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The theory of the Zeeman splitting of the pure quadrupole energy levels for nuclei of half-integral spin
is given in a form that is correct for any electric field gradient. The splitting of the spectra is discussed, and
also the simplifications that can be made in the theory when the magnetic field is parallel to any of the three
principal axes of the electric 6eld gradient. For spin 3/2 it is shown that the deviation of the gradient from
cylindrical symmetry can be determined from the Zeeman spectrum, and detailed calculations are given
for this case, along with a discussion of their experimental application.
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HEN there is a strong electric quadrupole
coupling between a nuclear species and the

gradients of the electric Gelds at those nuclei due to
nearby charges, and when the sample is a crystalline
solid so that the average field gradients are constant in
time and are the same at equivalent nuclei throughout
the sample, we can observe the spectra corresponding
to transitions of this species of nucleus between the
various energy levels specified, by that coupling ("pure
quadrupole resonances"). "Since the gradient of the
electric field at a given nucleus is produced primarily by
the valence electrons belonging to that atom, the details
of these resonances provide important information
about the way in which the atoms are bound in the
solid. '

If a homogeneous external magnetic field is applied
to such a solid, it will interact with the magnetic dipole
moments of the nuclei that we are considering and
thereby introduce an additional coupling. ''5 In this
paper we shall be concerned with the eGect of this addi-
tional coupling for small magnetic fields (Zeeman
region), in which case each resonance line for a given
nucleus is split into either two or four components. The
splitting depends on the orientation of the magnetic
Geld with respect to the electric field gradient at that
nucleus. In a polycrystalline sample the result is to
smear the resonance over a band of frequencies, since
there are in effect all possible relative orientations
present. However if the sample is a single crystal, we

should observe at most as many diferent Zeeman spec-
tra as there are sites for that species of nucleus in the
unit cell. An analysis of such a spectrum for selected
magnetic Geld orientations will determine the orienta-
tion of the electric Geld gradient at each nucleus of the

given species, and give additional data on the structure
of the sample. '

The theory of the Zeeman eGect is complicated by
the twofold degeneracy of the pure quadrupole energy
levels, the complications being most severe for the cases
of nuclei of half-integral spin. Calculations for the latter
cases have been published for electric Geld gradients
with cylindrical symmetry and for those whose devia-
tion from cylindrical symmetry is small enough to be
handled satisfactorily by perturbation theory. ' 5 In the
theory given here the magnetic Geld is again treated
only to first order, but the asymmetry of the electric
Geld gradient is treated exactly.

From experimental work' it appears that one of the
major tasks of the theory is to provide some means of
visualizing as a whole all possible cases of Zeeman

splitting for a given quadrupole resonance line, since
then it is a simple task of recognition to identify ap-
proximately the orientation and properties of each
electric field gradient from a fairly cursory examination
of the splittings due to a sequence of magnetic Geld

orientations. The general form of the Zeeman splitting
of the energy levels is given in C, together with a con-
sideration of methods for abbreviating the specific calcu-
lations that are required for any one set of electric field

gradient parameters. In applying these calculations it is

very helpful to plot contours of constant Zeeman

splitting of the energy levels, the stereographic net
being an excellent chart for this purpose. The contours
of constant splitting of the n and P components of
the spectra can be obtained from these by graphical
addition and subtraction. From such contours for the
two extreme cases alone (st=0 and st= 1) it is possible

to get a good part of the over-all picture that is desired.
The case of nuclei of spin ~ is unique in that the two

parameters that characterize the electric Geld gradient
cannot be separately determined from the pure quad-

rupole spectrum alone. However a complete analysis

can be made from the Zeeman spectrum, and in section

E we consider the theory for this case in detail.
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A. THE QUADRUPOLE EIGENSTATES

The Hamiltonian for the interaction between the
electric quadrupole moment of a nucleus and the charges
surrounding the nucleus has been derived elsewhere. '
In this Hamiltonian the eGect of the surrounding
charges is expressed in terms of the symmetric tensor
composed of the second derivatives of the electrostatic
potential that they produce at the nucleus, V~;~;
=O'V/Bx;Bx;. Only that part of the potential that is
generated by charges outside of the nucleus is involved;
hence Laplace's equation holds and V„+V»———V„.
We consider here only those coordinate systems in
which the tensor is diagonal. We define the principal
coordinate system by requiring that ~V„~ ) ~V»~
&

( V„~, and we introduce the quantities eq—=V„and
g= (V —V»)/V„. In the principal coordinate system
we have 0 &q &1, and g is a measure of the deviation
of the tensor from cylindrical symmetry around the
s' axis.

