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The e8ect of nuclear charge on internally converted pairs is investigated using the relativistic Sommerfeld-
Maue solutions of the iterated Dirac equation. The orthonormal properties of these wave functions are
studied and time-dependent perturbation theory is adapted to allow for their nonorthogonality. The inte-
grals involved are studied using the Fourier transforms of the wave functions. The matrix elements are
obtained in terms of one fundamental integral, evaluated by using an integral representation of Butler.
The procedure is very simple and promises generalizations. The matrix elements are shown to be complex
only through e= WiZ/(137m~), where v+ is the velocity of the positron or the negatron and Z is the nuclear
charge. The following conclusions are drawn. Firstly, the first Born approximation results when multiplied
by the well-known Sommerfeld factors of the negatron and positron are accurate to a term proportional
to

~

n, ~'. For 5-percent resolutions, Z&20, the kinetic energy must be more than 100 kev. Secondly, this
result i's valid for all electric and magnetic multipole transitions. Finally, this result is shown to apply to
all transitions taking place between unbound states and to hold for higher order perturbation terms.

Internal and external pair production are, however,
essentially di8erent processes. Internal pair production,
as a tool in nuclear spectroscopy, is of the greatest value
for light nuclei and can take place independently of the
nuclear electrostatic Geld. ' External pair production, on
the other hand, depends inherently on the nuclear
electrostatic field and is of considerable interest for
heavy nuclei. For this reason, the calculations of Bethe
et al.4 have to be valid for a much higher nuclear charge
than ours. On the other hand the latter are concerned
with much higher energies. External pair formation is
produced by an incident plane photon wave of high
energy. In internal pair formation the perturbation is
caused by a relatively low-energy spherical photon
wave. This makes the former problem mathematically
much simpler. Furthermore, in internal pair formation,
the region of large angular separation of the components
of the pair is of particular interest, ' whereas in the
external pair formation problem the small angle ap-

.proximation is of overriding importance. Considerations
of this type again make the mathematical problem in
the latter case much less formidable.

It is well known that the Grst Born approximation is
valid as long as

I. INTRODUCTION
" 'T is well known that the angular distribution in
~ ~ internal pair production' provides a method of dis-
tinguishing between diGerent types of nuclear transi-
tions. This method is particularly useful at high transi-
tion energies. In this sense, it is alternative to those
procedures which are more effective at lower energies,
such as the use of the ratios of internal conversion
coefficients for the E;, I, , etc. , atomic shells. The
angular distribution in internal pair production has
been studied theoretically by Horton' and Rose' using
the first Born approximation. In view of the recent
improvements in the experimental techniques, and the
subsequent applications of the theory, ' a re-examination
of the region of validity of the first Born approximation
is overdue. For external pair production and Brems-
strahlung, the improvement of the first Born approxi-
mation, in the relativistic case, has recently been carried
out by Bethe, Davies, and Maximon. '

'This possibility was Grst suggested to one of the present
authors by R. E. Peierls. See G. K. Horton, Proc. Phys. Soc.
(London) 60, 457 (1948).

'M. E. Rose, Phys. Rev. 76, 678 (1949). For an interesting
related paper see G. Goldring, Proc. Phys. Soc. (London) 66, 341
(1953).See also M. E. Rose and G. E. Uhlenbeck, Phys. Rev. 48,
211 (1935), and V. B. Beristetskii and I:M. Shmushkevich, J.
Exptl. Theoret. Phys. (U.S.S.R.) 9, 591 (1949).

3 Internal pair production has been frequently studied experi-
mentally. For the earlier references see G. D. Latyshev, Revs.
Modern Phys. 19, 132 (1947). For transitions studied via t
total pair formation coeKcient see E. H. S. Burhop, The Aug
Effect (Cambridge University Press, Cambridge, 1952); S.
Bloom, Phys. Rev. 88, 312 (1952); R. G. Thomas and T. Lauri
son, Phys. Rev. 88, 966 (1952); and also G. Harries and W.
Davies, Proc. Phys. Soc. (London) 65, 564 (1952). The angul
distribution in internal pair creation has been studied by
Siegbahn, Arkiv Fysik 4, 233 (1952), G. Harries, Proc. Phys. So
(London) 67, 153 (1954). Paul, River, and Devons, Imperi
College, have kindly informed us that they are also studying th
angular distribution in internal pair creation experimentally.' H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954)
Davies, Bethe, and Maximon, Phys. Rev. 93, 788 (1954).

where
rt =Zse'/(sP ), k =P~; (2)

Ze is the nuclear charge, re= —e for the negatron and
+e for the positron, and n =rt~ throughout. Condition

t- (1) shows that the first Born approximation is valid,
~n~~ &~0.05, in the shaded region of Fig. 1. We note

K. ~ It seems, however, that experiments will be carried out for a
c. higher nuclear charge also. ThC", Mns', and Co' have already
al been investigated by Siegbahn, reference 3. For a discussion see
e Sec. VII of this paper.

