be in line with the
fact that Geballe and HulP had to take m&~&=0.75m
to fit their n-type Q, around room temperature, whereas
with a nondegenerate four-valley model one would
expect no&~&/m=4'(0. 08'&(1.3)&=0.51, with the cyclo-
tron masses, "or m&~'/m) 4i&&0.6= 1.5, with the Bene-
dict-Shockley mass. " If the suggested spin-orbit split-
ting were present, the theory of all these eGects above
liquid air temperature would require revision. In partic-
ular, the extrapolation of Q, to the liquid air region
would become uncertain, since both the position of the
Fermi level and the term her in Eq. (2) might depend on
T in a way different from that assumed in Eqs. (4) and
(7). In such a case, the resulting modification of Q,
might be in part responsible for the small exponent q.
In addition, the temperature variation of Q~ might well
be altered, since both the eGective m* and the eGective

fi in our formulas could be changing with temperature.
(ii) As we have seen for p germanium, boundary

scattering is capable of reducing the eGective exponent

p appreciably, even in the range 80'—100'K. This eGect
could considerably alleviate the q discrepancy for e
germanium, even with a nondegenerate many-valley
model, if the average eGective mass m~ for e germanium
were considerably smaller than that for p germanium.
In such case the $& of Eq. (46) would be considerably
1arger, and so the boundary scattering ratio p& would
depart more from unity at any given temperature. A
value hq=dlnp~/dlnT close to unity would not be
inconceivable.

(iii) It is possible, of course, that the exponents s and
y in Eq. (36) depart appreciably from their ideal zero
values, i.e., that the limiting form of the phonon-phonon
scattering law for small T and q

—&0 is not realized. In
such case the larger g for p germanium would probably
have to be attributed to something like spin-orbit com-
plications.

Particularly interesting are the data on the reduction
of Q„due to cutting down the thickness of the specimen.
From Fig. 7 of reference 2 it appears that when a
specimen initially 0.16)(0.148 cm was reduced to
0.16)&0.025 cm over most of its length, Q„was reduced
in the ratio 0.83 at 60'K, 0.65 at 25'K. At first sight it
seems surprising that the reduction in Q~ is not more
pronounced: we might intuitively suppose that at 25'
it should be comparable with the ratio of thicknesses.
However, a study of the formulas of Casimir, '"" which
determine the boundary scattering length L, shows that
for a slab-shaped specimen L is much larger than the
thickness, and in fact increases logarithmically without
limit as the width increases, for fixed thickness. Al-
though no exact expression for L is available, it seems
reasonable that L for the cut-down specimen may have
been large enough (0.3 to 0.4 of the original value) to
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make possible a fit of the 60' result to the theory of Sec.
VI, with Lf~/Ls & 1.The 25' result could be accounted
for by such an L if the contribution Q~& of the trans-
verse phonons to Q„ is an appreciable fraction of the
total at this temperature. However, there are other
factors which should be looked into, among them the
effect of the highly anisotropic effective mass, which will
cause the function R,(q) to have a much broader peak
that the function used in Sec. VI, hence to diGer in its
boundary scattering properties.

The data on the saturation effect for e germanium,
Fig. 5 of reference 2, are less detailed than the data for

p type, but are su%ciently similar in their behavior to
justify the belief that they too can be roughly accounted
for by the theory of Sec. VII.

Q~ ~ pc'fi/pm*. (65)

Semiconductors belonging to the trigonal system, if
suitable ones can be found, would be of especial interest,
since according to reference 32 these should have an
asymptotic phonon-phonon scattering law of the type
in Eq. (36) with s= 1, &=0, and correspondingly should
have rather large phonon-phonon relaxation times,
hence large Q„.
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X. PREDICTED BEHAVIOR OF OTHER
SEMICONDUCTORS

The comparison of theory and experiment just given
for germanium indicates that many interesting things
can be learned about a semiconductor from a study
of its thermoelectric power in the range where Q~ is
appreciable. The planning of future experiments in this
field may be facilitated by a rough prediction of the
order of magnitude of the Q~ to be expected for a new
material. For cubic materials, to which Eq. (38) applies,