The principal coordinate system is uniquely defined

by this convention except in the case p=O, in which
the distinction between the x and the y axes disappears,
and in the case g= 1. In the latter case we have V„=O
and V„=—V», and it is apparent that by interchanging
the s and the y axes and reversing the sign of eq we
obtain a new coordinate system which also satisfies our
definition of the principal coordinate system; here it is
the x axis that is unique.

With the electric Geld gradient expressed in this
manner, the nonzero matrix elements of the Hamil-
tonian for the quadrupole interaction are

(m. (X,~
m,) =A/3m/ —I(I+1)],

(m, +2( X,
~
m, ) =A (g/2) fr(+m) fr(1Am),

where

f, (m) =f,(—m —1)= [(I—m) (I+m+1)]&,
A = [e'qQ/4I(2I —1)g,

and where I is the spin of the nucleus and nz, is the
component of spin along the s axis of the principal coor-
dinate system of the electric field gradient. The quantity
eQ is the electric quadrupole moment of the nucleus,
defined by eQ—=(p(3s' —r'))A„, in which p is the charge
density of the nucleus and s and r describe the locations
of the elements of charge density that are incorporated
into the average; the averaging is performed for the
nuclear state m= J.

This Hamiltonian links only alternate spin states.
For the case of half-integral spins with which this paper
deals it is readily seen that the two independent sub-
matrices which can be identified are identical except for
a reversal of the signs of m involved, and it can be seen
that this reversal of sign does not change the matrix
elements. It follows that the twofold degenerate energy
eigenstates can be divided into two groups which involve
identical sets of transformation coeScients and energy

levels, E
A- = (1/2 Im')W~+ (3/2 Im') 0-:+(5/2 lm')0:+

28„=(1/2 ~m')lp;+ (3/2 (m')Ay (5/2 [tN')lp 1+ .

The number m' is taken as the value of
~
m ( that applies

to the state as ~.
The above formulation is generally chosen in these

problems because of the resulting simplicity of the case
g=0. However the form of the Hamiltonian matrix is
unchanged if we use as a basis the states P(I,m,) or
f(I,m„) instead of the set f(I,m,). We choose the phase
relations between the sets of spin eigenfunctions to
correspond to cyclic permutations of the x, y, and s
axes, and we introduce the quantities P and G, in which
we retain the parameters eq and g to describe the electric
field gradient:

P = ——',A(1—g), G,= ——,'A(3+g),
Il„=—-,'A (1—g), G„=+-,'A (3—g), (3)

F,=A, a.=-',~&.

With this notation the Hamiltonian matrix elements
for all three cases can be written

(m;I ~.lm') =~,Pm'2 I(I-+1)),
(m;~2( ~.(m;) =G;fr(am;) fr(1am;),

(4)

in which i=@, y, or s denotes the chosen axis of spin
quantization. Since the form of the Hamiltonian is the
same in each of these formulations, a choice of eigen-
states can be made for each with the form given in (2),
these alternative sets of states being different linear
combinations of the twofold degenerate levels.

The nuclear quadrupole resonances that are observed
are all due to magnetic dipole transitions, since it is
impossible to produce rf electric fields with gradients
at the nuclei that are strong enough to cause appreciable
transition probabilities. For q=O we observe only the
transitions with 6m=&1, which are produced by rf
fields in the xy plane. However, because of the mixing
of the spin states, we must consider other Am' values
and all orientations of the rf field for large values of g.
We shall not discuss the pure quadrupole spectra further
except for the case I= ~, which is treated in Sec. E. In
the remainder of this paper we deal with the splitting
of the individual lines of these spectra which is produced
by a magnetic field.