6 See G. Har'ries and K. Siegbahn, reference 3; in the latter a
P-spectrogoniometer is used, which automatically restricts 8 to the
range n/2 &tt &v..
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that Fig. 1 demonstrates that the 6rst Born approxi-
nation is only valid if Z&~6 for 8, the total energy,
bigger than or equal to 2mc'. This conclusion is dis-
turbing because experiments have already been per-
formed with nuclei as heavy as ThC" with particle
kinetic energies well below mc'. Furthermore, in the
experiments it is sometimes necessary~ to work with
rather slow positrons (negatrons). For instance, if the
excited state of the nucleus under investigation is formed
through P decay, as in the 1.74-Mev excited state of
Na24, Siegbahn7 found it necessary to reject all electron
pairs whose negatrons had an energy below the upper
energy limit of the accompanying continuous P-ray
spectrum. This makes the apparent failure of the 6rst
Born approximation (Fig. 1) all the more serious.

In this paper, we make a detailed study of the region
'of applicability of the first Born approximation. It will,
in fact, be shown that the 6rst Born approximation has
a much greater range of validity than is suggested by
(1). This is discussed in Sec. V by using the solutions
of the iterated Dirac equation in the Sommerfeld-Maue
approximation given in Sec. II. We use 6rst order
perturbation theory. It has been pointed out' that it is
not necessarily correct to assume that 6rst order per-
turbation theory, developed in the nonrelativistic
approximation, is valid when using the solutions (4) of
Eq. (3). In Sec. III we develop a relativistic pertur-
bation theory adapted to overcoming the non-ortho-
gonality difliculty encountered when using the wave
function (4). The integrals that arise have been studied

by a number of authors in con6guration space. In Sec.
IV, we use the Coulomb wave function given by one of
us" in the momentum representation, combined with
an idea of Butler (see Bess') to evaluate the relevant
integral in a new way. We have given the evaluation in
some detail in the hope that it will be possible to adapt
the techniques to the evaluation of similar but as yet
unsolved problems. "In Sec. VI, we discuss the general-
ization of our results to any transition taking place
between unbound states in a nuclear Coulomb 6eld. In
Sec. VII, we conclude with a critical examination of the
validity of our results.

' See K. Siegbahn, reference 3.' G. K. Horton and E. Phibbs, Phys. Rev. 94, 1402 (1954). See
also F. J. Dyson, Phys. Rev. 83, 713 (1948); A. Sommerfeld,
Atorrtbatt Nrtd Spectratterteel (F. Vieweg and Son, Braunschweig,
1939), Vol. 2, p. 412.

9 A. Sommerfeld, reference 8, pp. 502 and 529. See also A. Nord-
sieck, Phys. Rev. 93, 785 (1954); L. Bess, Phys. Rev. 77 550
(1950).

'e G. K. Horton and R. T. Sharp, Phys. Rev. 89, 885 (1953).
"We refer, for instance, to the Coulomb excitation of nuclei by

low-energy charged particles. See G. K. Horton, Birmingham
Dissertation (unpublished), and K. Alder and A. Winther, Phys.
Rev. 91, 1578 (1953); K. A. Ter-Martirosyan, J. Exptl. Theoret.
Phys. (U.S.S.R.) 22, 284 (1952); C. J. Mullin and E. Guth,

hys. Rev. 82, 141 (1951).Similar integrals arise in the theory of
P decay and atomic and nuclear scattering.
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FIG. 1. The vertical scale on the left gives the values of
~
tt

~

and
~tttt~. The scale on the right gives values of ~N~' and ~N'p'~.
The horizontal scale gives the kinetic energy in units of mc'.

II. WAVE FUNCTIONS AND PERTURBING
POTENTIALS

It has been shown by Sommerfeld and Maue" that
the normalized solution of the iterated Dirac equation,

( Zse'p s sZe' (~V+
~

&+

is

P(r) = (2s.) fN'e'"'(1+ (iP/r) tr»+O(rt'P'))
&&F(—rt, 1;p)N(k), (4)

sV'=2 in'/(e'i "i—1),
where

p =i (kr kr). —

We discuss the orthonormal properties of (4), and, in
particular, the derivation of the first relation in (4), in
the first appendix.

It.is well known that if the effect of an electro-mag-
netic field on a relativistic charged particle, obeying
Dirac's equation, is taken into account by perturbation
theory, then the perturbation term in the Hamiltonian
is

(6)
'2 See Sommerfeld, reference 8, p. 410; W. H. I"urry, Phys. Rev.

46, 391 (1934).See also H. A. Bethe and L. C. Maximon, Secs. II
and III, arid G. K. Horton and R. T. Sharp, reference 10.We use
natural units k= c= 1.

(0+ g+)

P( + 1 p)
— t tt 1 (1+t) ne ptdt (5)—

27ri
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where A and V are the classical vector and scalar poten-
tial of the perturbing electro-magnetic field. For electric
dipole transitions:

where

=
J

dM*(E'"', r)L&+»/rlHV(E'"', r) (16)

A=Be's"/r, V=B V, (e's"/iver), (7)

4q/3. (8)

where B is a unit vector oriented in the direction of the
dipole and q is the frequency (or energy) associated
with the nuclear transition. For other types of transi-
tions see Sec. VI. The number of quanta emitted by an
electric dipole is, in our units,

Equation (16) has been given before without proof. '
From this stage the theory follows the usual nonrela-
tavistic case. Here we only give the final result. For
dipole transitions, the number of pairs per nuclear
transition in which E~ lies between E+ and E++dE+
and hence E lies between E and E +dE, the direc-
tion of k+ lies in the element of solid angle dQ+, and
the direction of k lies in the element of solid angle dQ, is

