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A boundary condition at t=& ~ (t being the "relative" time variable) is obtained for the four-dimensional
wave function of a two-body system in a bound state. It is shown that this condition implies that the wave
function can be continued analytically to complex values of the "relative time" variable; similarly the
wave function in momentum space can be continued analytically to complex values of the "relative energy"
variable po. In particular one is allowed to consider the wave function for purely imaginary values of 5, or
respectively po, i.e., for real values of x4=ict and p4=zpo. A wave equation satished by this function is
obtained by rotation of the integration path in the complex plane of the variable po, and it is further shown
that the formulation of the eigenvalue problem in terms of this equation presents several advantages in
that many of the ordinary mathematical methods become available.

In an especially simple case ("ladder approximation" equation for two spinless particles bound by a
scalar Geld of zero rest mass) an integral representation method is presented which allows one to reduce
the problem exactly (and for arbitrary values oi the total energy of the bound state) to an eigenvalue
problem of the Sturm-Liouville type. A complete set of solutions for this problem is obtained in the sub-
sequent paper by Cutkosky.

1. INTRODUCTION

HE formulation of a completely relativistic wave
equation for two-body systems' has, in a certain

sense, solved a long-standing problem of quantum
mechanics. The natural and simple way in which
relativistic invariance is achieved is, of course, very real
progress, which may lead one to hope that the main
features of the equation are more permanent than the
solidity of its present 6eld theoretic foundation might
suggest. Furthermore, it is hardly necessary to recall
that the usefulness of the equation has been amply
demonstrated in several high-precision calculations of
energy levels. '

Nevertheless, it is generally recognized that several
serious and valid doubts remain about the signi6cance
and the self-consistency of the equation. Some of these
doubts, of course, stem from the remaining unresolved
convergence questions of renormalized quantum electro-
dynamics (and other similar theories). It goes without
saying, however, that these deeper questions lie
entirely beyond the scope of the present investigation'
The questions and doubts we shall be concerned with'
arise at a less formidable level; they have to do with
the several unfamiliar features of the equation itself.

These are (and the list is probably incomplete):
(a) The appearance of a relative time (or respectively

a relative energy) variable, the physical role of which
is not entirely clear; in particular, it is admitted that

' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
J. Schwinger, Proc. Natl. Acad. Sci. 37, 455 (1951).Other closely
related but more general relativistic schemes recently developed
by various authors will not be discussed here.

'E. E. Salpeter, Phys. Rev. 87, 328 (1952); R. Karplus and
A. Klein, Phys. Rev. 87, 848 (1952).

In particular, expressions such as "the general structure" of
the equation, "the analytic properties" of the interaction kernel,
etc., will be used on the assumption that such properties may be
inferred correctly from truncated expressions of Gnite order in
'the coupling constant, for example, from the lowest-order
("ladder" ).'approximation.

4 See, especially, J. S. Goldstein, Phys. Rev. 91, 1516 (1953).

the boundary conditions on the wave function for
infinite values of the relative time have not been
adequately formulated.

(b) The presence of strong singularities in the
interaction kernel, to be avoided by special prescrip-
tions. Standard mathematics has practically nothing
to say about integral equations of this type. In partic-
ular, the prescriptions referred to imply properties of
analyticity, about which one would like to know a lot
more.

(c) The absence of a positive-definite norm for the
wave function and of any orthogonality theorem.

(d) The fact that when the coupling constant X is
set equal to zero, the equation admits obviously
improper solutions. Notwithstanding all that can be
said about it, this feature is a little disturbing. It is
connected to the other feature that the "order" of the
diGerential operator in the equation is higher than that
of the corresponding one-body equation. This leads to
the expectation that the equation may have "too many"
solutions. On the other hand, circumstance (b) has led
some authors to suspect that there are no solutions at
all ~

(e) Finally, as explained by Goldstein, 4 we are faced
with the paradoxical circumstance that, owing to the
nonrelativistic perturbation approach employed, the
highly successful numerical results obtained do not
really oGer any direct clue as to the actual properties
of the relativistic equation.

The investigation described in the following pages
was aimed at throwing some light on these questions.
It really consists of two quite different lines of attack.
The first of these starts from the remark (Sec. 2) that
an additional condition for the Bethe-Salpeter (B-S)
wave function follows from its definition' supplemented
by simple stability requirements. From this, then,
some unexpected consequences can be derived about

s M. Gell-Mann and F. Low, Phys Rev. 84, 350 .(1951).
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2. THE STABILITY CONDITIONS

The relativistic wave function x(x) for a system of
two particles, a and b, bound together in a state ln)
is de6ned' as 'the matrix element, between e and the
"true" vacuum state l0), of the time ordered product
of the Heisenberg field operators tp, and fs describing
the two kinds of particles. If, for example, the relative
time t=t =tb is positive,

x(x) =s ""(0I+.(x-)+~(») l~), (1)

where x= x,—xb, X= (m,x,+m~xs)/(m, +ms), and
I' X is the four-dimensional scalar product of X with
the total momentum I' of the system in state 0,. If for
simplicity we assume that the compound system is at
rest, then I'= (0, iE), E being the total energy. For a
bound state,

E=m, +ms —8(m.+ms. (2)

Now the matrix element in (1) can be written

g„(0l+.(x.) l e)(el+&(x&) lrr). (3)
' R. Cutkosky, following paper /Phys. Rev. 96, 1135 (1954)j.

the analytic continuation of the wave function to
complex values of the relative time (or relative energy)
variable. As far as we can tell these properties cannot
be obtained from the 8-S equation itself. Vice versa,
they can be used (Sec. 3) to transform the equation,
by rotation of the integration path in the complex
plane, to an equation in which x4=ixs (respectively
p4 ——ip,) is real. While the concept of an imaginary
relative time variable does not help physical intuition,
it has mathematically several advantages. A discussion
of the eigenvalue problem in terms of the transformed
equation will be given (Sec. 4), and the existence of
solutions will be shown to follow, under fairly general
assumptions, from considerations similar to those
commonly employed in the nonrelativistic case. No
claim of completeness or rigor is made for this "proof."
Finally in Sec. 5 we shall merely itemize various
approximation methods that have been studied, but
will be reserved for another publication.