We note at this point that the values of the two
electric field gradient parameters can be evaluated
separately from experimental pure quadrupole spectra
for all values of nuclear spin except ~. The coefficients
of the secular equation for either. submatrix of the
Hamiltonian provide (I+-,) equations relating the
(I+32) unknowns, E o and g. For I&5/2 there are two
or more pure quadrupole resonance frequencies; the
ratios of pairs of these frequencies can be equated to
the proper ratios of differences between energy levels,
and with these additional relations the unknowns can
be evaluated to any desired accuracy. In contrast to
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these cases, that of I=-,' provides only a single experi-
mental datum, and the complete analysis is impossible.

B. THE ZEEMAN PERTURBATION

If a magnetic Geld is applied to the system that we

have been discussing, the interaction between it and
the magnetic dipole moment of the nucleus must be
added to the Hamiltonian. 4' ~ These additional matrix
elements' can be written

(~.I
3'.

I m.) = 2m. g cos8,

(m.+1[X [m,) = P sin8e-'e fr(m, ),
'

(5)

r=(y»/2),
where B is the magnitude of the magnetic field and 0
and P are its orientation expressed in polar coordinates
that are based on the principal coordinate system, fr (m)
is the function defined in (1), and 7 is the gyromagnetic
ratio of the nucleus. The magnetic coupling is assumed
to be small compared to the quadrupole energies.

We review first the results when the electric field
gradient has cylindrical symmetry. "The states lt (I,m,)
are correct to first order for

l
m

l
W s, but the submatrix

nz, = —,', ——', must be diagonalized for the remaining
pair of levels. The energies are

E =At 3m' I(I+1)g—+2m) cos8, [m[ W-',
(6)

El+=ALl —I(I+1)3~&L(I+!)""8+-"83&.
The required mixtures of the —'„—-,'states are given by

E;,+: (-', l+) =cosOe—'el'

(——,
' l+) =sinOe'e".

(-,' l
—) =sinOe —'its (7)

(——,
'

l
—) = —cosOe'e~'

tan(20~) = (I+-,') tan8.

The specification of 0" in terms of 8 comes from the re-
quirement that the matrix element connecting the new
states be zero.

For the general case it is necessary to investigate the
mixing of each degenerate pair of states A, 8 . We
start from the expressions (2) for the exact pure
quadrupole states. By definition K, is diagonal in this
system, with eigenvalues E ' which can be calculated
when necessary from (1). The transformed matrix
elements of the magnetic interaction (5) which, we need
are

(A- [& [A )= —(& [~ [&.)=5a ~ cos8,
(g)

(A l
X [8 )=)sin8(b e '&+c e'&),

in which we use the Zeeman parameters u, b, c defined by

a = L(1/2 lm')s —3(3/2[m')s+5(5/2[rm')'—

b = (I+1/2) (1/2 [m')'+2 f&(3/2) (3/2 [~') (5/2
l
~')

+2fr(7/2) (7/2 I
~') (9/2 I

~')+
c .= 2fr (1/ )(21/ [m2') ( / 3[~2')

+2fr (5/2) (5/2 l
m') (7/2 l

~')+
' Bloembergen, Purcell, and Pound, Phys. Rev. 75, 679 (1948).
P B.Feld and W. E. Lamb, Phys. Rev. 67, 15 (1945).

II[[»
a [x.
ay

E g=E '+'$b +c
$ b c—

The required terms are just the derivatives (BE/Bp) t. p,

and exact formulas for them may be found by implicit
diGerentiation of the secular equations for the three
special cases. The only limitation on the accuracy of the
results in this method is the accuracy of the energy
values E ' that are subsequently inserted in the
formulas.

The degeneracy of the quadrupole interaction is
easily dealt with in the three special cases needed above,
for in each case the complete Hamiltonian can again
be split into two independent parts neither of which is
itself degenerate. In one method of doing this we choose
the axis of spin quantization in (4) to be the one
parallel to the magnetic field; adding the proper mag-
netic elements for these states we obtain

(m, [ K.+X
l
m;) =P;[3m,s I(I+1)j+2&m—;,

12
(~'+2[ ~+~-l~') =G fr(a~, )fr(1~m;),

in which i =x, y, or s, according to the direction of the
magnetic field. Although this method of handling the
case II[[x or y is useful in dealing with arbitrary values
of q, it is not suitable for perturbation calculations even
when p is small, since the off-diagonal quadrupole
elements are the same order of magnitude as the dia-
gonal ones.