III. PERTURBATION THEORY

We shall follow the Born approximation calcula-
tions, " by using first order perturbation theory in
evaluating our transition probabilities. It is well known
that in deriving the transition probability for a process
by the usual nonrelativistic perturbation theory, the
fact that the unperturbed wave functions form a com-
plete orthonormal set is an essential requirement. It is,
however, clear (see the first Appendix) that our wave
functions (4), solutions of Eq. (3), do not form a
complete orthonormal set of unperturbed wave func-
tions but, as is shown in the first Appendix, satisfy

2sZQ

XP(E+,r)=1 or 0, (9)

according as d includes k+ or not. This means that
the conventional perturbation theory must be amended
accordingly. Let

X= 2zZe'/i (E +E+)= 2zZe'/iq (10)

and

Let

i'd%/Bt

=H4, where H= Hs+H',

Hsp(E(~) r) —E(~)lt, (E(s) r) (12)

4'(r) = S(„)a„(t)P(E("),r) exp( iE&"'t)—, (13)

where 8(„) indicates summation over the discrete and
integration over the continuous states, respectively.
Substituting (13) into (11) we have

8( )i(c&a /c&t)P(E("), r) exp( —iE&"&t)

= P(„)a„(t)H'P(E("),r) exp( —iE&"'t). (14)

Multiply (14) on the left-hand side by

f*(E( ),r)$1+9/r$ exp(iE& 't)

and integrate over all space. We And

8(t (t)/Bt= i 8( &H, '&t„(t) expL —i(E—&"&—E& &)j,
(15)

We require the solution of the time-dependent Schro-
dinger equation

H; f' f;„;„.&*——H'[1+iX/r]P(;, &dr. (18)

H' is given by (6) and l& by (10).E is the total energy
of the transition. That (1'I) and (18) are more plausible
with ) /0 may also be seen as follows. Consider" a
constant perturbation H'. For this case (17) will give
zero, which is reasonable physically, whereas (17) will
not be zero if P =0, but proportional to X.

It could be argued, of course, that it would be desir-
able to change as little of the exact Dirac theory as
possible, and that the requirement of the orthogonality
of the initial and final state is not essential. As evidence
for this point of view, we note that in many calculations
it has simply not been possible to orthogonalize the
initial and final wave functions. Similarly, it does not
follow that just because a certain form of the transition
probability, (17) and (18), seems more plausible than
another L(17) and (18) with l& =0), therefore we will get
better agreement with experiment; especially when first
order perturbation theory is used. We refer, for instance,
to the work of Jackson and Schiff" on the electron
capture by protons in hydrogen. In a first order per-
turbation calculation, these authors use initial and final
state wave functions which are not orthogonal. In addi-
tion, they take into account a term in the interaction
Hamiltonian which, for physical reasons, should not
contribute to the transition probability and yet gives a
large contribution. Their agreement with experiment is
excellent.

Another procedure, possibly the most consistent of
those outlined in this section, would be to use the
iterated Dirac equation, including the electromagnetic
potentials representing the nuclear multipole. From
this equation one would then have to take the per-
turbing term H', equivalent to (6) and, after devising
a perturbation theory for a second order Schrodinger

'3 We are indebted to Dr. Harry Schiff for this remark."J.D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953); see
also H. SchiB, Can. J. Phys. 32, 393 (1954).

P(E+,E,Q+,0 )dE+dE dQ+dQ 3(E++E q)—
=L3/(327rsg) gg ~

H;, f' &'krak E+E
XdE+dE dQ+dQ 5(E +E+ q), (1—7)

where
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equation, evaluate the matrix elements with Sommer-
feld-Maue wave functions. The equivalence of the two
procedures has been discussed by Pauli. "

IV. EVALUATION OF AN INTEGRAL

The following integral will be required in Sec. V:

I(q) =Lim N+N * dr exp[(iq —b)r
5~0

+i(Q—k +e) rjF*(—I, 1;p )

XF(—u+, 1;p+)/'. (»)

Equation (19) was first evaluated by Sommerfeld" by
contour integral methods. He introduced the integral
representation,

(0+,-],+)

F( rt, 1 p—)= dtt " '(t+1)"e e'. (20)
2xi

The same integral was subsequently evaluated by
Bess" who introduced the integral representation

FIG. 2. Integration path used in Eq. (29).

Equation (19) can be written"

~p ~00

F(—ss 1 '
p) = e items[2(pt)i]dt (21) l(q) =Lim P*(r,k ) exp[sqr Br+err rj-

r(1+ ) ~,
XP(r; k+)dr (25).

with Re (p))0.

The integral will be evaluated in this section by means
of the Fourier transform of

By introducing (22) and (23) and carrying out the
integration over coniguration space,

r

f(r,k) =N(2s.)
—fe'~'F( —rt 1 p) (22)

I(q) = dr. ' du"y*(se')y(u")
(2')s»

I
re"—st'+tr

I

s—q'

(26)
r~

= (2sr)
—

& dx exp(iv. r)y(x, k), (23) In order to carry out the integrations in (26) we use"

where

y(~,k) =—N ct [ie'+ (e—ik)'j"
Llm-

2s' ~ c)c [e'+
I

st—kIs]'+"
(24)

a&0, b&0, —1&Re +&0. (28)

a"/b "+'= —(1/s) sinsrt u"du/(ts+bu), (27)

The method" is essentially diGerent from that of
Sommerfeld or Bess, although it has the powerful
contour integral approach in common with the former.

