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The discussion in the preceding paper of a simplified Bethe-Salpeter equation is continued. Two methods
are used to find a complete set of solutions, an integral transform method, and an adaption of Fock’s treat-
ment of the hydrogen atom. The degeneracy is found to be the same as that of the nonrelativistic hydrogen.
In addition to the solutions which have the expected nonrelativistic limit, a large number of anomalous
solutions are obtained. The behavior in the limit in which the mass of one particle becomes infinite is con-
sidered, and it is found that in this limit the ladder approximation gives an equation which does not corre-
spond to the motion of a particle in the field of a fixed center of force.

1. INTRODUCTION

HE Bethe-Salpeter equation for two scalar
particles has an especially simple form when
these particles are assumed to interact through a mass-
less scalar field. In the preceding paper,! Wick has
given a general discussion of the Bethe-Salpeter equa-
tion and has concluded by examining some of the
solutions of this particular equation. The study of this
equation is continued in this paper, using the methods
introduced by Wick, which enable one to obtain a
complete set of bound-state solutions. Since this relativ-
istic equation for two bosons can be solved easily, it
not only provides an excellent illustration of the general
results of Wick, but also gives one an insight into the
techniques that one might apply to other equations,
which would be more complicated, but also more
realistic.
If we use the notation of Wick, the equation we wish
to solve is written in momentum space as

L(pt+inpa)*+ma L (p—inus)*+mi o (p)
N pdko(k)
f (r—ky

The relative energy has been continued to the imaginary
axis, in accordance with Wick’s theorem. The energy
of a bound state, which is proportional to e, is considered
to be given, so that the corresponding interaction
constant A, which is to be determined, is then an
eigenvalue of the above equation. We begin by sup-
posing that the two interacting particles have equal
masses. The general case can be treated by exactly the
same methods, but for simplicity is deferred to the last
part of this paper.

Two methods, which supplement each other but are
essentially independent, are used in the discussion of
Eq. (1), the stereographic projection method of Fock,?
and the integral transform method already introduced
by Wick. When 7 is set equal to zero, in addition to
the masses being equated, Eq. (1) is formally very
much like the three-dimensional equation for the non-

1 G. C. Wick, preceding paper [Phys. Rev. 96, 1124 (1954)].

2V. Fock, Z. Physik 98,145 (1935); M. Lévy, Proc. Roy. Soc.
(London) A204, 145 (1950).
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relativistic hydrogen atom, as has already been pointed
out by Wick. This remark led to the conjecture that
the method Fock used to study the hydrogen atom
could be applied here as well.3 Fock’s transformation
does indeed lead to a great simplification in the form
of Eq. (1), and is particularly useful for exhibiting the
completeness as well as the degeneracy of its solutions.
In the third section of this paper, Wick’s integral
transformation method, the essence of which is that
one writes the solution as a superposition of one-particle
propagation functions, is extended so that a complete
set of solutions is also obtained by that method, which
appears to be more readily applicable to other problems.

II. FOCK’S TRANSFORMATION
If the mass of each particle is set equal to unity,

Eq. (1) becomes

N rdke(k)
Co-in+ T (p—in+1J60)=— f

(p—Fk)?

By following the method of Fock and Lévy, the four-
dimensional momentum space is mapped upon the
surface of a five-dimensional sphere by a stereographic
projection. A polar coordinate system is first chosen in
momentum space, with polar angles 8, 6, ¢; 8 being
the angle between the four vector p and the (imaginary)
relative time axis. These angles are then used for three
of the polar angles in five-dimensional space, the fourth
angle ¢ being defined by po tanki=|p|, where |p| is
the magnitude of the momentum four vector and
po=(1—n®)? is the diameter of the five-dimensional
sphere. Before continuing, it should be remarked that
Wick’s analytic continuation theorem plays an essential
although somewhat hidden role in this transformation.
In fact, it is possible to map the momentum space upon
a closed manifold in an invariant manner, only because
the momentum space of Eq. (2) has a positive definite
metric. Upon making the stereographic mapping, it is
found that on the left-hand side of (2),

Cp+m)*+11L(p—im)*+1]
= po? sec's¢[1—n*+7? sin® cos’8].  (3)

31 am indebted to Professor Wick for discussions of various
aspects of Fock’s method.