In an alternate procedure for the case II[[x we use
the sum and diGerence states,

P„~——2 -*'Llt (I,rm, )&g(I, —m,)$, m, =-', , —',, I.
The Hamiltonian elements for this case then become

(~+I[~+)=A L3~'—I(I+1)$~8. .-Pfr (—k),

((~+1)+ll~+)=~8-, :A (n/2) fr( —k) fr(k)+ (fr(~)
((tet+ 2)~[[m~) =A (rl/2) fr (m) fr (m+ 1). (13)

Since the sum and diR'erence states are correct for q=0,
this formulation is useful for perturbation calculations.

For II[[y apparently we should rotate the sum and
diGerence states 90' about the s axis. However the only
distinction between the x and y axes is that

l V, l

The quadratic secular equations arising from each such
pair of states yield the Zeeman energy levels for the
general case:

E„~——E„'+/[ a„' cos'8+ (b '+c„'
+2b c cos2$) sin'8$'. (10)

The Zeeman parameters are defined above in terms
of the pure quadrupole transformation coefFicients.
However they may also be evaluated in part from the
terms linear in P which occur in expansions of the special
solutions for a magnetic field parallel in turn to each of
the three major axes. For these orientations (10)
becomes
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~ » or, equivalently, that it &0. Therefore the trans-
formation is accomplished in e6'ect by changing the
sign of g wherever it occurs. Similar sum and difference
states can also be constructed from the bases P(ni, ) or
f(m„) to provide independent nondegenerate sub-
matrices for magnetic fields parallel to the other pairs
of the coordinate axes. These states, however, are not
useful for perturbation calculations, and they hold no
advantage over the simple spin states for the work that
we are considering here.

As an illustration we calculate the Zeeman parameters
to the first power of q. We take the energies to second
order from Kqs. (13) for H~~x; we reverse the sign of g
in this result to obtain the case H~~y; we use the diagonal
elements from (12) with i=s for H~~s; from these ex-
pressions we identify the Zeeman parameters according
to the prescription in (11). We find (see Bersohn's
results, reference 5)

8~~=2m )

b; = (I+-',), b =0 for m')-,',
".=-".=-(I--:)(I+l)(I+5)(~16),

c =0 for m'& ~.

C. THE ZEEMAN SPECTRUM

From the general formulation of the energy levels
given above, we can see that the dependence of the
Zeeman splitting of the spectrum on the orientation of
the magnetic field is formally the same for every
quadrupole resonance. For the transition m»'~m2',
we have

v = vp& (P/b) ([mi']+ [mp')),

where s 0 is the appropriate unperturbed frequency and

[m)=—+[a ' cos'8+ (b '+c '+2b c cos2@) sin'8]&.

We label the pair with the smaller splitting, i.e., with
([esi']—[mp']), the n components, and the other pair
the P components. Additional resonances are possible
here, corresponding to the transitions A ~B,» but
for small magnetic fields they would occur at very low
frequencies. They will not be discussed in this paper.

The total intensity of the four components of the
Zeeman multiplet is that of the corresponding unsplit
pure quadrupole resonance. For the case p=0, the
relative intensities of these four components are easily
.derived from the approximate states given in (7, 8).
Only rf magnetic fields in the xy plane are eGective.
For transitions between levels with

~
m~ W p only the n

components can be observed, with intensities that are
equal and that do not depend on the orientation of the
Zeeman field. On the other hand, the mixing of the
states m=&~~means that the single pure quadrupole
line corresponding to transitions between the states

~
m

~

= p,
Ppsplits into four components whose intensities

do depend on the orientation of the Zeeman Geld, ac-

cording to the rules

W($, -', +)='W( —-'„-,' —) cos'0

P: W(-,', —,
' —) ='W( ——,', —,'+) 'Q (16)