It is well known that integrals similar to (19),
occurring in related fields, have so far dehed evaluation,
and this new technique may suggest ways of reducing
them.

'e W. Pauli, IIarsdkack der Pkyssk (Edwards Brothers, Ann
Arbor, 1943), Vol. 24, No. 1, p. 239.

'6 See A. Sommerfeld, reference 8. The correct asymptotic
behaviour for our wavefunctions demands the substitution
re+~ —re+ and k+~—k+ in I(q).

"See L. Bess, reference 9.' One of us is greatly indebted to Dr. S. T. Sutler for pointing
out the value of (27) when combined with (24), as well as for a
most enlightening discussion on which much of the work in this
section is based. We are also grateful to Dr. P. G. Rooney for a
discussion on the mathematical aspects of this section.

It is easy to deduce from (27) that

47k 7I

a"/b "+'= — — u"du/(a+ bu)
2x'z

(29)

where C is the contour described in Fig. 2. In order to
combine (29) with (24), subject to (28), it is necessary
to assume that the rs, defined in (2), contains an in-

ie We have inserted a factor exp(itr r) in I, because the trick
used by Sommerfeld, Bess, and Bethe et ul. of keeping x=k —k+
together throughout the integration is not possible here. This
approach was previously outlined by E. Guth and C. J. Mullin,
Phys. Rev. 83, 667 (1951).Their application of the method to the
evaluation of quadrupole transition matrix elements in Coulomb
excitation of nuclei was, however, incorrect. This was Grst noticed
by H. McManus (private communication).

u W. Grobner and N. Hofreiter, Irstegrat Tafet (Springer
Verlag, Wien und Innsbruck, 1950), Vol. II, p. 32, Eq. (9a) with
ss= $.
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6nitesimal negative real part which eventually is
allowed to end to zero. The interchange of the integra-
tion and limit process is justified by the uniform con-
vergence of (29). The result of combining (29) with
(24) is

Equation (30) is a far more convenient form than (24)
for the Fourier transform of (22), because the branch
points in (24) are innocuous in (30). Conditions (28)
are obviously satisfied by (30). Inserting (30) into (22),
we And

g v
—wawj

y(x) = Lim-
4x'i ~ Be

X
I JQ

(30)
L"+( —ik)'7+L"+ I

—kl']N

/(q) =
Sm'

where

expL —iv. (n~ —ri )7

1
e "-dg v"+dvW(g, v), (31)

27ri
~ ~

27ri

and

8 V(x', v)
W(u, v) =Lim ' dx'"~ Be' ~ Lx"+(e'+ik )'7+Le"+ lr.'—k I'7e

8 f' 1
//

{I
x"—x'ye I'—q'}{Lx'"y(e"—ik+)'7+ Le"+

I

x"—k, I']v}

(32)

(33)

Equation (33) is most easily evaluated by noticing that the integrand is the product of two factors whose
separate Fourier transforms are well known. If we use the convolution theorem of Fourier integrals, Eq. (33)
becomes

B K pdr
I

( 'v

V(x', v) =Lim ~
—exp i (ip —q)r+ x' —e—

I lk+ r"'~ Bc"2(1+v) ~ r' I . &1+v)
(34)

where

p'= Lk~'v+ (»" ik~)'—+e'" ]v/(1+v) v'k+'—/(1+v)'
(35)

As (34) depends on e" only through p, we only require

Lim p=ik+/(1+v), Lim Bp/Be" =—1. (36)

Carrying out the di8erentiation and limit for ~" in
(34) and evaluating the integral over r yields

V(x', v) =—2v'(1+v) '{
I

x'—e—k+v/(1+v) I'
—Lk+/(1+v)+q]'} ', (»)

W(e, v) may be evaluated in an analogous manner. We
only give the final result:

1
&
—B(n+-n-)g g e+

27r2

1
&( I "-{ILIA —k+—el' —q'7

27ri
8 +8'v

—
I (k —q)' —Ik+yo I'7} 'dg I (39)2' 'v —vp

where

&{(k++q)' I
& ~I'}+{—(k+ k-+q)' ~—'}-

~{Ik-—k —o I'—q'}—{(k-—q)' —1k++~ I'}

It can be shown that vp does not lie on the positive
real axis, provided n does not lie on the negative real
axis between

Ni= —{IN+~I' —(k-—q)'}/{I~-—k+—~l' —q'}
1 1

1(q) v
—iw(mt —m—)g~ 4 &

—n —(1+~)—ldg
27r2 27ri

and

N~= —{(k+—k-+q)' —~'}/{(k++q)' —Ik —~l'}.
(41)

(
&( v"+(1+v) '

27ri (1+v)
k k~—k

I I+cr —
q
— +

(1+Ij 1+I 1+v
(38)

The integration over e can, therefore, be carried out
by evaluating the residue of the integrand at vp.