Q~ at any given T should be proportional to c'f&/lrA tm*,
where c is the velocity of sound, p the mobility, m~ the
effective inertial mass defined in Appendix A, A~ the
phonon-phonon scattering coeKcient defined by (33),
and fi the fraction of the scattering of the carriers
which is due to low-energy longitudinal phonons. The
variation of A~ with the material can be estimated by
dimensional means, if we are willing to assume the dif-
ferent materials to have the same ratio of anharmonic to
harmonic elastic constants. Vnder this assumption A~

must depend only on 5, k, c, and the density p. Dimen-
sional analysis gives

A i ~ P/5'c'p,
whence

APPENDIX A: CALCULATION OF Q„FOR THE
MANY-VALLEY MODEL, WITH

FERMI STATISTICS

We wish to calculate the quantity R(q), defined at the
start of Sec. IV, for the many-valley model of Fig. 1(b),
and for Fermi statistics. To make the calculation trac-
table we assume that the combined effect of all scattering
processes acting on the charge carriers can be described
by a relaxation time r, (e) which is a function of energy
only. This can be shown to be justified for any inter-
valley scattering and for intra-valley lattice scattering
provided the phonon energy can be neglected and pro-
vided only the volume dilatation contributes to the
deformation potential. 4' However, use of a r, (c) is only
roughly correct if shearing distortions contribute, as
they usually will.

The total R(q) which we wish to calculate is a sum
of contributions from the different valleys surrounding
the different band edge points K„. For a cubic crystal,
however, the average of E R(q) over the different
valleys and over directions of q is the same as the
average, for a single valley, over all directions of q and
the electric 6eld E. Let us therefore fix attention on one
of the valleys, say that around Ki. Let the coordinate
axes be chosen parallel to the principal axes of the
ellipsoidal energy surfaces in this valley. The variation
of energy with K in this valley is given by

~
err —es

~

= (h'/2m) (rrAK, '+rr„&K„'+n,hK, '), (A1)

where e& is the band edge energy, n, =m/m, *are effective
mass ratios for different directions, and 6K=K—Ki.
With this notation, the first-order distribution function
in this one valley is given by the analog of Eq. (20),

fi"(K) ~ rg(err) (+En hK )dfi.'l (err)/dere, (A2)

where f&" is the Fermi function.
We shall consider only the case in which the phonon

energies are negligible compared with the electron
energies and with kT. For this case one gets the same
result by neglecting the exclusion principle in the
transition probabilities as by including it through fac-
tors (1—f). Therefore the first two lines of Eq. (22) re-
main valid for the contribution of each valley in the
present problem. When we come to insert Eq. (21) in
Eq. (22), however, we meet the complication that the
matrix element M is in general dependent on the direc-
tion of q, since the deformation potential for the valley
at Ki in general depends on a particular component of
the shearing strain as well as on the volume dilatation.
While it is not quite consistent to take this anisotropy of
M into account while assuming a relaxation time de-
pendent only on energy, we shall do this here, partly
because the analysis for this case is fairly easy, and

"These arguments will be given in a forthcoming publication
(reference 19).It can also be shown that for a many-valley model
the shortcomings of the assumption of existence of a ~(e) can be
corrected, to a fair approximation, by use of three relaxation times,
a procedure roughly equivalent to letting ~ depend on position
over an energy surface, as we did in (5) and (6) of the text.
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where 6 is a function of the direction of q, proportional
to ~3I~'. Averaging of (A4) over directions of E replaces
the factor in front of the integral by Gq'E'/3.