Because of the general mixing of states by the asym-
metry and by the Zeeman field, both the n and the P
components may be observable for each pure quadru-
pole line when g is large. Although we shall not attempt
a detailed discussion of relative intensities here, we
shall set up the machinery for obtaining certain useful
selection rules. We consider the set of nine cases:
Zeeman field (Hp) parallel to x, y, or s, together with
the rf field (Hi) parallel to x, y, or s. For Hp~~s we imagine
the states P(I,ns, ) arrayed in such a fashion that the
submatrix containing the A states of equation (2) is
grouped separately from the one with the 8 states.

In this diagram we consider the locations of the non-
zero elements of I, I„, and I„whose squares are pro-
portional to the transition probabilities for H» parallel
in turn to x, y, and s. For selection rules we find that
Hi~~s can at most cause transitions between states
lying within the same submatrix (transitions which we
designate together as [AA]), while Hi~~x or y can at
most cause transitions for which one state is in A and
the other is in B (designated [AB)). For Hp~~x or y we
use the states P(I,m,) or P(I,nz„); the above arguments
can be duplicated step by step, and for the selection
rules we permute cyclically the names x, y, and s.

These qualitative results are quite general, holding
for any relative strength of the dipole and the quad-
rupole couplings and for any value of the parameter p.
For the Zeeman region it is apparent that in these par-
ticular cases we shall observe at most either the n com-
ponents alone or the P components alone.

For a few quadrupole transitions it can be readily
determined which of the pairs of components, a or P,
is represented by [AA] and by [AB], respectively. In
the case Hp~~s with g small, it can be seen from (6) that
for transitions between quadrupole states in which Am'

is odd, [AA) and [AB) correspond, respectively, to the
P and the n Zeeman components, while for the transi-
tions with Am' even the situation is reversed.

Because the levels m') ~ are unsplit by a Zeeman
field parallel to x or y in the second order calculation
we cannot so readily investigate the general selection
rules for the n and P components except for the transi-
tions ~"~&'. The submatrices of the sum and difference
states of (13) are equivalent to the A and B submatrices
based on P(I,m,); therefore, we may use second-order
energies to show that, for the transitions ~'+-+~" with

Hp~~x, the [AA) pair comprise the n components while
the [AB] pair are the P components. For Hp~~y these
identifications are reversed.

Although the above identifications were derived on
the basis of small g, an intuitive argument leads us to
accept them tentatively for all values of p. We have
seen by a rigorous argument that only one pair of
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Zeeman components can be seen in any of these cases.
If we then assume that our various results are con-
tinuous functions of the parameter q, we find that a
given one of the identifications that we have made for
small g can be reversed only for values of p at wh ich
either the intensity of the quadrupole resonance becomes
zero or the n and the P components coalesce.

It is of interest to note finally that the nuclear induc-
tion apparatus of Bloch et al. can detect the Zeeman-
split quadrupole resonances although it cannot detect
th, e unsplit pure quadrupole lines. In such a spectrom-
eter the transmitter coil bathes the sample in a linearly
polarized rf magnetic field. The receiver coil in the
apparatus views this field as the sum of two 6elds with
opposite senses of circular polarization, and the essential
experimental question which it answers is whether at
any given frequency one circular component interacts
more strongly with the sample than does the other. In
the pure quadrupole resonances both senses of circular
polarization are treated alike by the sample, mainly
because of the &m degeneracy of the system. The
Zeeman splitting lifts this degeneracy, and it can be
shown that certain of the Zeeman components should
be detected by the nuclear induction equipment if the
numerous orientations involved in the experiment are
favorable.

D. REMARKS ON n = 1

In applying the foregoing theory to obtain an over-all
picture of the solutions for a given value of nuclear spin
we would desire at least the particular solutions for the
end points of the range 0 &q & 1. The point g =0 is
easily treated, and nearby values of p can be handled
satisfactorily by perturbation theory. We now point
out brieQy the properties of the problem for g = 1 which
simplify the other set of calculations.