We remember that the integrand tends to zero along
the large circle (see Fig. 2) because of the small real
negative part of n+. Hence,

{NL(kp+q)' —I k el'7+ (k+ k+q)'—0'}"+dg— —
I(q) = (2v') 'X~ ~ exp{ iv (e++n—)} — ~ (42)

27ri I"-{Nt Ik —k+—el' —q'7 —
I (k —q)' —I Q+o I']}"++'

In (42), make the transformation
u= ui(1 —t)+Ngt. (43)
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Hence,

I(q) =x~ ' Llk —ol' —(u yq)']"+[lk++ el' —
I
n- —ql'] "- 1

Q—o
I

s qs]~+-~-+i 2%i
dt(1 —zt) "-(1—t) "+t "+ '. (44)

The contour does not include the singularity at t= 1/z, z(0, where

Ns {Ik —k+—o I'—q'}{(k~—k +q)' —o'}
z=1—=1+

{Ik-—~ I'—(&++q)'}{I
&++~I'—(&-—q)'}

x~ *[ll —~ls —(~ +q)']-+[Ik++~l' —(k —q)']-"-

(45)

(46)sFi(n, n—+, 1;z).I(q) =
2x' [lk k ls q27

— +1

It is understood that the small negative real parts in the e and m+, occurring in (46) and (45), are now allowed

to tend to zero. This result agrees with that obtained previously by Sommerfeld. "

—i&I„(q)= dr exp(iqr) 5'(r)/r&+'

where"

= —i"{I(p) } '
(q q') 'I (q')d—q', (48)

and

Is(q) =I(q) =Lim dr exp(iqr —8r)g(r)/r, (49)f-4 g

6(r) = (2z)
—s1V *X+exp{i(k+—k +o).r}

XF*( n, 1;—p-)P( —+, 1;p ),

p )~0, the definition of 5'(r) follows from (19).Relations
(48) and (49) are easily established by an interchange
in the order of integration and a use of the definition of
I'(y). Introducing (19), (45), (46), (47), and (48) into
(18), we 6nd

8;,r' ——N*(k )[rf+n (g+ipv)]el(k„), (50)

V. PROBABIIITY FOR ELECTRIC DIPOLE
TRANSITIONS

In this section we use the evaluation of I(q) presented
in Sec. IV in order to evaluate the H;, y' defined in (18).
We need the following results:

~.~(-~+, 1;~+)= —(4/r)~+P(-~+, 1;~+), (47)

where &~ means &a~.

where

&{[—~+~+ P~— (o+-+—P )~.](-~ ».)—
—&.[Is/q —li —) (f's/q —~s)]}, (51)

X= &(Io—+»i) {& &— P-+&-+—+(P++P )&.}&-

z,[Is/q I& X(I4—/q —I,)]}, —(52)

«=~X[—(P+v+—P V )+(P++P )v.](1,—»,); (53)

0 0 0 1
0 0 1 0'=0100.
.1 0 0 0.

In (51), (52), and (53) it is understood that ~0 as
soon as the e-gradients have been carried out. Terms
proportional to lel'P' have been omitted as is con-
sistent with the approximate solution (4) of Eq. (3). It
was shown in Sec. IV that I(q) is complex only through
e+ and n . It follows from the definition (48) that the
same conclusion holds for I&, I2, etc. Consequently,
(51), (52), and (53) are complex only through e+ and
n . We must now carry out the summation over the
spin directions of the electron and positron using the
standard spur and closure theorems. These are applic-
able because our wave functions have the great ad-
vantage that their spinor dependence is that of the
plane wave solution of Dirac's Equation. We give only
the 6nal result:

I
(I x I'+

I
v I'—le I') (&A-+~'+k+ k-)+2 Re[(n*& +x'k-) (n&+—x k+)

2 I &',r'I'= (&4-) ' (54)
+(v.k )(v* k+)+(v. k Xk+)g*+(«Xg* k+)E +(k Xg v*)E+]

Since p, g, and v are complex only through n+ and e,
it follows that (54) only contains even powers of e+

"See A. Somrnerfeld, reference 8. We note the difterence
between the normalization of our wave function and those used
by Sommerfeld. Sommerfeld neglected certain terms in his
evaluation as he did not require them for his calculations. They
have subsequently been given by A. Nordsieck, reference 9, whose
results agree with ours also after allowing for a change in notation.

ss The I„de6ned by (48) and (49) does not converge for p) 1.
However, it occurs only in conjunction with cr-gradients when
p&l and always in such a way that the resultant integrals do
converge.

SPlIl SPIll

+0[max(lel' Iel4 III'ps]}. (55)

and I . However, as (50) and consequently (51), (52),
and (53) were derived on the assumption that terms
proportional to all but the first power of the fine struc-
ture constant were negligible, it is consistent with our
approximation to neglect similar terms in (54). This
yields the final result:

2 I&'.r'I'=I&+I'I&-I'{[ 2 I&', r'I']s-~s-"»-*.
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This result has already been assumed, ad hoc, by Bloom."
The Born approximation calculations now continue as
before.

VI. HIGHER ORDER MULTIPOLE TRANSITIONS AND
THE EXTENTION TO OTHER'UNBOUND

TRANSITIONS

In the 6rst part of this section, we shall show that
the results obtained in Sec. V for electric dipole tran-
sitions hold for all nuclear electromagnetic transitions.

