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Limiting Processes in the Forwardal Theory of Scattering
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The equivalence of different formal limiting processes employed in the theory of scattering is discussed by
comparing the integral equations which hold for finite values of the parameter.
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An explicit solution is given by

U(t t ) eiKte c(Ec+v) (t tp)e are—p— —
(4)

Our concern is with the definitions of U(t, —~) and
U(po, t). These operators may be defined either by
adiabatic switching on of the interaction or by a certain
average over initial or final times proposed by Gell-
Mann and Goldberger. ' In either case, we obtain an
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' 'N the theory of scattering, one always introduces or
~ ~ implies formal limiting processes such as the adia-
batic switching on of the interaction. Recent work. ' 4

has emphasized the importance of these limiting proc-
esses. The relations between alternative limiting
processes, however, are not as clear as one might desire.
It is the purpose of this note to clarify these relations
by comparing the integral equations which hold for
finite values of the parameter.

Let H=E+ V be the Hamiltonian of the system. V
is the interaction and V(t) is the Hamiltonian in the
interaction representation,

V (t) —e (K t Ve cKt—
We consider the unitary' matrix U(t, tp) which satisfies
the Schrodinger equation,

iaU(t, t,)/at= V(t) U(t, t,) (1)

())t= 1), and the initial condition U(t, tp) =1. It satisfies
the integral equation'

operator family U, (t, —~) and U, (~,t) depending on
a parameter e (e)0) and we define the operators
U(t, —~) and U(po, t) by

U(t, —~)=limU, (t, —~),
e-+0

U(~, t) =limU, (~,t).
a~0

(6)

Such a procedure is necessary since the limit lim«
U(t, tp) does not exist in general. Our operator family
should be defined, however, in such a way that

limU, (t, —po)= lim U(t, tp),
a~0 )p~OO

if the latter limit exists. It is easy to verify that this is
true for the definition (8) below. '

The operator U, (t, —~) may, for instance, be defined
as the solution of the integral equation,

U, (t, — )= 1 i —dt'e'(" "V(t') U, (t', — ), (7)

t

U, (t, — )=. I dt, e ('o-') U(t, tp).

It is important to realize that

lim p dte"f(t)=0
&~0

for any function f for which the integral exists provided et&~0
and et2~0.

P Reference 1, Eq. (3:19).This equation gives

U, (t, —pp)=sf dtpe" U(t, to)

which is different from (8). However, the limit p—&0 is the same
if it exists. See reference 8.

which is obtained from (2) by switching on the inter-
action adiabatically and letting t0 go to —~.The quali-
tative idea of switching on the interaction does not
determine the factor e" '& uniquely. If one starts
from the differential Schrodinger equation, one is led
to substitute for instance, V(t)—&e '~ '~ V (t)."It is easy
to see that for finite t a factor e'~'~ in (7) instead of
e'(' ') would give the same U(t, —~ ) in the limit e-+0,
if this limit exists. Our choice (7)'will prove to be par-
ticularly useful.

An alternative definition has been proposed by Gell-
Mann and Goldberger
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FORMAL THEORY OF SCATTERING

We may substitute the right-hand side of (4) for
U(t, ts) in (8) and obtain a closed expression for
U, (t, —eo):

and one verifies easily that U(~,0)e=Q& &, where Q& &

is defined by

(qlQ. ' & lq')=(ql1lq')+(&, —&.—se) '

where
(t (g) )—eiKtU (0 eo)e ix—t (9) x(ql vQ. ' 'lq'), (16)

(10)

We shall now show that the two definitions of the
operator U, (t, —~), LEqs. (7) and (8)$ are in fact
identical. This can be shown by proving that the
operator defined by (8) satisfies the integral equation
(7): Multiply (2) by ee'i'o " and integrate over ts

from —~ to t. The first term on the right-hand side is
then equal to 1, the second term is identical with the
second term in (7) after the order of the two integrations
has been interchanged. Similarly we can show that the
two definitions of the operator U, (~,t),

U,(,t) =1— ~ dt'U, (,t') V(t') — '-' (11)

and 0' )=lim, pQ ~ &. We have thus shown that the
insertion of a small imaginary part in the energy
denominator of the time-independent scattering theory
is equivalent to an adiabatic switching of the inter-
action.

The S matrix in the time-dependent scattering theory
is usually defined by"

g= U(oo, —ao). (17)

It appears that the definition (17) may be ambiguous
without detailed prescriptions about the limits in-
volved. We shall show that there is no ambiguity if the
limits are taken in any one of the several ways discussed
below. We may define U(~, —~), for instance, by

U(~, —~)=lim(e~0, e'—+0)U, (oo,t)U, (t, —~)
and

f
U, (~,t) =. dt, e ~ t'o '& U-(t, -t), —(12)

=hm(c —+0, e'-+0) ee'
eJ

g

pt
dtp

J
dtp

are identical. We have thus shown that the averaging
process (8) or (12) is equivalent. to an adiabatic switch-
ing on or switching oG of the interaction.

The connection with the time-independent scattering
theory is easily established as follows: Inserting (9) in

(7), we find,
~0

U, (0, —~)=1—i dte"e'x'VU. (0, —~)e 'x', (13)

which proves that U(0, —oo) is identical with Mitller s"
wave matrix Q'+&. Indeed Q&+& is de/red by the integral
equation

(qlQ "&lq')=(qlilq')+«' —&.+se) '

x (ql UQ. &'&
I
q'), (14)

and Q'+&=lim, sQ, i+&. Equation (14) is written in a
representation in which E is diagonal. If we evaluate
the integration in (13) in this representation we see
that U, (0, —oo) =Q, &+&.

In analogy to (9), we have from (4) and (12)

U, (~,t)=e'x'U (~ 0)e 'x' (15)
' C. Mufller, Kgl. Danske Videnskab. Selskab, Mat-fys. Medd.

23, No. 1 (1945).My&lier denotes the wave matrix by +; we follow
the notation of reference 1.

Xefto—6'tp'+t(e' —1& U(t ~ t ) (18)

We see that the right-hand side of (18) is independent
of t and the ratio e'/e for finite t in the limit e—&0, e'—&0.

We see, also, that it is equal to

llm(tp ~+ oo, tp~ eo) U(tp &tp)&

if these limits exist. '
We can further show that

U(~, —~)= lim(t —+~, et—+0) U, (t, —~)
= lim(t~ —~, et~0) U, (~,t) (19).

Inserting (9) and (15) in (7) and (11), respectively, we
see that the double limit t—+& ~, et—+0 exists provided
the energy dependence of VU, (0, —eo) and U, (~,0) V
is suKciently regular. Since these limits exist, (19)
follows from (18).'

The equivalence of the S matrix defined by (17) and
the S matrix of the time-independent scattering theory
follows from the relations U(0, —~)= Q&+& and
U(~ 0) =Q*& &"

We are indebted to Dr. J. M. Jauch for stimulating
discussions and critical comments.
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