(a) The calculation of the energy levels of the quad-
rupole system involves in general the solution of a
secular equation for the F ' whose order is (I+a).
However for g = I it can be shown' that the energy
levels are symmetric around the value E=0, and that
the secular equation can be reduced to one involving
only powers of (E ')', with an additional single root
E '=0 factored out in those cases where there is an
uneven number of values of ( m ~. This situation can be
understood on physical grounds by recalling that here
we have V,=0 and V~= —V„.This case can therefore
be considered either as the limit of the case where
V„=eq and —(eq/2) & V» & —eq (as we do in the prin-
cipal coordinate system), or as the limit of the case
where V» ——eq' = —eq and —(eq'/2) & V„& eq' (as we-
would in the alternate coordinate system that satis6es
our definition of a principal coordinate system in this
one case). Because of this the set of energy eigenvalues
for V~= —V„must be unchanged by a reversal of the
sign of the energy unit, e'qQ.

' Bloch, Hansen, and Packard, Phys. Rev. 70, 474 (I946).

Z= —$&E,[1+4(P—$F)/Eoq&, (states A)

E=+(aZo[1+4(P+$F)/Eo'$&, (states 8)
Ep ——F'+ (4G/3) =A (1+sq') &.

(17)

Identifying the states by the limiting values of ~m, ~

as g, &~=0, we 6nd the approximate energies for small
value of $ to be

El, =Ep& (1+2F/Fp) $,

8; = —Spa (1—2F/Ep)P,

Inserting in turn the proper values for F;, we find the
Zeeman parameters from (18) and (11):

ag. ———1—2/p, a; = —1+2/p,

bl =1—1/P, bl =1+1/P,

« =rl/~, c) = —rl/u,

u= (1+sn')'.

(19)

The energy levels for any value of p and correct to first
order in the magnetic 6eld are now given by

Fg +=Fp~t[s'1, F,; += Fp~t[s 3, —
(2o)

[m)=—[a 'cos'8+(b '+c '+2b c„cos2$) sin'8)&.

It can be seen that the radical [mj multiplying $ does
not vanish for any values of (8,&) except in the singular
case rn=0 for which [3/2g is zero along the locus 8=90'.

An alternate formulation of this problem yields
simple expressions for the eigens ta tes and the matrix

(b) Let us consider the extended range 0 (rl (3.An
inspection of the defining equation g= (V„—V»)/V. .
shows that, whereas rl =0 signifies cylindrical symmetry
around the z axis, y =3 signifies it around the y axis,
and the preceding paragraph shows that q = 1 can be
considered as the midpoint of the transition from one
symmetry case to the other.

From (a) and (b) we can see that the Zeeman splitting
of the state m'= rajas as a function of the direction of
the magnetic 6eld when g = 1 must be the same function
as the splitting of the state m' =I—k except for a
rotation of 90' around the x axis. Similar relations hold
for such functions as the Zeeman splitting of the
spectrum and the transition probabilities as functions
of the Zeeman and the rf magnetic 6elds. Also we note
that the variations of these functions as g passes through
the value 1 must be such as to match the appropriate
alternate functions that are based on the rotated coor-
dinate system, providing proper account is taken of the
unsymmetrical way in which p describes the two sides
of the point g = 1.

E. DETAILS FOR I=3/2

Here much of the basic computation can be per-
formed exactly. We begin by listing the principal results
for the energy levels in terms of the usual parameter,
In this case the secular equations from (4) are quad-
ratic, and the exact energy levels are
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elements required for dipole transition probabilities.
We write the pure quadrupole states in the automati-
cally orthogonal form:

when we use F, G, or F„, G„, we can sh, ow that

n =n+60', n„=n—60', (26)

For the moment let us employ the parameters F„
G, of (3), but allow g to take all values —~ (q( ~;
this is equivalent to choosing one of the normal coor-
dinates axes at random as the s axis and discussing all
possible ratios of V„, V», and V„ in this one coor-
dinate system. We find

tann = (2G,/&3F, ) = (g/K3). (23)

For a small magnetic field always parallel to what we
are at present calling the s axis, the perturbation of the
energy levels is given by the diagonal elements. Adding
these to (22) we find

(Aif[Ai) = —Eo+P(2 cosa —1),

(BiIIBi)= —Eo—P(2 cosa —1),

(Az[!Az) =ED—$(2 cosu+1),

(Bz!!Bz)=Eo+P(2 cosa+1).