It is well known that nuclear transitions dier in
character, and can be classihed as electric and (or)
magnetic multipole transitions with diferent selection
rules for angular momentum and parity applying to
each type. A thorough discussion of this problem has
been given by Blatt and Weisskopf. s' Our result (55)
in the electric dipole case depended essentially on the
fact that H;, I' was complex only through n+. and n .
Consider the case of an electric quadrupole transition;
it is easily shown that

In other words, the electric quadrupole potentials are
obtained from the electric dipole potentials, apart from
a real multiplying constant, by the application of the
operator c V„/iq It ca;n .now be shown very easily, by
using (48) and (19), that the H; r for electric quadru-
pole transitions is again complex only through e+ and
e .This argument is easily extended to cover all electric
multipole transitions. The same result holds for all
magnetic multipole transitions. The proof follows the
electric multipole case closely.

Furthermore, we see that if the Born approximation
matrix element is real, i.e., the transition takes place
between two unbound states, then our result must hold
in general. This result is of interest in the estimation of
the errors due to the use of the Born approximation in
processes like the pair formation by direct nuclear
interaction in the 6.05-Mev,"0+~ 0+ transition in 0".
On the basis of our general result the error caused by
the neglect of the nuclear Coulomb field should be of
the order of 3 of 1 percent. This is rather smaller than
the present experimental error. "Similar considerations

apply to the 7.25-Mev 0+ —+ 0+ transition in C", 6rst
observed with certainty by Harris. '4 The error due to
the neglect of the nuclear Coulomb field is rather less
than —, of 1 percent.

2' See S. D. Bloom, reference 3.
24 J. M. Blatt and V. Weisskopf, TheoreticaL Nuclear Physics

(John Wiley and Sons, Inc. , New York, 1952); G. Harries,
reference 3.

's Devons, Goldring, and Lindsey, Proc. Phys. Soc. (London)
67, 134 (1954).

I
nl'«1, InI'P«1 In['P'«1,

rather than
(56)

The corrections to the first Born approximation are
of two types. There are terms proportional to

~
n~ 'P', or

(Z/137)s, and there are terms proportional to
~
n~s and

( n
(
'P (we ignore terms proportional to

t
n

~

', etc.). As
we are concerned primarily with low-energy transitions,
we cannot evaluate the former terms in (55) because
the wave functions (4), used in (16), are only accurate"
to the order of this correction term. The latter terms
correspond essentially to higher order Born approxima-
tion terms and they may, in principle, be calculated to
any order. There is at present, little hope that the very
complicated integrals involved can be evaluated in
general. ~. In Appendix II we outline a procedure for
taking the terms proportional to (n~' and (n('P into
account.

It is clear that for a given nuclear charge and given
positron (negatron) energy,

lnl') Inl'p) In[sps

The condition ~n~'P'&&1 is independent of the par-
ticle energy, in contradistinction to (1), and so ~nP~

plotted against the particle energies gives straight lines.
These lines, for various values of Z are shown in Fig. t.
As indicated in (55), our transition probability also
contains terms proportional to ~n~'. The conditions

I J. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. (London)
148, 708 (1935).' It has been suggested by Rose, see reference 2, that in the
Born approximation the integral features of the pair production
process will yield even better agreement with the exact calculations
as the efFect of the Coulomb field is to suppress the number of
slow positrons and increase the number of fast ones. Upon inte-
gration over the energy spectrum the two efFects largely cancel
out. This might account for the surprising excellence of the first
Born approximation. A similar efFect was found by Bethe et al. ,
reference 4, for external pair production. In both processes the
negatron-positron interaction has so far been ignored. That this
is reasonable has been shown by R. H. Dalitz, Proc. Roy. Soc.
(London) A206, 521 (1951).

2' In the case of external pair creation, Bethe et al. were able to
concentrate on the case of large primary energy, and so calculate
terms we must neglect.

~ Far less complicated integrals have so far defied evalgation;
see reference j.1,

VII. CONCLUSIONS

Apart from the exact calculations of Jaeger and
Hulme" on the total pair production probability in lead
(Z=84), the only theoretical calculations available to
compare with the growing experimental evidence are
based on the first Born approximation. When the latter
calculations are compared with the exact results of
Jaeger and Hulme, an error of about 20 percent is
found. This is not at all in agreement with (1) which
suggests that the error should be of the order of 65
percent. It is, however, shown" in this paper that the
first Born approximation calculation is much better
than might have been expected on the basis of (1). We
find that the condition for its validity is
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) e+('«1, (es ~s&&1, give curves which depend on the
energy of the particle and the nuclear charge. They are
also given in Fig. 1. (right hand ordinate scale) We note
that because electrons have a small rest mass the curves
and the straight lines in Fig. 1 diverge only at small
energies. For particle kinetic energies above one Mev
and the nuclear charge less than or of the order of 30,
the corrections to the 6rst Born approximation are of
the order of 5 percent ((e~'&0.05, i.e., ~e~ &0.23).
In view of the status of the experimental techniques,
this is probably satisfactory at present. If the particle
kinetic energy is above 100 kv, a 6ve-percent error
requires the nuclear charge to be less than or of the
order of twenty.

Clearly this situation is again improved if ratios of
transition probabilities, say, at various angle are con-
sidered. The error term may then be expected to be of
order Max(~e~', ~e'P'~).