The second line of attack (Sec. 6), which is the subject
of a more extensive investigation in the subsequent
paper by Cutkosky, ' is rather difI'erent in nature. It is
an attempt to make much more speci6c statements
about the exact solutions of the equation, by restricting
the character of the equation to an especially simple
type. It has not been possible so far to extend this
approach to any case of real practical interest. But the
fact that in one case, which is not entirely arti6cial,
one can get a complete picture of all the solution (as is
shown more completely in the following paper') is not
perhaps devoid of general interest. In particular the
presence of "abnormal" solutions, which do not possess
a nonrelativistic limit, and the circumstances under
which they occur may well give a qualitative indication
as to properties that will occur also in the cases of real
physical interest.

The sum extends in principle over all states, but in
fact the states e giving a nonzero contribution will
belong to a rather special class. Consider for example
the case where a and b are an electron and proto~,
respectively. If 0', and 0'& were noninteracting fields, it
is obvious that only one-electron states would have to
be considered in the sum (3). In the presence of inter-
action, the states e may also contain photons, electron-
positron pairs and proton-antiproton pairs. But at any
rate the fundamental integrals of the motion E,
(number of electrons —number of positrons) and Es
(number of protons —number of antiprotons) must have
the same values,

E =1, Nb ——0, (4)

as the one-electron states. This may be rigorously shown
from the commutation properties of g, and Ãb with
the field operators, (1V,+1)%,=%,X., etc.

In a similar manner, one can show that the total
angular momentum quantum number J for a state n,
when measured in a system of reference in which the
total momentum p is zero, must be equal to ~.

Now all states known to us in nature, and satisfying
condition (4), also satisfy the inequality,

E„'—p'&~ m~, (5)

E„2—y'~&me, (5')

which shall be called the stability condition for a proton.
Summing up, we have three inequalities (2), (5), and

(5'), which will form the basis of the following discus-
sion. It should be pointed out that the above considera-
tions can be extended to other systems. If a and b were
a neutron and proton, bound together in the ground
state o. of the deuteron by a meson field, with the
customary assumptions, one would then have, as
integrals of the motion, the number of nucleons minus
antinucleons Ã and the total electric charge Q. The
states e could be shown to have values /=1, Q=O
and the states e' the values IV=1, Q=1. In a theory

E„and p being the total energy and momentum in the
state n. Furthermore, the equality sign holds true only
for one-electron states.

The inequality (5) means that among all the states
having the same values of the fundamental constants
of the motion y, S„Eb, etc., as a one-electron state,
the latter is the state of lowest energy. We shall refer
to (5), therefore, as the stability condition for an
electron.

In a similar way, when the relative time t is negative,
the wave function p may be shown to depend on the sum

2- (0I+s(») I
~'&(~' I+.(x.) l~&, (3')

in which the contributing states n' must satisfy the
condition,

E,=O; Eb ——1, (4')

and hence the inequality,



which neglects the P-decay interaction, one has the
right to regard both neutron and proton as essentially
stable particles. If there were states rb(rb') not satisfying
conditions (5) (5') the neutron (proton) could decay
into those states by emission of photons, without
violating any of the known conservation theorems.
Thus it is extremely reasonable to postulate that these
conditions must again be satisfied.

Now going back to (1) and using (3) with the
conditions (2) and (5), we see that for t) 0, and assum-
ing P = (O,iE), x(x) is of the form

+00

x(x) = dp do)f(»o)) exp(ip x io)t),— (6)

where
o) inn=)BPa+(rib +ap )' risa)BPa)0)

with P =m, /(rrb+mb) Thu. s, when f)0, y(x) is a
superposition of positive frequency terms only.

Similarly, from (2) and (5') it follows that, when

t(0, z(x) contains negative frequencies only. Thus we
find that y(x) has properties with which we are familiar
in the case of Feynman propagation kernels. There is,
of course, an analogy between the definition of these
kernels and Eq. (1).

Let us now consider t as a complex variable. Equation
(6) shows that y(x) can be continued analytically in
the lower half-plane, in the region 0~&argt) —m.

Similarly starting from the negative real axis, x(x) can
be continued in the upper half-plane, in the region
x ~& argt) 0. There is, of course, no analytic continuation
from one half-plane to the other; the two regions touch
one another at one point only, t =0.

It should be pointed out that the statements just
made are not dependent on the assumption that the
state o. is bound; they follow from well-known properties
of the Laplace transform from the mere fact that ~ is
finite. If, however, B&0 and hence ~;„&0, we can
further assert that x(x)~0 when t tends to ~ in any
direction in the lower or upper half-plane diGerent from
the real axis. This suggests that the eigenvalue problem

may take a more familiar and a simpler form if the
wave function and the wave equation are considered on
the imaginary t axis (i.e., for x4 it real). ——

In order to examine this possibility carefully, it is
desirable to go over to momentum space. We write

x(x) =xi+xs, where Xi——0 for $(0 and xs ——0 for f)0.
Let us calculate the Fourier transform of y&.

where e is an in6nitesimal positive constant. We must
assume, of course, that the wave function exists for
real values of ps (i.e., that the integral (9) converges].
From the theory of Stieltjes transforms, we then infer
that (9) defines an analytic function of ps in the whole
complex plane, in the region

2x) arg(pp —o);„)& 0.

Similarly gs is defined in the region

(10)

where

—4r&arg(pp —o) ) &x,

o) „=—Bpb+(mb'+p)' —mb)Bpb)0.