2

1135



1136

In the integral on the right-hand side,
[d*]=15po* sect3{'dQs’, @

where dQ5’ is an element of solid angle in five dimensions,
and

(p—R)*=3p" sec*(3%) sec’(3¢") (1—cos),  (5)

where « is the angle between the images of p and %
on the sphere. Thus with the definition H({,8,6,4)
=sect(30)9(p), Eq. (2) becomes:

(1—n>4n? sin® cos?8)H (¢,8,0;6)

L8 04)
——[———=— ©

82 1—cosa

If n=0, Eq. (6) is clearly invariant under all rotations
of the five-dimensional sphere. It follows that a com-
plete set of solutions is given by the spherical harmonics
in five-dimensions, which can be constructed from the
Gegenbauer polynomials.* In Appendix A it is shown
that when n=0, the eigenvalues of (6) areAy=N (N-+1),
where N is a positive integer. It likewise follows
immediately that the degeneracy is that associated with
the rotation group in five dimensions, so the Nth
eigenvalue is $V (V-+1) (2N+1)-fold degenerate.

When e is positive, Eq. (6) is no longer invariant in
all rotations of five-dimensional space. However, there
is still an axis of symmetry, which can be seen if a set
of Cartesian coordinates £, is introduced in the five-
dimensional space. For points on the sphere of diameter
P 0y

&= %P 0 OS¢,

£4=1%po sing cos, Q)

£3=21po sin{ sinf cosb,

and so forth. Since in Eq. (6) the coordinates are con-
tained explicitly only in the combination sin{ cosB
=cosy, where v is the angle with the £ coordinate
axis, all rotations which leave this axis unchanged also
leave unchanged the form of Eq. (6). For positive
values of ¢ the degeneracy is therefore that associated
with the four-dimensional rotation group, which is
known to be the degeneracy of the nonrelativistic
hydrogen atom.? Thus no fine-structure splitting is

R. E. CUTKOSKY

exhibited by Eq. (2), for any value of the interaction
constant.

An interesting equation is obtained if the points on
the sphere are mapped onto another flat four-dimen-
sional space, by using a stereographic projection of
which £, is the polar axis, instead of £&. With ¢g=tan(3vy)
and Q(q)=cos®(3v)H, Eq. (6) is transformed into

&g
2020 +1100 = [ (Z_Q” ®

This equation is of the same form as Eq. (1) at zero
energy, except that the difference of the masses is
imaginary. From the form of either Eq. (6) or Eq. (8),
it is evident that any solution can be written as a
product of a four-dimensional spherical harmonic and
a function of ¢? this function being the solution of a
one-dimensional integral equation. There is therefore
evidently a connection between the degeneracy of Eq.
(2) and the fact that by using Wick’s transform method
it is possible to find solutions in terms of a simple
one-parameter integral. It will be shown that the
method of Wick is indeed exactly equivalent to solving
(8) directly, so it is not necessary to pursue further
the solution of this equation at this point.

III. THE INTEGRAL TRANSFORMATION METHOD

Wick was able to find a set of solutions to (2) in
terms of an integral over an unknown function g(32),
which is the solution of a simple integral equation. In
order to find a complete set of solutions, a somewhat
more complicated ansatz must be used, and a clue as to
the appropriate generalization is given by the structure
of the spherical harmonics, which are solutions at zero
energy. One is thus led to try to find solutions which
are linear combinations of functions of the form

¢ (p,2) = Y™ (0)/[2*+ 2izpn+1—n"]"*,  (9)

where Y;”(p) is a solid harmonic function of the three
space components of p. In order to determine what
linear combinations to take, it is necessary to find out
what happens when ¢, (p,2) is inserted into the right-
hand side of the integral equation (2).