(24)

For magnetic dipole transition probabilities we need the
matrix elements of I„I„, and I„for completeness we
include those for the low-frequency transitions:

(Ai[2I [Bi)= 1—2 sjn(~ —30 )

(Az [2I,IBz) =1+2 sin(a —30'),

(A i [ 2I
I Bz) = (A z!2I [ Bi)= 2 cos (Q —30'),

(Ai[2I„[Bi)= —iL1+2 sin(n+30')7,

(A z [2I„[Bz)= —zT1—2 sin(n+30') 7,

(A i I 2I„f Bz) = (A; I 2I„IBi)= iL2 cos (++30')7,

(Ai[2I. !Az) =—(Bi[2I,[Bz)=2 sin(n).

(25)

The foregoing solutions are formally correct for all
three of the matrices i= x, y, or s, obtained from (4).
However, for our working formulas we want these
solutions couched in terms appropriate to the principal
coordinate system which we have adopted as the
standard way to describe a given physical case. De-
noting by subscripts the parameters defined by (21)

A i——cos(n/2)fi —sin(n/2)P 1,

A;= sin(n/2)f;+cos(n/2)f;,
Bi——cos(n/2)f ~—sin(n/2)P*„

Bz——sin(a/2)f 1+cos(n/2)f~„
tann= (2G/43F).

The subscripts are the value of !2zizl for a=0. ci is
speci&ed by the requirement that the oG-diagonal
quadrupole elements vanish. The diagonal quadrupole
elements express the unperturbed energies as

(A IIA ) = (B l[B ) = —(A l[A ) = —(B I!B )
=EO=F seen= (2G/~3 cscn. (22)

where g is given by (23) in terms of the principal coor-
dinate system. To identify the energy levels in terms
of the nomenclature appropriate to P(I,ziz,) we assume
e'qQ to be positive and list the levels for the three cases
in order of decreasing energy (the fact that the Zeeman
levels do not cross for intermediate orientations of the
magnetic field is shown by the nonvanishing of Lzzz7 in
(20)):

jV,

jv~

II[fe II!!x
P(m.) P(zzz.)

~8 ~1
A3 A1
A1 Bg
81 As

III!y
p(zm„)

A1
~1
83
A3

(2&)

For the spin matrix elements between these states
for Hllx or y the letters x, y, and. s are permuted cycli-
cally in (25) and n is modified as shown in (26).

The Zeeman parameters are easily evaluated from
(9) and (21):

a= —1&2 cosn, b= 1&cosn, c= Wv3 sinn. (2S)

Here the upper and lower signs refer to m'=2 and 2,
respectively.

In the course of experimental work it was found that
one of the most useful features of the Zeeman spectrum
as a function of magnetic field orientation was the locus
along which the n components are unsplit; this rela-
tively strong resonance at the normal pure quadrupole
frequency was easy to identify and to interpret. The
condition for this locus is [ 2'7= L-,"7, and by inserting
the Zeeman coefficients that were derived above the
locus can be explicitly written as the function Oo(g).
Here we shall derive O0(g) in a manner to show its
importance for all magnitudes of the magnetic 6eld
when I= 2. The secular equation for the general ease in
which any orientation of the magnetic Geld is allowed is

0=E'—L2+ (2'/3)+ 10P7E'
—(16/ —24/ sin'O+SPzl sin'O cos2$)E
+1+2zt'/3+ g'/9 —10/+ 12/ sin'O+ 9P

+2vPP 4Prj sin'O+Sgg —sin'O cos2$. (29)

The energy unit A= (e'qQ)/L4I(2I —1)7 is used here,
so that $=(7I'zII/2A). This equation reduces to a
quadratic in E' when the coe6cient of E is zero, which
occurs when

sin'O= 2/(3 —q cos2&).