Thus g(p) =@(»ps)=@i+ps is defined in the complex

p, plane with two cuts from 4o;„ to +~ and from —~
to o),„(Fig.1).In this case analytic continuation from
the lower to the upper half-plane is ensured through
the gap between the two cuts. (B)0 is essential for
the existence of the gap. ) Notice also that the sense of
rotation implied by (10) and (11) is the opposite of
that in the t pla, ne. From the real po axis one goes
continuously into the upper half-plane if ps)o);„)0,
into the lower half-plane if pp(o) (0.

F,Fby= I,bg, (12)

where p is the wave function in momentum space, i.e.,
the Fourier transform of x(x); it is a function of the
relative momentum p defined by

pa=Paf +p) pt =Pbbs p) (13)

I', p, and p~ being the total momentum and the mass
ratios previously defined. F and F& are one-particle
propagators, which, if one neglects radiative corrections

ib, = c4+ lib

3. TRANSFORMATION OF THE 8—S EQUATION

We shall now use the analytic properties of the
wave function to transform the 8-S equation by a
rotation of the axis of integration in the complex ps
(respectively xs) plane.

The equation' may be written

p+c)0

y, (p,pp) = (2)r)
—

4)t dsxe '& * dte"'&4'X(x). (8)
0

From (6) one easily finds

(9)
FIG. 1.The complex plane of the variable pb. The wave function

is analytic everywhere, excluding the cuts (heavy lines) on real
axis.
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reduce to

(15)

where Ldk]=idkpdk. The various cases are obtained
from the various possible assumptions about the
"photon mass" s, and the factors p,pp(p, pp

——1, scalar
interaction, etc.).

For simplicity we shall carry out the transformation
under the assumptions (14), (15), but the proof can
be easily generalized to include radiative corrections
to any desired order. '

Let us consider the right-hand side of Eq. (12), as
given by (15).The poles of the interaction kernel are at

kp
——

pp+ L(y —k)'+s']'. (16)

F =y,p, im„— Fp y——pps i—ms, (Dirac particles)
(14)

F,=P '+m, ', Fp Pp——s+m ps . (Klein-Gordon)

Finally, I & is the interaction operator, which has
different forms, depending on the kind of theory. The
following form4 covers several cases, for the lowest
order ("ladder" ) approximation:

path of ~
tntegra tlon
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I,et us carry out the integration over ko 6rst. The
integration is along the real axis in the plane of the
complex ko vallable, passing just under the cut on the
negative axis and above the cut on the positive axis.
It is also important to remember that s in (16) is
assumed to have an infinitesimal negative imaginary
part, so that the pole with the larger real part lies under
the integration path and the pole with the smaller
real part above the path. Suppose for instance pp)0,
then depending on the relative magnitude of the two
terms in (16) the poles will lie as in Fig. 2(a) or 2(b).
For simplicity, the cuts of Fig. 1 are not indicated in

Fig. 2, but they do not interfere with the following
operations. First the integral path may be deformed
along the dashed line I there is an ass44mpfiots here,
that @(k) tends to zero at least like kp ' when kp~ po in
any direction). Now we move pp upwards along a
circle so as to end on the positive imaginary axis.
In Fig. 2(b) the path need not be changed. In Fig. 2(a)
the left pole, around which the path is bent, moves to
the left of the imaginary axis, and the path can be
straightened. In both cases we end up with pp on the
positive imaginary axis, and the integral over ko along
the imaginary axis, from i~ to +—i~.

A similar consideration applies when pp is on the

7 A higher-order term includes, in general, a number of integra-
tions over fourth components k0, k0', k0", . . . The proof is
most easily carried out if all these are regarded as complex
variables and their integration paths are rotated simultaneously.
An examination of higher-order corrections also requires a closer
look at the factors F, F&. The analytical nature of the propagators
F ', Fs ' (i.e., of the Ss', its' functions) is well understood (see
reference 14), and it is easy to show that they have no singularities
that stand in the way of our transformation.

new pat&

Fro. 2. Integration paths for the variable kp in Eq. (15).

negative real axis; it then moves to the negative
imaginary axis. The net result is a counter-clockwise
rotation of the axis on which the wave function is used,
on both sides of the equation.

Equation (12) is thus reduced to an integral equation
in a Euclidean vector space, with the metric

p pi +ps+ps +p4 ~ (17)

One does not really have to change anything to the
equation, except for the understanding that a real
vector now has a real component p4 and that, in
Eq. (15)

I dk] = dkrdksdksdk» (18)

the integral over k4 being from —po to +~. The fixed
vector P= (0, iE) is now, of course, regarded as pure

imaginary.
Ooe sees at once several advantages of this trans-

formation. The singularities of the interaction kernel
)and with them the difhculties mentioned under (b)
in the Introduction] are eliminated, and what is equally
important, the zeros of the Klein-Gordon factors
(14), i.e., the singularities of the inverses F, ', Fb ',
have similarly disappeared from the space of real

p vectors. Furthermore the symmetry group of the
equation is no longer the Lorentz group, but the group
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of real rotations in four dimensions. This is important
in the first place, because the group determines the
polar variables, which may be used with advantage.
In the Lorentz case integrals over a surface p'= const,
or x'= const are usually divergent; there are no
orthogonality theorems for spht. 'rical harmonics, no
completeness theorems, etc. Here instead we have the
whole familiar machinery at our disposal.

Other advantages appear in the configuration space
formulation of the equation, as we shall presently see.

4. DISCUSSION OF THE EIGENVALUE PROBLEM

We shall now examine several cases and show that
the transformed equation presents us with an eigenvalue
problem, to which many of the ordinary methods and
conclusions can be applied.