The integration over the momentum £ is done in the
usual way, by using Feynman’s formula

kY (k+(1—u)p)

1 d‘k n+2 1
_f ¢'n’”‘(k,z)=—*—f %n+1duf
w) (p—py w Jo

[B+u(1—u) p*+u(1— 2+ 22020+ 2iz(1— ) pyy |3

1 1
=— f (1—w)'dudy(p)[ (1—u) p*+1—n*+22un+2iz(1— ) pn I
n+1 0 :

i1 (n—1—1)1(n—k—1)! Gnt2'™(p,2)

k= (n41)1(n—I—k—1)! (1—g2tn2z2)*+

(10)

4E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge University Press, London, 1950), p. 329.
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In performing the above computations, it has been
supposed that #>1. Now, following Wick, this is divided

by [(p+m)*+1][(p—1in)>+1] and the result expressed
by another use of Feynman’s integral formula

d*k

(— —)'¢n ™(9,2)

1 n—t1 (n—Il— 1)l (n—k+1)! o1
-1 (n M(n +)fdt

L (prtinP 1L (o117 [

2 =0 (m+D)!(n—k—Ii—1)1V_,

Ay i, at (1=, (11
Xf'———qbn_m , %t —x)2).
o (1—mpped)ih e
It is thus evident that a function of the form
n—1-1 pl
¢im(p)= 2 | guf(@Dbui'm(p2)dz  (12)
=0 J_,

will be a solution.

The functions g.;*(z) are determined by inserting
this into the integral equation (2). Making use of
(11), one finds that

n—Il—1

1
2 | gt (@)nit™(p,2)dz
k=0 J_;

-1 k ((n—k+1)(n—k—1—1)!
-»'L 2|
(n—F+1D)(n—k—1—-1)!

k=0 k'=0
x(1—x)»*1dx
Xf gnz"(z)dzf dtf
(1 n2+11222)k—k'+1

Xnit™(p, x4 (1—x)2) 1.

(13)

Since the ¢,'™(p,2) are a linearily independent set of
functions in momentum space, Eq. (13) requires that
the g.:*(2) be solutions of the following set of integral
equations:

(n—E+1) 1 (n— ' —1—1)!
= In M{ n )i )!

(n— k' 41)(n— k—1—1)!

1 1
detf x(1—x)»*1dx
o Yo

% fl 3G—[wt+(1—2)¢])
1 (1_n2+1’2§-2)k—k’+1

gn® (Ods . (14)

Upon examining this set of integral equations, it is seen
that g,°(z) is the solution of a single homogeneous
equation, from which equation X\ is determined. For
n>141, the additional functions g,;*(z) are the solu-
tions of inhomogeneous integral equations which involve
the eigenfunction g.:°(z). The homogeneous equation
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does not depend upon the orbital angular momentum /,
so that neither g,:°(z) nor A depends on /. This degen-
eracy, which the discussion of the previous section has
already shown to exist, is again seen to be exactly the
same as that of the nonrelativistic hydrogen atom.

The integral equation for g..%(z), which is the only
function of practical importance, is found, after inte-
grating over « and ¢ and also dropping the indices 0
and /, to be

(©)ds
)= f [R(0) —

1— %

where R(z,{) is the same function introduced by Wick
R(z,8) = (1=2)/ (1), (16)

Differentiating Eq. (15), one finds that?

(15)

for ¢=z.

o ()4 201— Dz (1— g’ (5)— n(n—1) (1—2)ga(3)

AN (A=) ga(®) =0, (17)
The boundary conditions are g,(4=1)=0.

This equation has an infinite number of solutions,
with discrete eigenvalues A, the index x denoting the
number of zeros of g.(z) within the interval (—1, 1).
For odd values of , the g, are odd functions of z; there-
fore the corresponding solutions of the Bethe-Salpeter
equation are odd functions of the relative time. In
Appendices A and B, the solutions of Eq. (17) are
discussed in the two limits e=0 and e=1. At zero
energy, where A= (n+«)(n+x+1), a one-one corre-
spondance can easily be made between the spherical
harmonics of five dimensions and the solutions obtained
by the method of this section, thus showing that the
set of functions of the form (12) provides a complete
set of solutions. As #*—1, only those eigenvalues A, for
which k=0 approach the values obtained from the
Schrodinger equation for the hydrogen atom, as \—%
if k is not zero.® In Fig. 1, curves for N\ versus »* are
shown for some of the lowest-lying states. The exact
solutions for e=0 and e=1 have been supplemented by
some numerical calculations for intermediate points.