In the first Born approximation, the transition prob-
abilities are symmetrical between the positron and
negatron. As soon as the nuclear electrostatic field is no
longer neglected, by the inclusion of the "Sommerfeld
factors, " this symmetry is absent. It is only through
the presence of these factors that our results diGer from
those obtained in the erst Born approximation calcu-
lation. It is known that they occur in many other
similar processes such as the external pair production. "
These factors are known to aGect the transition prob-
abilities considerably for low negatron or positron
energies. In Sec. VI, we proved that condition (56)
gives the region of validity for all 6rst Born approxi-
mation calculations, in which the initial and final states
concerned belong to the continuous spectrum. This is
clearly not the case for the internal conversion process
for which, therefore, condition (1) and not (56) is
applicable. " This fact explains clearly why the first
Born approximation gives results with a very much
more restricted range of validity in the internal con-
version than in the internal pair production process. "

Our work uses a transition matrix element that
differs from that usually used by a term that arises from
the non-orthonormal properties of the Sommerfeld-
Mauer wave functions. We emphasize that our con-
clusions in this paper are independent of whether ) in
(18) is different from zero or not. The question of what,
is the correct matrix element clearly requires further
study.

APPENDIX I

Fxo. 3. Definition of angular variables in Appendix I.

Integrating over coordinate space and applying Green's
Theorem, we obtain

where

dk
~

f+*(1+ih/r)f dr= f(E+,E ), (A2)
cL

f(E+,E ) =Limit
r gazoo P 2 g 2+

(' f
X

E ar ar

g g~zin2r

exp{ik r+eln(kr —k r))
(2~)ir (1+~)

X[1+0(1/ )]. (A4)

We have omitted the spinor N(k), since its effect on the
orthonormalization integral would simply be to intro-
duce an additional Kronecker delta. Inserting (A4) into
(A3) and neglecting terms of order 1/r, gives

Since we are concerned with wave functions in the con-
tinuous spectrum, an integration over a spherical shell
of thickness 4 in k space has been introduced. o repre-
sents a sphere of radius r,. Our task is to evaluate

f(E~,E ). The asymptotic form of the wave function
(4) may be shown to be

Let P~ and f be two solutions of (3) for E=Z+ and
E, respectively. Then" f(E+,E ) =Lim

T~OO J
dk N+*X exp{-,'is. ('n++es ))

0'+*~V 0' ~V+*+ (E ' -E—+') (1+i)/r)0+-*0-
(A1)

"See. W. Heitler, Qaantnrn Theory of Radiateon (Oxford Vni-
versity Press, London, 1947).

e' S. M. Dancoff and P. Morrison, Phys. Rev. 55, 122 (1939).
~ Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 76,

1882 (1949).
L A similar procedure is sketched by Sommerfeld, reference 8,

p. 412, for the case of the discrete spectrum.

X[(2s)'I'(1—n+)I'(1+n )] 'r, '

dqd cos9z(k+ cose++k cose )
ET

Xexp[i(k —k+) r+ (y —y+)], (A5)
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where y+= e+ ln (k+r —k+ r), 8~ is the angle between Ir+

and r, y =u ln(k r—k ~ r) and 8 is the angle between
k and r. The integration over 8 and P can be carried
out by choosing the axis of spherical coordinates in the
reaction of K, where

«=k —lr+, «= ~k —g).
Then (see Fig. 3),

k cos8 +k+ cos8+=«cos8+2k~ cos8+
=«cos8+2k+(cosO cos8

+sinO' sin8 cos(C —P)$.

where P is the angle between ir and g. If the variable
« is used instead of p for the angular integration,

N~*N exp{2im (u~+I )}
f(E+,E )=-

~r(1yu )r(1—u,)

p'-+~~2 k dk
)&Lim'~" Ja—F12 k+E E—

(k++k ) sinr, (k —k+)
(A9)—(k —k~) sinr, (k~+k )

Hence,

f(E+,E)-
N+~N exp{-',im(n++n )}

(2s)' ~ E+' E'—
where

=Lim
f'~00

p "+ sinlr,
f(u) du

p'+ siner,
f(e) dv,

1

XLim r ' d cos8e'"'~ -"(«+2k+ cosO') cos8, (A6)
gg~oo J

where we have dropped the terms involving y and will

ignore the k dependence of e . This is easily justi6ed
in the limit r, —+ ~. The integration over 8 can now be
carried out. The result is

N+*N exp{-',is(N++e )}
f(E+ E )=-

2~'r(1.—u,)r(1+u )

XLim ~" («+2k+ cosO)
2 g 2

u=k —k+, ug=k —k+&&/2,

a=k +kg, eg=k +k+&6/2,

f(0)= {N+*N k exp(-', ni(u +e~)j}
X{ k,I'(1+ )I'(1— )}-'.