We shall begin, like Goldstein, ' with the extreme
case E=0, where the equation acquires full four-
dimensional symmetry in relative momentum space.
Unlike Goldstein, however, and for reasons to appear
later, we shall choose in Eq. (14) the K.G. (Klein-
Gordon) form of the factors F, and Fs That is., we
assume that a and b have zero spin. The equation for
E=O thus has the form

[u7
(p'+m ') (p'+m&')p(p) =t x-' " y(k) (19)

(p—k)s+ K'

We shall often use, in the following, the abbreviation
XI& for the right-hand side of (19). In particular Is
shall designate the interaction operator when the
"photon" mass ~ is zero.

We can now, of course, separate g, using polar
variables, and reduce the problem to a one-dimensional
integral equation. If for example p is a function of p'
only, the integration over angular variables on the
right-hand side of (19) is quite elementary. For simplic-
ity we shall write the one-dimensional integral equation
for this case only. Let p'= s, p(p) =e(s); then

(s+m.') (s+mss)u(s) =2K)t tu(t)dt/
0

With the further change of variables

x=f(s), y=f(t),

Eq. (20) becomes a symmetric integral equation,

t (x) =X ~ E(x y)n(y)dy
0

with the finite kernel,

E(x,y) =2(st)&/(s+t+a'+t (s+t+Ir')' 4st J—&), (23)

and the finite interval a=f(~). Fredholm's theory can
then be applied, to conclude that (22) has a discrete
eigenvalue spectrum. The case where @ is proportional
to a four-dimensional spherical harmonic can be
similarly handled.

It may be pointed out that if jr=0, Eq. (20) can be
reduced to a second order differential equation either
by diGerentiating twice, or by a parametric representa-
tion of the solution. Both methods will be used later,
and especially in the subsequent paper by Cutkosky, '
to obtain more precise information about this case.

Let us now consider briefly Goldstein's Eq. (10),
which applies to the case of two Dirac particles. When
written io our notation, the equation is quite similar
to (19) except that it contains only one quadratic
factor in p on the left. Goldstein manages to reduce
the equation to the one dimensional form, his Eq. (14),
in exact analogy to our Eq. (20); the transformation
in the usual frame, however, is far from trivial. "Unlike
Eq. (20), however, Goldstein's (14) is not reducible to
the I'redholm type. The diGerence in behavior is not
an eGect of our transformation, but is really due to
the different power of p' on the left-hand side. The
difficulties which Goldstein encounters in defining the
eigenvalue spectrum, and which he surmounts by a
special cut-oG procedure, are thus not a general property
of the 3-S equation, but rather of the special case
considered by him.

For the purpose of obtaining a more general view-
point, let us now examine the problem in configuration
space, i.e., in terms of the function x (x). Consider erst
again the case 8=0. The Fourier transform of Eq. (19)
is

((— +m.') (— +mss) —XV(R)7x(x) = 0, (24)

where the "potential" V(R) is

V(R) =4sR—'Ei(sR), R= (x„x„)&, (25)

E~ being a modified Hankel function. The expression
for V(R) in the case Ic=0,

f(s) =
J

ds'/(s'+m, ') (s'+mss),
0

(21) V(R) =4R ', (25a)

s&(s+m ') (s+mss)N(s) = tY(x),

Four-dimensional rotations must be applied simultaneously,
of course, to the relative momentum p and to the total P. If one
uses the c.m. system to begin with, so that P is pure imaginary,
it will stay pure imaginary after a real rotation. For Dirac particles,
a linear transformation of the g or @function must accompany the
rotation; this can be established in the usual way. Contrary to the
Lorentz case, however, the transformation here is always unitary.

See reference 4. Like Goldstein, we find it convenient, in
general, to regard E as given, ) as the eigenvalue to be found.

also gives the singularity of V at the origin in the general
case.

Goldstein's Eq. (10) becomes similarly

—m+XV(R)7x(*) =0, (26)

"The author is indebted to Dr. Goldstein for various interesting
conversations, and in particular for pointing out to him the
peculiar "Euclidean" nature of his Eq. (14).This remark was one
of the early motivations for the present study.
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which presents a striking analogy to the ordinary
three-dimensional Schrodinger equation. With x4 real,
(26) is, of course, an elliptic differential equation. This,
together with the boundary condition x (x)—+0 at
infinity, allows a discussion of the eigenvalue problem
along familiar lines.

A special difhculty, also encountered by Goldstein,
is presented by the boundary condition at the origin
E=O, about which we have unfortunately no definite
indication from general field-theoretic considerations.
The difficulty arises because of the Fuchsian singularity
(25a); if the potential were regular everywhere, there
would be little doubt that x(x) must be regular too.

One can see at once, however, that the singularity
of the potential affects (24) and (26) in a very different
manner. Consider, for example, spherically symmetric
solutions. The radial equation corresponding to (26),
or

$d'/dR'+ (3/R) (d/dR) —m'+X V(R)7x =0, (26a)

has two solutions near the origin, of the type p=R
)( (1+cyR+ ' ' ') with

(27)

Thus, if ) &-„, it is possible to make a distinction
between the "regular" (less singular) and the "irreg-
ular" sot.ution. If X)-,', it seems highly unlikely that a
plausible condition to determine the right solution can
be found. In the case 1(.=0, moreover, the equation can
be solved explicitly, ' the "regular" solution being
R 'j„(iR), where n=+(1—4X)'*. This solution, how-
ever, never satisfies the condition at infinity. We thus
reach the conclusion that no value X &—„' is an eigenvalue.
In our opinion, for X) ~ the eigenvalue problem becomes
ill-defined. We shall not try to discuss further here"
whether the limiting case X= 4 can actually be regarded
as an eigenvalue. '

In Eq. (24), on the other hand, the singularity (25a)
does not acct the indicial equation. The radial equation
for a spherically symmetric solution, for example, has
four independent solutions near origin, say p&, p&, p&, p4,
behaving respectively like E.', R ) lnR) and R '. If
there were no potential, we would clearly say that the
acceptable solution is a linear combination cryt+csxs
of the two "regular" solutions. We shall make the same
assumption when there is a potential. " Likewise we
can define, for large R values, four solutions behaving
respectively like R & exp(+p, R) and R 'exp(&psR).
The solution crxr+csxs will be a linear combination of
these four. In order to satisfy the condition p—+0 at
infinity, two coefFicients must be zero; that is, we have
two conditions. One of these may be satisfied by a
suitable choice of cr/cs, the remaining one gives a

' It may be remarked that in reference 6 Goldstein's eigenvalue
is also obtained from Eq. (19) in the limit mz/m, ~0 (and s=0).