The method outlined above was satisfactory as a
way of obtaining the eigenvalues A\, but when #>741
the construction of the Bethe-Salpeter amplitude is
rather cumbersome, as first a set of inhomogeneous
equations must be solved successively. However, this
can be circumvented if use is also made of the method
of Sec. II. When /=7—1, the sum in Eq. (12) reduces
to a single term. This integral formula for the amplitude
function is transformed into

U Y m(a)ga()ds
nn—l,m — pH—ntl , 18
0.1 (g) = py f_ et

5 The inhomogeneous integral equations can be replaced by
second order differential equations similar to (17).

6 In the previous paper (see reference 1), Wick has treated in
detail the case n=1. I am grateful to Professor Wick for dis-
cussing this limit with me.
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when the momentum space is mapped onto the queer
space introduced at the end of Sec. II. This amplitude
is degenerate with all the amplitudes obtained by
rotations in the ¢ space, which can be constructed with
the four-dimensional spherical harmonics:

Q.tm(q)
LY (q)gv 111" (gs/ @) gn (2)dz
—piee [ |

o [+ tizept(1—g?) ]2

Transforming back to ordinary momentum space, one
finds

19)

L gn(2)dzyY ™ (p)R"1'C 1 (X/R)
sin()= [ . , (20
-1 [P+ 2izpn+1—y7]"*2
where
X=1—g'=p, R'=(+1-7)—4psi(1—7). (21)

Returning to (19), with the substitution z= (pof+1i€)/
(potier), and the dropping of irrelevant factors, this
becomes

Qa'(q)
B f‘ (potier)"ga(z())ds Y (@) g™ C 1 (g4/ )
1 [q2+1—2ﬂ2+2'iP0€§]"+2 '

(22)

By using the results of the next section it can be shown
directly that this is a solution of Eq. (8), which, as has

F16. 1. X versus n? for equal masses. The curves with =1 are
nondegenerate, while the curves with z=2 are 4-fold degenerate,
and the curve with =3 is 9-fold degenerate. The inset shows
the region near 72=1 in greater detail.
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been remarked already, is of the same type as (1) but
with complex masses, thus demonstrating the equiva-
lence of the two methods we have used to discuss the
Bethe-Salpeter equation (2).

IV. UNEQUAL MASSES'

The methods of Secs. IT and III can both be used to
study the more general Eq. (1), which is rewritten with
the notation m,=14A, my=1—A:

N ro(k)dik
F,F_¢=— 23-
o= [ p— (23-2)
Foi=pP4+2i(1£A) pn+ (1—9)(1A)%  (23-b)

First consider the stereographic projection method
of Fock and Lévy, in which p=p,tani{, with pe
=(1—»?)(1—A?. The right-hand side of (23-a) is
transformed in the same way as before, but on the
left-hand side,

Fo=sec?(3)[po*=tinpo(1=£A) sing cosp
+A(1£A)(1—72) (14cosp) ].

Now let cosy=cosa cos{-+sina sin{ cosB, where a is
chosen such that

tana=1mA"1(1— A% (1—x?)~%

(24)

(25)
Then,

FF_=p¢* sect3¢[ (1—n*)+ (n*— A?) cos?y .

The equation which results is formally very much like
(6). There is now an imaginary symmetry axis, rotated
from the & axis through the angle « in the £— &, plane.
The degeneracy is thus not destroyed by taking the
masses to be different.

A four-dimensional equation with complete rotational
invariance can again be obtained by making a stereo-
graphic mapping of which the symmetry axis is the pole.
With the definition, as in Sec. II, g=tan(3vy) and
(Z+1)%Q(q) = (p*+ pe*)’p, an equation very similar to
(8) is obtained

(20)

n2_ A2

(1—A2){q4+2(1——2 A

_A2)qz+1]Q(q)
Y aCO R
) (g—¢)

The g, are at first supposed to vary over complicated
contours in their respective complex planes; however,
as these contours can be deformed back to the real
axes without any difficulty, use of Eq. (27) is quite
rigorous. The form of the left-hand side indicates that
N (1—A?) is a function only of (y*—A?)/(1—A%, a
relation which was of considerable use in constructing
Fig. 2. Furthermore, the solutions of (27), as functions
of g, depend only on (52— A?)/(1—A?), which implies a
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corresponding, but more complicated, relationship
between the solutions of (23) for different values of A.