Using

(sinu/u) du= ~,

we 6nd that

f(E+,E )= ~N+~'e' "+/~I'(1+u+)t', or 0, (A10)

according as cL includes lr+ or not. Hence the nor-

malizing condition,

("
X )

—cos«r, sin«r, ~. (A7)——') yields

f(E+»+)= 1, (A11)

fN i
2=2~i'+]/(~-~-+~ —1). (A12)

We now introduce spherical polar coordinates in the
~ integration. Carrying out the integration over the Equations (A2), (A10), (A11), and (A12) may be

azimuthal angle yields compared with the nonrelativistic normalization con-
dition,

f(E E )

=N+*N {wI'(1+I )I'(1 u+) } 'exp—{-',iver(n—++u )}
dk Pp*P dr=1 or 0,

4
(A13)

p k-+5/2

XLim I {E~'—E '}—'k 'dk

rg. 1
X d cosP —cos«r ——sin«r

J 2
K K

k+
X «+2—(k cosP —k+) (A8)

according as 4 contains Q or not. For the P in (A13)
the solution of the nonrelativistic Schrodinger equation
with a Coulomb potential, the normalizing constant
may be shown to be the same as (A12). This has prob-
ably obscured the essential difference between (A2),
(A10), (A11), and (A12) on the one hand, and (A13)
combined with (A12) on the other. It is clear that if
we carry out the transition to the nonrelativistic limit,
c-+ ~ or X —& 0, (9) goes directly over into (A13).
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APPENDIX II

In this appendix we show how I„can be evaluated in
detail to order ~n~s even if ts)0. Consider, for example,
I1.

Ir= (2sr) sN *N+ dr exp{i(k+—k +tr) r+iqr)

XF*(—n, 1;p )F( n+,—1;p+)r '

%e now use the fact that

F( r—s, 1;p) =1 nE—i(p)+0(~n)')
where Ei(p) is the exponential integral function. It is
easily shown that correct to order

~
n

~

',

It= dr exp{i(k+—k +e) r+iqr)
4

X[F*( n—, 1;p )+F( n+—, 1;p~)

+ ~
n+n

~
Ei(p+) Ei*(p )—1jr '.
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Decay of UXt, UX„and UZf

SVEN A. E. JQHANssoN*

DePartmerst of Physics aad Irtstetlte for Atomic Research, Iowa State College, Ames, Iowa

(Received March 31, 1954; revised manuscript received August 20, 1954)

The decay of Th"'(UX&) and Pa"'(UXe and UZ) has been investigated by means of a coincidence scintil-
lation spectrometer. Three gamma rays at 29, 63, and 92 kev were found i' UX1. Four gamma rays at 250,
750, 1000, and 1810 kev were found in VX2, and four gamma rays at 250, 760, 910, and 1680 kev were
observed in UZ. The coincidence relations between the gamma rays, and also between the gamma rays and
the beta radiation, have been investigated. A decay scheme is proposed and spin and parity assignments
have been made for some of the levels of Pa~'4 and U"'.

'HE beta-emitting substance in natural uranium
was isolated by Crookes' as early as 1900 and

called UX. Later on Fajans and Gohring' showed that
this substance is a radioactive equilibrium of two
isotopes, UX1 and UX2, in modern nomenclature
Th2'4 and Pa"', respectively. Hahn' showed that Pa"4
decays with two diGerent half-lives and that both
activities emit beta and gamma rays. The long-lived
activity was given the symbol UZ. Actually, UX2 and
UZ were the first example of an isomeric pair.

The radiation from UX~, UX~, and UZ has been
studied extensively for a long time. At 6rst absorption
technique was used, but more recently the beta radia-
tion has been investigated by means of magnetic
spectrometers, and is therefore fairly well known.
Almost nothing is known about the gamma radiation,
however, and it has been difficult to set up a consistent
decay scheme. It seemed therefore worthwhile to make
a complete reinvestigation of the radiation from UX»,
UX2 and UZ, using a coincidence scintillation
spectrometer.

The apparatus used in this work has been described
elsewhere. 4 It consists of two scintillation spectrometers.

t Contribution from the Institute for Atomic Research and
Department of Physics, Iowa State College, Ames, Iowa. Work
was performed in the Ames Laboratory of the U. S.Atomic Energy
Commission.

* On leave from the University of Lund, Lund, Sweden.' W. Crookes, Proc. Roy. Soc. (London) A66, 409 (1900).
s K. Fajans and O. Gohring, Naturwiss. 1, 399 (1913).
e O. Hahn, Naturwiss. 9, 84 (1921).
4 S. A. E. Johansson, Ames Laboratory Report ISC-431

(unpublished).

Each one can be used as a beta- or gamma-ray spectrom-
eter, depending on the crystal material. The pulses
from the first spectrometer are led to a single channel
analyzer, which selects pulses corresponding to a
certain energy-range. The pulses from the second
spectrometer are displayed on an oscilloscope screen
and are recorded by photographic methods. The
oscilloscope sweep is triggered by coincidences between
the selected pulses from the first spectrometer and
pulses from the second spectrometer. Hence, a recorded
pulse distribution shows the spectrum of the radiation
which is in coincidence with the radiation component
selected by the analyzer. One can, for example, select
beta rays within a certain energy range and study the
corresponding coincidence gamma-ray spectrum. It is
also possible to select a certain gamma ray and record
the corresponding beta component. One can finally
study gamma-gamma coincidences by selecting a
certain gamma ray and recording the corresponding
coincidence gamma spectrum. Hence, this apparatus
makes possible a complete investigation of the coin-
cidence relations in a radioactive decay.

The radioactive material used for making sources
was isolated from natural uranium by an ether-water
extraction method. It was precipitated as the fluoride
with lanthanum as the carrier. After a short while it
contains UX&, UX2, and UZ in equilibrium. The work
on UX1 and UX2 has been done with sources made up
of this material. The activity of UZ is so low that it
does not interfere with the measurements on UX1 and
UX2. The radiation of UX1 is of low energy, that of