's One can argue that x~lnR is not really a solution of (24)
since it gives an additional term b4(x) xR ' gives a. term
Qb4(x).

condition on X. This will, in general, determine a
discrete spectrum of eigenvalues.

We shall see later that for ~=0 the analysis can be
carried much further. Let us now turn to the more
interesting general case E&0. Let us write (in the
c.m. system)

I'= {O,iE)= i(m.+ms)g,

where g is the four vector

r) = (O, e), e=E/(m. +ms).
Notice that

~2 ~2( i

(2g)

(29)

The factor on the left of Eq. (19) now becomes, re-
membering (13):

(m, '+P ') (ms'+P ss) =P'+ (m,'+msr) (1—rP)P'
+4m,ms(pr))'+m, 'm (s1 Pr)'—

+2i(m, —ms) (p' m,—ms) (pr)). (30)

It is at first sight rather puzzling that the equation now
contains an imaginary term whose presence depends
on m beingWmb. In configuration space this means
that the operator corresponding to (30) is self-adjoint
only when m, =mb. One can show that this feature is
connected with the time-reversal properties of the
equation.

We shall point out, when the occasion arises, the
differences produced by the term in m, —nlrb. For the
moment, we shall consider only the case m, =mb
(=m, say). The analog of Eq. (24) then is

{L +ms(1 ~2)72 4m2~2g2/gx 2}~(x)
=) V(R)g(x). (31)

Since complete separation of variables is impossible, a
solution must now be a superposition x=g„f„(R)V„
of four-dimensional spherical harmonics F„ofdifferent
orders. The radial functions f„satisfy a system of
coupled fourth-order differential equations, and it is
no longer possible to discuss the eigenvalue problem in
terms of a single radial function. This is a considerable
complication, but one may notice, nevertheless, that
the term in {31) which produces the coupling is of
second order only, so that the indicial equation for
each radial function f„ is the same as in Eq. (24). If
one writes f„(R)=R (1+crR+. . . ) the possible
values for n are +n, +(n+2); we may assume that
only the positive values are allowed in a "regular"
solution, just as in Eq. (24). Thus there is no qualitative
difference between the two equations, with regard to
the behavior of solutions near R=O.

The asymptotic behavior of x(x) at in6nity, on the
other hand, is more interesting. It will be shown below
that when x tends to infinity, p behaves asymptotically
like exp| —Ry(84)7, i.e., it tends to zero exponentially
but with a coe%cient depending on the direction,
more specifically on the angle 84 with the "4" axis.
For our present purpose, however, it is only interest-
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ing to notice that y(84) has a positive lower limit
q~1 —e so that, in a certain sense, there is again
no fundamental difference in behavior between the
solutions of (31) and those of (24), and we may expect
that in both cases the boundary conditions at E=O
and R= ~ will determine a discrete X spectrum.

The elementary considerations developed previously
seemed of interest, because of the analogy with con-
siderations often made with regard to the ordinary
Schrodinger equation. In this sense we may say that
(31) presents an analogy to the Schrodinger equation
for a particle in an asymmetric field, where again the
reduction of the eigenvalue problem to a simple one-
dimensional Sturm-Liouville problem is not feasible.

Zn either case, a rigorous discussion of the eigenvalue
problem can only be achieved by less elementary means,
such as the reduction of the problem to an integral
equation. We do not wish to carry out such a study here,
but we may point out along what lines it could be
carried out.

We already have, of course, in Eq. (19) and its
generalization for ENO, an integral formulation of the
problem. In the case m, =ms corresponding to Eq. (31),
the equation can be reduced to the real symmetric form

C (p) =X H(p, k)C (k)[dk), (32)

IP(p, k) [dp][dk) (~, (34)

which together with other similar inequalities, which the
mathematically inclined reader can readily discover,
may be used to show that (32) is "nonsingular" and
thus possesses a discrete A. spectrum. Furthermore all
eigenvalues are real. Finally, one can see that the
kernel is positive-definite" so that A. &0.

An alternative integral formulation can be obtained
as usual in configuration space. In fact, Eq. (31)
together with the regularity condition at the origin
and the boundary condition x(x)—&0 at infinity, can
be replaced by an integral equation,

x(x) =X G(x—x') V(R')x(x')[dx'], (35)

or x=)GVy, where 6 is the inverse of the differential
operator on the left-hand side of (31), When m, =ms,
the function G(x) is even: G(x) =G(—x), so that (35)
can be easily symmetrized. The function G(x) is

"G. C. Wick, Nuovo cimento (to be published).

where

+(p) =S'(p)~(p)

f(p) = [p'+ms(1 ri))'+ 4—m' pal,
' (33)

&(pP)= -'U(p))- [(p-~)'+")-U(~))-:.
Now by counting powers of p and k it is easy to see

that

constructed in the Appendix, and it may be seen from
Eqs. (A7) and (Ag) there that G(x) has a very weak
singularity at the origin (it is in fact finite at x=0) and
tends to zero at infinity like

G(x) ge
&—q (e4) (36)

where g is a factor which varies slowly compared to the
exponential and

q (84) =m(1 —e cos84)
~
cos84~ )e

=m (1—e') l sin84
~
cos84

~
(e. (37)

where

x(x) =X G (x—x') U(R')x(x')[dx'), (38)

GD (x) =[y.(8/ax) —m. (1+j.g) )
&& [ys(8/Bx)+mb(1+pri)]G(x). (39)

In this case the singular character of the equation comes
about because G&(x) has a much stronger singularity
than G(x), near x=0. When this is combined with the
1/2' singularity of V(R) [Eqs. (25) and (25a)), Eq. (38)
becomes singular. This does not mean that discrete
eigenvalues of X will not exist, but only that a much more
detailed study of the equation mill be necessary. One
could, of course, also consider the possibility of less
singular potentials V(R), in which case the general
theory of integral equations might again be applicable.