The four solutions have the form

(3o)

E=W(AaB) ~,

and it is easy to verify from this that (30) must define
the locus Oo(@). For magnetic field strengths too large
to be treated by erst order calculations there will not
be in general an unsplit line at the pure quadrupole
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frequency, but at least one pair of spectral components
will coalesce to a single line along this locus, making it
readily identihable experimentally.

We note Anally the methods for determining q from
experimental Zeeman data. One set of measurements
for this purpose is the location of 8s(g) of (30). The
principal coordinate system for the field gradient under
investigation is determined from the symmetry that
the Zeeman splittings show as functions of the orien-
tation of the magnetic 6eld and from the fact that
8o(4) has its maximum and minimum values in the xs
and the ys planes, respectively. tl is found from the
formula:

3Lsin'8s (0')—sin'8s (90'))
21=

sin'8s (0') +sin'8s (90')

As we have seen, this method of determining q can be
adapted for use with magnetic 6elds of any magnitude.
In this procedure the only precision measurements are
those of the direction of the magnetic field; the spec-
trometer serves only as an indicator.

4ph

2P

2(&+n) p8.

(32)

q is therefore found directly from a measurement of
the splitting of the proper pair of Zeeman components
along one of the principal axes. The magnetic Q.eld can
be calibrated by measuring the splitting for one of the
other pairs.

The author wishes to acknowledge with gratitude the
advice and encouragement of Professor R. V. Pound
of Harvard University, under whose guidance this
work was started.

The other method that our theory provides for deter-
mining g requires the measurement of the amounts of
splitting when the magnetic field is parallel to one of the
principal axes of the field gradient in question. The
differences in frequency between the Zeeman com-
ponents and the unsplit quadrupole resonance, ex-
pressed in energy units, are found from (19):
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The dynamical conception of nuclear rotation in terms of a surface wave on a droplet of irrotational Quid

has achieved some success in spite of the great differences between nucleons and the particles of a normal
classical Quid. As a justidcation for the simplifying assumption of irrotational Quid Qow, the collective
rotational energy is here derived from a suitable set of nucleon wave functions in the approximation in
which there is a rotating distortion, slow compared with the internal nucleon motions. The wave functions
are those of a three-dimensional harmonic oscillator that is made anisotropic by having the force constant
along one axis different from those along the other two in a rotating cartesian coordinate system. For the
case of steady rotation about a fixed axis, the perturbation problem with erst-order wave functions leads
to a second-order rotational energy which agrees with the droplet-model result. The observed level spacings
appear to lie between this result and that of a rigid rotator, and the discrepancy is probably to be attributed
to higher orders. The result is also derived by another method without introducing a steady rotation.

INTRODUCTION

HE spectacular success of the (jj) coupling shell

Inodel, ' in accounting particularly for the magic
numbers and the succession of ground-state angular
momenta J of the moderately heavy nuclei, leaves little
doubt that the extrashellular nucleons have an in-
dependence of motion quite diferent from that of the
molecules in a classical Quid. These particular successes
were erst achieved on the assumptions that the ex-
trashellular nucleons move in a spherically 'symmetric
potential, have large spin-orbit coupling, and interact

r M. G. Mayer, Phys. Rev. 75, 1969 (1949); 78, 16, 22 (1950).
Haxel, Jensen, and Suess, Phys. Rev. 75, 1766 (1949);Naturwiss.
36, 155 (1949).

with one another besides. The equally impressive
success of the introduction of a nonsperical core, '' in
accounting for the large quadrupole moments and

especially the ratios of certain low excitation energies, 4

gives the impression that the degree of freedom per-
mitting distortion of the core is important to the
external features of most nuclei without radically

modifying the internal coupling of the nucleons as

s J. Rainwater, Phys. Rev. 79, 432 (1950).
s A. Bohr, Phys. Rev. 81, 134, 331 (1951);Kgl. Danske Viden-

skab. Selshab, Mat. -fys. Medd. 26, No. 14 (1952). A. Bohr and
B. R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 27, No. 16 (1953);D. L. Hill and J.A. Wheeler, Phys. Rev.
89, 1102 (1953).

4 F. Asaro""and I. Perlman, Phys. Rev. 91, 763 (1953).