The foregoing discussion makes it clear that the
integral transform method used in the previous section
can be applied to Eq. (23) with very little change.
The observation that

1
Peopoi [ a2y
T H-W a2

gives the hint that the definition (9) should be general-
ized to

& (p,5,4)
Y (p)

- . (29
(42421 (24 A) p+ (1— %) (14-A24-224) 2 )

The calculation leading to Eqs. (14), (15), and (17)
can be carried out, the appropriate changes being made,
exactly as before. One ends with integral and differential
equations for the new function g,(2,A) which differ
only little from (15) and (17)

(z A)=l ' [R(z,8)1"ga(5,4)ds
823, 2nd_ [(1—112)(1+A2+2A§‘)+TI2(A+§')2:|’

gn" (2,8)+2(n—1)z(1—22) "¢, (2,4)
—n(n—1)(1—2%)7g.(2,4)
A=) [(1+A24224) (1—7?)
+12(z4+A4)"Tga(5,4)=0. (31)

The relationship between the solutions of Egs. (23)
and (2), which was proved above by using the Fock
projection, can be demonstrated more directly in the
integral transform method.” We let 2= (z—A)/(1—Az)
and g,(z,A)= (1—AZz)~"g,(2). After noting that R(z,)
=(1—A{)(1—A2)R(3,{) and that

(1=22) A +A%H-23A) 72 (z+A)?

(28)

(30)

2 2 2
n

Ul
+(Z—'A)2 )
2 I_AZ

1
=(1—A2%)

A (32)

we can transform Eq. (30) into

A 1 _ o
= f_ [EICAVRGE;

,,72_ A2 —1
X[l— (1——{‘2)] . (33)
1—A?
This is identical with Eq. (15), which again shows that
N/ (1—A?) depends only upon (n2—A?%)/(1—A?).
In Fig. 2, N is plotted against #* for A?=0.36, or
mq=4my. These curves were obtained from the curves

7 The transformation which follows is due to G. C. Wick.
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F16. 2. An example with unequal masses. The quantum numbers
are the same as for the corresponding curves of Fig. 1.

of Fig. 1 by using the similarity transformation. Note,
in particular, that the curves cross at n*=AZ% This
corresponds to a critical energy E.=m,—m; for the
bound state; if there existed a state of two particles
with an energy smaller than E,, the heavier of the two
original particles would be unstable, as it could decay
into the bound system and the antiparticle of .
Nevertheless, solutions of Eq. (33) exist and are
perfectly well behaved analytically when 7?<A?, al-
though it seems that the various solutions can no longer
be distinguished in a clear way on the basis of their
dependence upon the relative time.?

A question of some interest is the behavior of Eq. (23)

* and of its solutions in the limit A—1. One may either

think of one of the particles becoming infinitely massive,
with the binding energy being a fixed multiple of the
mass of the lighter particle, or one may suppose that
the mass of one particle vanishes, with the binding
energy remaining finite. In the first case, the similarity
transformation gives the eigenvalues unambiguously,
but it is nevertheless worth while to examine the limit
directly. We define

A=(M—-1)/(M+1),
A=A(1—A%)1,

e=(M+1-B)/(M+1),
'=(1—8)7p.

Now let M— o, with the binding energy B remaining
fixed. The limit of Eq. (23) is

(34

o A pdHSE)
(p"=2ipd) 2ipd +2B)p (p) =— | ————. (35)
aw) -y
8 The ladder approximation is of course complete nonsense
when the interaction is this strong.
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The mass of one particle is so large that it might be
supposed no recoil effects should occur, but in Eq. (35)
the relative time still enters in such a fundamental
manner that the equation cannot be reduced to a
three-dimensional one, unless the binding energy is so
small that even the lighter particle moves nonrelativ-
istically.