It seems pointless at present to investigate in detail
such possibilities. One will bear in mind, however, that
within the framework of our transformed system of

If V(E) +0 suKc—iently rapidly when R~oo, the asymp-
totic behavior of x(x) as given by the integral in Eq.
(35) will reflect that of G(x), from which the conclusions
previously mentioned may be obtained. Incidentally it
may be noticed that in the nonrelativistic limit„&=1,
the lower form in Eq. (37) covers almost the whole
solid angle, and furthermore p= (mB)i sin84, Ap(84)
= (mB)~r, where r'=x '+x '+xss. We thus find the
typical exponential of the three-dimensional Schrodinger
function. It is indeed rather remarkable that in this
region, i.e., with the exception of a narrow cone around
the x4 axis, the asymptotic form of y(x) is not time-
dependent.

In the foregoing discussion we have, perhaps, laid
too Inuch stress on the special case of two spinless
particles with the special interaction I„of Eq. (19).
It is clear that none of the conclusions we have reached
as to discreteness of the A.-spectrum, etc., must neces-
sarily remain true if we change the propagators Ii,
F~ or the interaction kernel.

If, for example, we write the analog of (32) with
Dirac propagators, the conclusion that the equation is
nonsingular no longer holds true. As pointed out above,
Goldstein4 already met this situation for the special
case E=O. It is, of course, also possible to formulate
the problem in a form similar to (35), namely,
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coordinates, such questions can be attacked by ordinary
mathematical methods.

6. EXACT SOLUTIONS FOR x =0

A comparison of Eqs. (25) and (25a) suggests
that the problem of solving the 8-S equation exactly
may be far more elementary in the latter (~=0) case
This is borne out by Goldstein's solution' for Eq. (26)
and we shall see in a moment that also Eq. (24) has
quite simple solutions if I( =0 and m =m b. And, of
course, one will remember that the ordinary nonrelat-
ivistic Schrodinger problem is far more elementary
with a Coulomb than with a Yukawa potential.

At 6rst, however, one would regard this analogy as
encouraging only for the special case E=0, when the
8-S equation is separable. We were, therefore, quite
surprised when we first realized that for x=0 even the
nonseparable Eq. (31) can be reduced to a one-dimen
tional integral equation, or alternatively to a one-
dimensional eigenvalue problem of the Sturm-Liouville
type. We shall explain the basic idea for the simplest
type of solution and for m =m& only. The extension to
other cases was carried out by Cutkosky and is described
in the accompanying paper.

Choosing m, =ms (=m, say), let us first examine the
separable case, Eq. (24). In momentum space, the
equation has the form

(P +m')'4 (P) = )~~ 4 (P) (40)

which is very similar to the nonrelativistic hydrogen
equation in momentum space. The latter, of course, is
a three-dimensional equation and does not have the
square power on the left, but it will appear that the
analogy is closest when the two changes are made
simultaneously.

In particular, the ground-state wave function of
hydrogen: p(p) = (p'+p, ') ', is duplicated here by the
solution

4(p)=(p'+ ') ' (41)

corresponding to the eigenvalue )i=2m'. That (41)
satisfies Eq. (40) can be verified most easily if one
first writes, a la Feynman:

($2 2Q, p+P2) 1($2+~2) s 3(1 g)2dg

X[(k—&p)'+ (1—x) (m'+ xp') j 4. (42)

5. APPROXIMATION METHOD S

It is also possible to show that our transformed
equation has several advantages if one wants to employ
approximate methods of solution. We have in mind,
in particular: (a) a perturbation expansion in the
neighborhood of E=O (see also reference 4), (b)
variational principles, (c) nonrelativistic approxima
tions, without special restrictions as to the form of V(R)
These questions will be discussed in a paper which the
author hopes to present shortly in another periodical. "

One then finds easily that

Isy= (1/2m') (Ps+ m') ' (43)

showing that Eq. (40) is satis6ed.
More generally, one can see that Ip applied to

(p'+2p q™)', where 3P and the vector q are
constants, gives (p'+2p q+M') ', apart from a
proportionality factor. This peculiar self-reproducing
property of a quadratic form in p, under the operation
I, is characteristic of the case ~=0.

Consider now the equation for E/ 0. For simplicity
let m= 1 from now on. The equation is

[p'+2ip. 9+1—g'j[p' —2ip )+1 rp])=—I,). (44)

Clearly p cannot be a function of p' alone; it must be
at least a function of p' and p 9 (for an S state). The
above considerations suggest that we may be able to
generalize solution (41) by writing p as a superposition
of terms" of the type (p'+2p q+M') ' where q is
parallel to p, say, q= i'. That is

4 (P) = dsdM'g(s M')[P'+2isP ™g'. (45)

One then sees immediately that

gi(s, M') =g (s,M')/(M'+s'q').
(46)

g(s,M') =g(s) 5(M' —1+g'). (4&)

Carrying out the transf ormations indicated above and
writing

Q(s) = 1—g'+s'9s,
we find

f f+'
)=l ' ) )

(48)

4 y "p

Xxdh[p'+2ifp g+1 g'j ', (49)—
t =my+(1 x)s—

'4 An expression of this type has a certain resemblance to the
parametric representations for Sz' and Az' developed by M.
Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954). G. Kallen
LHelv. Phys. Acta 25, 417 (1952)g has previously used similar
representations for other quantities that are a little less closely
related to the 8-S wave function, Eq. (1). In the case of these
quantities, and of the functions S~'hy ', it is possible as the
above-mentioned authors have shown, to derive the general
form of the parametric representation from the definition of the
quantities, and from considerations of relativistic invariance.
The author has not been able to do the same for Eq. (1).Never-
theless the analogy with Sy ' and A~' was used to "guess" the
form of Eq. (45).