The averaging over directions of q is not easy to
carry out explicitly on Eq. (A4). However, if we assume

T(q) to obey Eq. (36), we may evaluate the left sides of

Eqs. (26) and (19), as in the text, by interchanging the
order of integration on K and q. With

dq = (n.n~, ) 1q"dq'dQ- , (A5)
we find

2 ATvZ'(G)'
(20r)-0 E.R(q)dq=

3m' (n~„().,)&

ca df(0)
X " ~K"(..(~K') d~K' (A6)

0 dp

J)t,Z (G(q'/q)'+ )'
(20r) p, t T(q)E.R(q)dq=

60r'(2 —s) AT' ' T(n~~, )*

df (0)

gK" 'T, (t).K') d—hK', (A7)
00 d6

where tv is the number of band edge points K„and
( )' denotes an average over directions of q'. For
phonons of branch n (n=l or t), Eq. (A6) may be set
equal to E Jf /t&(, where f is the fraction of the crystal
momentum given up by the carriers which is delivered
to low energy modes of this branch. Combining this with

Eqs. (A7), (19), and (11) we 6nd for the contribution of

phonons of this branch to the thermoelectric power

f-&-'(G-(q'/q)'+')'

JT 2'(2 s)tJ,AT~' T(G )'—
f aK" 'T, (AK') (df(')/d 0)dhK'

(AS)

t aK'0T. (aK')(d f(0)/dp)d~K'

partly because anisotropy of M is likely to be more im-

portant than failure of the relaxation time assumption.
It is convenient to associate with any vector V a

primed vector V', de6ned by V, '=().,'*V;. Then (A2)
can be written

f(i& ac T (gK )(E AK )[df( )/dp]~ 0'ax"/2m. (A. 3)

By steps like those used in (22) to (25) of the text
we And

G(E «)(E' «')
E Ri(q)=

d f(0)
T,(aK') ~K'd~K', (A4)

Let us specialize first to Maxwellian statistics. For
each direction of q the expression (A4) is of the same
form as Eq. (25), so the present R, (q) will be an average
of curves like the full ones in Fig. 5, the average being
taken over a family of curves of the same shape but
diGerent horizontal scales. Thus the peak of the final
R, (q) curve will be broader and flatter than in Fig. 5;
this difference in shape will disappear as a„o.„, n,
approach equality. Now in applications like those of
Secs. V and VI, we wish to approximate R(q) by the
equations of the text, which involve m* or X. A good
choice for this parameter is the one which makes E
times Eq. (37) equal Eq. (A7). With this choice the
approximating R(q) has the same integral and the same
(—2—s)th moment as the correct one. Equating the
ratio of Eq. (37) to Eq. (26) to the ratio of Eq. (A7) to
Eq. (A6), we find

(G') - 2/(2+s)
m*= m

(G(q'/q)"')'-
(A9)

This no* always lies between the minimum and the
maximum of the effective masses m, ~ =m/n; in the three
principal directions. Numerical evaluation of Eq. (A9)
has shown that if 6 is isotropic m* is usually quite close
to the geometric mean of the m;*, i.e., to m(~)/Si *. For
the maximum possible anisotropy of 6, on the other
hand, vs~ may be closer to one of the extremes nz,* than
to the geometrical mean. With the identification in Eq.
(A9), Eq. (AS) coincides with Eq. (38). For the general
many-valley model, f /p is not rigorously given by an
expression like Eq. (31), but a study of the analogs to
Eqs. (27) and (29) shows that the variation off /p with
the scattering exponent r must be very similar to that
used in Eq. (39).

In the limit of extreme degeneracy df(0)/dp becomes
a delta function and Eq. (AS) becomes, with Eqs. (A9)
and (40),

f c 9,0+' (kT) i+1'

2'(2 s)tIA. T' T( —0) i- (A10)

APPENDIX B: EVALUATION OF THE BOUNDARY
SCATTERING RATIO y

We would like to evaluate

('
p= AP+ydsdq DI'p+ydsd«, (B1)

J J J

where y and s run over the cross section of a cylindrical
specimen of any specified shape with its axis in the
x direction and where AP is the density of crystal mo-

The significance and limitations of this equation are
discussed in Sec. VlII. Note that for the present case
f„/ti exceeds the value in nondegenerate material in the
ratio (160);/9irkT) &.
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1/rb(a, T)= (cq./q)