The solutions of Eq. (35) may be obtained by taking
the limit of the solutions of Eq. (23), which have
already been discussed

gn( bl ) "(t))
‘yl (p,)

lm

NEERNG |
( M1 [+ 2ips (1— 1)+ 2Bt ]+
Equation (31) becomes, in the limit

0=1G," () — (n—1)G,’ (¥)
F+AL(t—1)2+2Bt TG ().  (37)

The eigenvalue A is the same function of (3B) that A
is of (1—%*» when A=0. In contrast to the three-
dimensional theory, from the form of the above equation
we see that there is no upper limit on B. The limit of
Eq. (37) and of A as B— is discussed in Appendix C.

When #*=0, Eq. (23) has a particularly interesting
limiting form. With p=(1—A)p’, as before, Eq. (19)
becomes

P+(§f)?ﬂu+wmwo
A fd4k, o (k)

TR -k

If one takes the limit A—1, the ensuing equation is the
same as the Bethe-Salpeter equation for two Dirac
particles in a singlet state at zero energy, which has
been found by Goldstein® to have a rather singular
behavior. However, if A1, there is another factor of
$'? on the left-hand side of (38), which provides a kind
of “cutoff,” at large momenta. The solutions are then
given by the methods already discussed ; we must solve
the equation

(1—2%)g." (2,0)+2(n—1)2g." (2,4) —n(n—1)ga(2,4)
N1+ A4 242, (2,4) =0, (39)

which is just a special case of (31). As has been remarked
before, this equation has a set of eigenfunctions with
discrete eigenvalues, the xth eigenfunction having &
zeros within the interval (—1,1). The corresponding
Bethe-Salpeter amplitude has k¥ nodal hyperspheres in
configuration space. In Appendix C it is shown that as
A—1, all the eigenvalues for a given # tend to exactly
the same limit: \,—Xo=#2% For n=1, this is the same

(38)

9 J. S. Goldstein, Phys. Rev. 91, 1516 (1953).
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as the value Goldstein found for the symmetric solutions
of the limit of Eq. (38). In configuration space, the
nodal hyperspheres of the amplitudes all shrink into
the origin, and at finite distances the amplitudes for
givenn,l, and m all approach the same limiting function.

In summary, we have found a complete set of
bound-state solutions for a simplified Bethe-Salpeter
equation. These solutions have been discussed for all
values of the bound state energy and for various values
of the masses. The simple form of the solutions of this
equation, as well as the degeneracy of the eigenvalues,
which is the same as the degeneracy in the nonrelativ-
istic hydrogen atom, are shown to be due to the com-
plete separability of the equation in a transformed
coordinate system. Although this unexpected symmetry
is not a general feature of the Bethe-Salpeter equation,
one is nevertheless able to learn a great deal from this
example. It was found that for large values of the
interaction constant, the equation studied has abnormal
solutions, which do not correspond to any familiar
physical situation. The limiting form of the solutions
when one of the masses becomes infinite does not
correspond to the motion of a particle in the field of a
fixed center of force, and at zero energy sheds some
light upon the pathological character of the two-fermion
equation.

I am very grateful to Professor G. C. Wick for many
helpful discussions and much useful advice while this
work was being carried out.

APPENDIX A

In the text following Eq. (6), it was pointed out
that at zero energy the solutions of this equation were
spherical harmonics. It suffices to consider the Gegen-
bauer polynomials Cn—i¥(cos{) as the spherical har-
monics constructed from one of these with the use of
the addition theorem are of course degenerate with it.
When ¢=0, Eq. (6) becomes

Cw_1*(cos{’) sm3g"d§"d9 !
Cy_i(1)= —2
8 1—cos{’

(A-1)

This integral can be evaluated with the aid of the
generating function for the Gegenbauer polynomials

3 #nCo (@) = (1— 2ra4-r2). (A-2)

Therefore

sind¢’d¢’

m)\—lN—lc_%l:Lj‘7r y
Zl: v w=()=1 o (1—cos¢’)(1—2r cosy’+7%)}
—3(-n (4-3)

From (A-2) it is found that Cy_#(1)=3iN(N+41);
thus Ay=N (N4-1).
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The eigenvalues at zero energy can also be obtained
from Eq. (16) of the text.® Let g.(2)=(1—2%"fa(2).
The equation satisfied by fa.(2) is

(1= fa" (2)—2(n+1) f2' (2)
+A—n(n+1)11()=0,

which is the differential equation of the Gegenbauer
polynomials. It is thus found that

gn(z) = (1_'22) ncxn+%(z>:
with A= (n+«) (n+x+1)=N(N+1).