Inserting on the right of (44) and dividing by the two
quadratic factors on the left, one then tries to reduce
the result again to the form (45) by reassembling the
three quadratic denominators into a cube [in a similar
way as in Eqs. (42) and (A3) in the Appendix]. One
sees at once that if 3P= 1—g' the "mass term" repro-
duces itself. Thus we set
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Eliminating y in favor of f, and carrying out the
integrations over x and s first, (49) acquires indeed the
general form required by (45) and (47). Writing that the
two expressions are identical gives an integral equation
for g(s).

To this end notice that if s in (45) is allowed to vary
between —1 and +1, f will also vary between the same
limits. Writing di=xdy and noting that for given
s and i,

one finds

(1+&)/(1+s) if s) g
dx=R(g, s) =

(1—f)/(1 —s) if s&f,
(50)

4(P) =~ v(l)Lp'+»iP v+1 n'j 'd—f, (51)
—1

This is, of course, an integral equation of Fredholm's
type, and has a discrete X spectrum. We thus have
achieved the surprising result that the B-S equation
(44), although nonseparable (as far as we can tell), can
be reduced to a one-dimensional problem.

Further Reduction of the Pxoblem

Equations (45), (47), and (52), of course, do not give
all the solutions; they do not even give all the 5 states.
The necessary generalizations, however, are natural
and will be described in the accompanying paper. I.et us
instead study (52) a little further. From (50) and (52)
one can see that

where y(f') is given by the right-hand side of Eq. (52)
below. The condition g=y thus gives the integral
equation

+1

g(i)=-:l " &(i s)Q '(s)g(s)«

The lowest eigenfunction simply develops a kink at
z=0, while the behavior of the higher states is more
complicated; if one inserts the approximation (55)
into (52), one finds

which requires

(57)

This is, of course, just what one expects from the non-
relativistic Balmer formula for the lowest eigenvalue.

Clearly the limit p'—+1 requires a more careful
treatment for the higher eigenvalues. The reason is
that all the nodes of the eigenfunction tend to concen-
trate near s=0 so that the approximation (55) is not
adequate.

It is easy to see that X does not tend to zero for the
higher eigenvalues. Thus, none of the higher eigenvalues
of Eq. (54) has anything to do with the states known
from the nonrelativistic case. It will be shown by
Cutkosky that the other known states are contained
in other families of solutions of the B-S Equation;
each of these families, however, contains in addition
"abnormal" solutions that have no nonrelativistic
limit.

We shall now examine the behavior of the "abnormal"
eigenvalues of Eq. (54) when rt~1 and show that all
these eigenvalues converge to a common limit X—&~.

First we can see that X&~ cannot be an eigenvalue
other than (57). Consider in fact the second eigenvalue;
the corresponding eigenfunction must be odd and have
a node at z=0. Hence we need only examine a solution
of (54) with the boundary conditions g(0)=g(1)=0.
Assuming

(58)

we divide the interval 0—1 into two parts,

g(+1)=g (—1)=0.

Furthermore, differentiating (52) twice, we get

g"(s)+~(1—s') 'Q '(s)g(s) =0

(53)

(54)

0&s&so and so&s& 1,

choosing zo to satisfy

(59)

(60)

Q '(s) = (1—it'+ s') '= s (1—rt') '*B(s). (55)

'~ See the general discussion in reference 6.

These equations formulate the problem as a Sturm-
Liouville eigenvalue problem. Thus it is easy to predict
qualitatively the dependence of X on g'.

Thus consider first vP=O; then g(s) = (1—s') is a
solution, and clearly it corresponds to the lowest
eigenvalue since it has no nodes. The higher solutions
are also polynomials. "The lowest eigenvalue is X=2,
as we know already. The "potential" Q '(s) is an
increasing function of the parameter p'. Hence every
eigenvalue X must decrease as q' increases.

When p'~1, Q '(s) develops a singularity at s=O,
in fact,

In the erst interval we write the equation with a slight
change of variables,

x= it (1—it')
—4,

d'g/dx'+X(1+x') 'g=O,
(61)

g=g g ~

g+= (1+x')2J"i($+t 8—t '2' 2(1~ix))
t = (-' —~)'

(62)

neglecting terms of order & (I rt')&. (One can se—e a
posteriori that this approximation is justified for our
purposes. ) Equation (61) is of Riemann's type, and the
solution we want is
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In the second interval we write Q(z)=z', again
neglecting terms of order (I rP—)& at most, and write

small values of 0 are of the form

a=ao; p= bo, . (68)

g 4-z'+'(1+ )+&(p)z"'(1+ ") (64')

where the dots now indicate expansions in powers of 2',
and

B(p) = 2 r(p)r(-; —p)/r( —p)r(-;+p) (66)

is a quantity which on the whole interval 0&X&~
(0&p& 2) stays quite close to —1 (and is in fact &—1).

Rewriting (62') in terms of the variable z and
omitting again a proportionality factor, we find

g;„z&+'+A (p) (1 4t') &z &+', —(67)

which is of the same form as (64'), but with a coefficient
for the second term which is smaller than B(p) in
absolute value, for all values of p in the stated interval.
Hence (64') and (67) can never join smoothly. In
addition it is easy to verify that the slope g'/g is larger
for (67) than for (64'), as one expects if X is too low
to be an eigenvalue.

