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expected to be almost isotropic. Besides, any reasonable
level density function® will predict a cross section for
this scattering process which is several orders of mag-
nitude smaller than the observed value of about 40 mb.
Further work will be carried out to improve the separa-
tion of the elastic and inelastic scattering at small
angles in order to test the theory of Austern, Butler,
and McManus.
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T has often been surmised that there exists a con-
servation law of nucleons, i.e., that they neither
decay spontaneously nor are destroyed or created
singly in nuclear collisions.! In view of the fundamental
nature of such an assumption, it seemed of interest to
investigate the extent to which the stability of nucleons
could be experimentally demonstrated.?

To investigate the possible decay of a free proton,
the large scintillation detector developed for the neu-
trino search?® was employed. The detector was par-
tially shielded from cosmic rays by placing it in an
underground room with about 100 feet of rock above.
The counting rate and pulse spectrum as seen by the
detector may be used in arriving at a lower limit for
the proton lifetime for certain postulated modes of
decay. For fast particles the output of-the detector is
proportional to the energy deposited in the scintillator
and hence for minimum ionizing particles to the track
length in the scintillator.

The spectrum expected from any hypothetical proton
decay depends then on the geometrical disposition of
the protons as well as on the decay scheme assumed.
As to the decay, we are free to assume any scheme
which is consistent with the laws of conservation of
charge, energy, momentum, and angular momentum.
In view of the proton rest energy of 0.9 Bev and the
known lighter particles into which it might conceivably
decay, it seems reasonable to expect that these charged
products would have a kinetic energy of the order of
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100 Mev. If this decay occurred within the scintillator,
the spectrum would essentially reflect the detector
geometry because the decay-particle ranges would prob-
ably exceed the maximum detector dimension (~100
cm, equivalent for minimum ionizing particles to =140
Mev). There are 1.5X10? protons in the scintillator
(approximate chemical formula C;Hg). The scintillator
was surrounded by paraffin walls 2 ft thick. This
effectively doubled the source of protons, giving
~3X10% protons. The pulse-height distribution ob-
served is shown in Fig. 1. The integrated counting rate
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F16. 1. Pulse-height spectrum in 300-liter liquid scintillator
located underground. Time of run=1000 sec per point. The
integrated area for pulses larger than the cut-off bias, which corre-
sponds to ~15 Mev, is 6.6 counts/sec.

for pulses >15 Mev is 6.6 counts/sec. This corresponds
to a lower limit of 1.5X10% yr for the mean lifetime
of an unbound proton. However, most of the counts in
our experiment can be attributed to cosmic rays for
two reasons: (1) The counting rate is in fair agreement
with that expected from cosmic-ray p mesons; (2) the
spectral shape with its characteristic maximum at ~110
Mev is consistent with what would be expected for
cosmic-ray mesons underground traversing our scin-
tillator. It seems, therefore, safe to conclude that at
most ~# of the observed counts could be due to proton
decay, and hence the lifetime of free protons is >10%
yr. Lifetimes for some specific decay schemes which
might be assumed can be shown to be even greater.

In our scintillator bound nucleons are an order of
magnitude more numerous than hydrogen atoms. This
yields a lifetime for bound nucleons >10% yr, a result
which can also be interpreted as indicating the absence
of “nucleon-destroying” collisions within nuclei.

It is clear that the technique here employed is
capable of considerably higher sensitivity, but we
believe that the values already obtained are of sufficient
interest to be put on record. Higher sensitivity could
be obtained both by using larger counters and by
going deeper underground or in the ocean to eliminate
cosmic rays.

We cannot conceive of an experiment which would
prove the absolute stability of nucleons, but judging
from the demonstrated “practical” stability of nucleons
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we conclude that the law of conservation of nucleons
can be used with considerable confidence in discussions
of “practically observable” nuclear reactions. It proves
very useful, for example, for hyperon reactions where
it permits the conclusion that particles observed to
decay into nucleons must be made from pre-existing
nucleons or be produced in pairs (particles plus anti-
particles). It also follows that nucleons must be found
among the ultimate decay products of such hyperons;
otherwise the decay of nucleons via virtual hyperon
states would be observable. If nucleon pair production
processes should be observed, the number of nucleons
would only be conserved in an algebraic sense.
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LTHOUGH, strictly speaking, a Lagrangian for-
malism in quantum theory is not known, it has
nevertheless very often been used as a starting point
for quantized field theories. The usual procedure is to
apply the Lagrangian formalism before the quantiza-
tion in order to derive the field equations and the
Poisson brackets for the field variables. The quantiza-
tion is performed afterwards by replacing the Poisson
brackets by commutators. In order to overcome the
apparent disadvantages of this way of proceeding,
Schwinger! has recently developed a quantum me-
chanical variational principle. It is the purpose of the
present note to investigate how far this attempt has
succeeded.
For simplicity, we shall not consider a field theory,
but a mechanical problem with # degrees of freedom.
. Classically, this system is described by 7 second order
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differential equations in the variables ¢; (f) (=1, - - -, %)
or, if one introduces » extra variables, the conjugate
momenta p(f), by a set of N=2x first order equations.
These canonical equations of motion can be derived
from the variational principle:

t2
) f Ldt=0, 1
171
where
L =kZ Didr— H (Pr,qust)- (2)
—1

If one goes over to other variables y;(px,qx), where
I=1, ---, N, the equations of motion are again described
by (1), where now L is expressed in the new variables. If
the transformation is such that L expressed in the
new variables has again the form (2), apart from an
irrelevant time derivative, then one speaks of a canonical
transformation.

Let us now compare this with Schwinger’s varia-
tional formalism in quantum mechanics. Here, one
starts with a Lagrangian of the form

N
L=% 3 an(xpdi— txwr) — H (x5,0),

k, =1

where the matrix ay; is antisymmetric and has deter-
minant 0. The variables x;(f) are now operators in
Hilbert space. The variations have to be restricted to
c-number variations. Using Schwinger’s prescription,
one finds the equations of motion 23 au@:=90H/dx;
and the commutation relations (2/%)[%%,22 m@wm%m ]
=0y With these commutation rules, one can write the
equations of motion as &= (¢/%)[ H,%s . It appears that
the commutation relations are determined by the
matrix ax;, and the equations of motion by the Hamil-
tonian operator H.

We shall now see what happens if we go over to new
variables y,=Ux, U™ by means of a unitary trans-
formation which does not depend explicitly on the time.
For these variables, the commutation rules are the
same and the equations of motion have again the form
1= (i/h)[H,yr]. The Lagrangian function must there-
fore, apart from a time derivative, have the form
L'=3>"1 10 (vigi—Uxyy) — H. The fundamental point is
whether this expression L’ differs from L only by a
time derivative. We shall show with an example that
this is not the case. We take a system with one degree
of freedom, where ax; has the simple form a;;=as2=0
and @i2=—axn=1. The Lagrangian is L=3%(pg+dp
—pq—qp)—H ; or, if we add }(d/di) (¢p+pg), we have
L=3%(pg+¢p)—H. We apply the unitary transforma-
tion U(p,q) =exp(3ig®/#), which gives p'=p—g¢® and
¢'=q. The new Lagrangian is L'=%(p'¢’+¢'p") — H. We
can easily see that L'—L=—3(¢*¢+¢¢*). This differ-
ence is not the time derivative of a function of p and
¢ and thus the two Lagrangian functions are essentially