X AP. (il;y„z)dz AI', (q; y, z)dydz, (82)

where AP is given by Eq. (44). This r b is, of course, the
r b which has to be combined with r (q) by the method of
adding reciprocals, in order to get the effective relaxa-
tion time for. mode q. The difference between the present
theory and the usual one lies in the fact that Eq. (82)
depends on temperature, i.e., on r(iI). At low tempera-
tures r(q)~~ and the integrals in Eq. (82) simplify; at
high temperatures r(q)~0 and they simplify again.

mentum in q and coordinate space, as defined in Sec.
VI, and AI'0 is the same in the absence of boundary
scattering.

Ke shall assume for the present that the boundary
scattering is completely diffuse. Then the argument of
the text, leading to Eq. (44), can be applied to any shape
of cross section provided y is defined as the distance
from the back surface, measured in a direction normal
to the specimen axis and coplanar with this axis and q,
so that q, =0. Let us define 1/rb(q, T) to be the ratio of
the rate of destruction of AP by boundary scattering to
the integral of AP over the cross section. If yi(z) is the
maximum value of y, i.e., the thickness of the specimen
at, s,

One finds easily
( e

rb(r~)/rb(r~~) =21
E~

f f
) dz) yi'dz. (83)

rb '=2c sin8/gi,

rb 3rrgi/8c =——L/c.
(84)

In the present approximation the value of Eq. (81)
for longitudinal modes becomes, by (44), (45), and
(33),

For the slab this has the value 2 mentioned in the text;
for a circular cylinder it is 3ir'/16= 1.85; for a square it
varies from 1.5 to 2, depending on the direction of q.
Thus for all these cases the mean value of Eq. (83) over
directions is within 10 percent or so of 2. This suggests
the following approximation for the evaluation of Eq.
(81):Let us choose an average gi of yi (z) as the limit on

y in Eq. (81), in such way that at low T (~~ ) we get
the right p. Then use of this same y~ should give 1—p
correct to 10 percent or so at high T(r—b0). It is reason-
able to expect the behavior at intermediate T to be
nearly correct also.

To determine y~,we note that the correct p for r—+~
corresponds to a weighted average 7~, with weight

q,'jq', equal to L/c, where L is the Casimir length intro-
duced in the text. For a circular cylinder we have

q,/q=cos0, q„/q=sin8, and if yi ——gi is taken inde-
pendent of z in Eq. (82), then for r—&~,

q i slii0 ( —q2
~—-vl I P(v)iv)

~ 0 q' EqP sin8)
(85)

where the angular brackets denote an average over
directions of q,

and
qP = 3rrc/8LA iT', (86)

Pi
——Vqi2/4 (811)

F(q) ~B (q) =Xqt 1—I (Xq/2)j (r=-,') (87)
=Xq exp (—X'q'/4), (r=0) (88)

etc. (see Fig. 5), C being the error function and X being
defined by Eq. (40). For r= ——', and 0 the integral on q
in (85) can be evaluated analytically:

r= ——', :p=1—(3 cos'0

4&i sin8 In(2+2t 1+Qi sin8) '$~)), (89)
r=0:p=1 —(3 cos'0 $i sin81nL1+($i sin0) ')), (810)

where

has the value given by Eq. (46). The full curves for
r= —-', and 0 in Fig. 6 were constructed by evaluating
the angular averages in (89) and (810) numerically.
The curve for r=1 was estimated, from these two
and the rigorously known limiting behavior at large and
small (i.

For transverse modes we may evaluate Eq. (81)
similarly, using (34) instead of (33) for r(q) in Eqs.
(44) and (45). The result is, for r=0

p=1—(3 cos'0(1 —C/()i sin0) '])
&&expL(gi sin8) 'j), (812)

where &i is given by Eq. (47). The dashed curve in Fig. 6
was again obtained by numerical evaluation of the
angular average.