Let us now turn to the case X) —.', . One can see that
essentially the same formulae will hold, except that p
will be a pure imaginary, say p=io, o= (X—4)&. One
sees, then, that (64') and (67) take the respective forms

and
g,,„4 z& sin(o lnz+p) (64")

g;, z~ sin(o lnz —zo. ln(1 —g')+n), (67')

where o4 and p are phases depending on o, which for

s =z', d'g/ds'+ 2s 'dg/ds+4)bg/(1 —s)s' =0, (63)

which again is of Riemann s type. The solution satisfy-
ing g=0 at s= 1 is

g= (1—Z')Z'* '2~i(14+kp '+z-p; 2 1—Z') (64)

We will first show that if X&—„', the "internal" and
"external" solutions (62) and (64) cannot join smoothly
at z=zo, i.e., x=xo ——gzo(1 —

vP) '*. In fact, since xo»1,
we may evali. ate (62) by means of the asymptotic
formula for the hypergeometric function. One finds,
omitting a proportionality factor,

g'- -*'+'(1+ )+A(p)x '+'(1+ ). (62')

The dots indicate expansions in powers of x ', and since
p&-,' it is consistent to keep the first term of the
second expansion, while neglecting the higher terms of
the first expansion. Furthermore,

A (p) =2'i' tan( —'z ——'z.p)r (2p)/r (—2p) (65)

is a negative quantity which varies from 0 to —1 as
) varies from 0 to —,'.

Similarly, (64) may be evaluated for small values of
z by means of the known transformation of I"(a, b, c,
1—s) to hypergeornetric functions of the variable s. One
finds

u and b being constants, whose precise value we shall
not determine.

Obviously (64") and (67') can be joined smoothly if
n —P——,'o ln(1 —vP) =m. , where e is an integer. If 1 rP—

is so small that —ln(1 —rP)»1, the above equation
will have small roots o so that by using (68),

(69)

To an even cruder approximation, one has

o —2m'/ln(1 —g'); li = 4i+ L2~n/ln(1 —vP))'. (70)

Equation (70), for v=0, 1, 2, . gives an infinity of
eigenvalues all tending to X= ~~ when g'—&1. It should
be pointed out that these correspond to odd eigenfunc-
tions. In a similar way one can show, however, that the
same formula, with 2n replaced by 2m+1, gives the
eigenvalues for the even eigenfunctions.

About the possible significance of these "abnormal"
solutions we shall IIot try to speculate here. Since they
occur only for finite values of X (X&~4), it would be
unwise to assume that they are a property of the com-
plete B-S Equation. Certainly the ladder approxima-
tion cannot be trusted to that extent. If the theory is
used only for small values of the coupling constant,
the abnormal solutions do not exist, in the case we have
studied, and no contradiction with known facts can be
established. Nevertheless it would seem that these
solutions deserve further study.
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APPENDIX

We shall construct here the Green's function G(x),
which is a solution of (p,'+m, ')(pP+mt2)G(x) =8(x),
p and pz being defined by Eqs. (13) and (28), with
p= i Grad. We shall calculat—e G for the general case
m Wm&, since this involves no additional difhculty.
Using Fourier transforms, one sees at once that

G(x) = (24r) 4 t
t (p, +m,2)(pp2+4tip)) 'e'"*avdp) (A1).
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In the following we use —.,'(m, +mq) as the unit of mass,
setting

m, = 1+6, my= 1—h. (A2)

Furthermore we transform, 0 la Feynman,

XB'«'(is). The asymptotic behavior of (A7) when
R-+~ in a specified direction (i.e., keeping x4/R
constant) is found noting that Eo(s) (m/2s)&e '. The
exponential part of (A7) is then

p+1

[(p 2+m 2) (pb2+mi2)) 1 i [p y g) 2ify (A3)
—1

where
where

G(x)-. . .j dy exp[ —Rf(y)),

with
Xexp[—nU ——,'R'a —'+ (y+&) (xg)), (AS)

U= (1+2yh+6') (1 q')+rP(y+—6)'. (A6)

[p,y ~)=p'+—»(y+~) (p ~)

+ (1—~') (1+2y~+~') (A4)

Furthermore, applying to Q—=[p,y,a) the formula

„I',—.q.d.
0

and inserting into (A1), the integration over p may be
performed, with the result

(a+1

G(x) = (32@2)
—i)I dy

—1 0

f(y) =I (1-")(1-y')+(y+~)')'- (y+~) R-.
It is easy to see that f(y))0 in the whole interval
—1 &y &+1. Hence G(x) satisfies the boundary
condition G—&0 as E—&~ in any direction. If y is the
point in the interval where f(y) is a minimum, then the
strongest factor in the asymptotic dependence of G(x) is

G(*)-expL —Rf(y-)). (AS)

Notice that y„, depends on the direction. Consider, for
example, the simplest case 6=0. Then if

l x4l & «R, y
is defined by the minimum condition

y„«R =x4(1—«'+y'«') '; (A9)

that is, writing x4/R = cos84, y «= (1—«') l cot04. If
lcos94j) « the root (A9) is not inside the interval, so
the minimum of f(y) occurs at y=&1, according as
cos04~0; summarizing, one has

Owing to (29), U is positive for lyl &1; hence the
integral over n in (AS) is always meaningful.

We then find that

lcos04l)' f(y )=1—«Icos~41

l
cos04l & « f(y„)= (1—«')-'*sin8, .

Notice that in the latter case,

(A10)

G(x) = (4m)
—'e"*4 dy

X"*R.(R(1 ~'+~'+2y~ +Vy)'), (A7)

where Eo(s) is the modified Hankel function, i(m/2)

G(x)~exp[ —(1—«') tr sin04) =exp[ —(1—«') &r),

if r is the length of the space component of x. In the
former case, instead, G(x) e ~+'~*4~; in particular, in
the time direction G(x) tends to zero like exp[ —(1—«)

x l*.l).