(A-4)

APPENDIX B

We shall now consider the differential Eq. (17) in
the limit »*—1,

(l—zz)gn"—l-Z(n— I)Zgnl_n(”'_ l)gn
+AA—7 72?7 ga=0. (17)

If, as n*—1, g,.(z) approaches a limit uniformly, we may
replace (1—5+7%%~! by 7(1—5>~%(2) in the original
integral equation (15), from which we find g,.(2)
~(1—|z|)* and 2—2e=B~(\7)?/8x%, where B is the
binding energy. This is the solution for ¥x=0. By
inserting the asymptotic form of g,(s) into (20), we
find the asymptotic form of the amplitude:

d(p)~ (1= [ (p+im)*+1 1 [(p—in) >+ 1T
XR1C, 4 HH(X/R)Ym(p). (B-1)

In (B-1), we see that the important values of p4 are of
the order 1—7?% while | p|~(1—7?%. Thus,

¢(p)~md(ps) (0*+1— ")~ 2Cryat™

x(:z:)wp). 2

This will be recognized as the general form of the
solutions of Schriodinger’s equation for the hydrogen
atom, so that in the limit A—0, not only the right energy
but also the correct nonrelativistic wave function is
obtained. Equation (B-1) actually gives a rather good
approximation to ¢(p) for all values of 72

To obtain the limit for k> 1, we set n*=1in (17),

(1.__22)gnl/+2 (1’!— l)zgn’-—n(n— l)gn+>\z—2gn=0 (B‘s)

10 This was first done by G. C. Wick, for the case n=1.
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The solution of the above equation which satisfies the
boundary conditions at z==+1 is

ga(2)= (1—2®) "zt e F[ 1 (2n+3+2p), 2 (2n+1+2p) ;
n+1;1—2%], (B-4)
where p has been defined by Wick’s Eq. (62). To ex-

amine the behavior of g,(2) at 2=0, we let x=2z(1—5?"},
whence

&@g,/d 4N (14+2%)"1g,=0, (B-5)
which is identical with Wick’s Eq. (61).
Continuing Wick’s analysis, we find again,
Meire—Dn(1—P) ]2 (B-6)

Note that this is independent of #.

APPENDIX C
The limit A—1 is found from Eq. (39) if n2=0, while
for n*~1 Eq. (37) must be used. By letting A—1 in
Eq. (23) a connection between these two extreme
values is provided ol
AL UCY
(A= =— | ——— (C-1)
4rJ (g—¢')?
therefore, A=Xo(1—9%. From the definitions (30), it

follows that when B is very large, A~%B\,.
From Eq. (35) it is found that

(1=2)ga" (3,1)+2(n—1)zga" (3,1) —n(n—1)ga(2,1)
+2No(1+2)7ga(5,1)=0. (C-2)

The indices at z2=—1 are 3n1(n2—N\¢)%. In order to
examine the boundary condition at z=—1, we take the
limit of (35) with 24-1=%(1—A)%x, which gives

ud?g,/d?— (n—1)dg./du+Nog,/4(1+u)=0. (C-3)

The indices of this at u= o are also in-t1(n2—\o)%.
Equations (C-2) and (C-3) can be solved in terms of
hypergeometric functions; using the same method that
was used to study the limit s>—1, we find that Aq—n?
for all values of «.

Now consider Eq. (37) with 2Bt=u when B is large,

ud*G,/dut— (n—1)dG/du+AG,/2B(1+u)=0. (C-4)
If A=%B)o, Egs. (C-3) and (C-4) are identical.

If we take the limit with {=2Bgz, we find
&G, /dz— (n—1)z7dG,/ds+AG,/2B22(14+2)=0. (C-5)

Matching the solutions of (C-4) and (C-5) we find
A~3Bn?, which is consistent with the result inferred
from Eq. (C-1).



