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A discussion is given of the escape of an alpha particle from a square-well potential which is in the form
of a spherical shell surrounding the daughter nucleus. In the present approximation the alpha particle,
as such, is excluded from the interior of the nucleus by making the one-body potential infinite in that region.
The usual Coulomb barrier is used. It is found that the properties of this model diRer in several important
respects from those of the usual square-well one-body model, in which the well is located at the origin of
coordinates. Arguments are presented which lead to the representation of the many-body decay constant as
the product of a dimensionless "preformation factor" and a one-body decay constant, as opposed to the
usual product of an intrinsic nonbarrier decay constant and a dimensionless barrier transmission coeKcient.
The preformation factor involves an "intrinsic" alpha-decay probability and, in addition, the probability
per sec that an alpha particle at the nucleus will be absorbed as nucleons. The nuclear physics problem of
deriving expressions for these latter two probabilities is not considered, but examples are given which can
be used to show expected ranges of numerical values of the preformation factor when the one-body model is
either the present one or the usual one.

I. INTRODUCTION

HE potential function traditionally used in the
derivation of the alpha-decay constant consists

of a square well which is located at the origin of co-
ordinates and which is surrounded by the Coulomb
interaction between the daughter nucleus and the alpha
particle. The radius of the well is associated with that
of the daughter nucleus or with that of the daughter
plus an "eBective" alpha-particle radius or nucleus-
alpha interaction distance. The phrase "one-body decay
constant, " if not further modified, will be used in this
paper in a general sense to mean a decay constant found

by treating the motion of an existirIg alpha particle in
arsy specified potential which is set up to represent the
interaction between the alpha particle and the daughter
atom. The treatment is generally of the nature of a
straight exercise in quantum mechanics, although the
care with which it is done varies. The result is such
that if the parameters of the potential function and the
relative angular momentum are specified, the corre-
sponding decay energy and decay constant are always,
in principle at least, calculable. Such a derivation made
with the particular potential described above will be
referred to here as the traditional one-body model.

The application of similar ideas and methods to the
problem of nuclear cross sections is discussed in the text
by Gamow and Critchheld, ' for instance. It is shown
there that the spacing of nuclear levels predicted with
the use of the traditional type square-well one-body
model for nucleons is much greater than is observed
experimentally. Such results led long ago to the realiza-
tion that these methods were inadequate.

The principal eGorts to discuss the many-body prob-
lem involved in nuclear processes have been based on

' G. Gamow and C. L. Critchfield, Theory of Atomic Nucleus
and Nudear Euergy Sources (Clarendon Press, Oxford, 1949),
p. 217.

the method of Feshbach, Peaslee, and Weisskopf. '
BrieRy, it is considered in this method as presently
developed that there is a radius 8 such that the usual
one-body wave functions can be written when r)R.
An equation is found for the logarithmic derivative of
this outside function at r =R. Arguments are then made
without the use of any particular model of the nuclear
interior, i.e., without the use of any particular potential
function in r&E, as to what should be the properties
of the function to which this logarithmic derivative is
to be equated. The property of particular interest is
the dependence on energy. These arguments lead to a
function whose form is the same as would be given by

' the logarithmic derivative of the traditional one-body
inside wave function for zero relative angular mo-
mentum but with the argument of its periodic factor
replaced by (sr/D") (E 8,), in the neighb—orhood of the
resonance energy E„.Here D* is an energy of the order
of the average level spacing between levels of the same
angular momentum and parity. The inside wave number
at the nuclear surface remains in evidence as a multiplier
of the periodic factor. Hence the nucleus is character-
ized by this wave number, the radius, and the level

spacing.
The extension of this (resonance) theory into the

higher energy region where the level widths are greater
than their spacing and continuum theory should apply
has been discussed by Feshbach and Weisskopf. ' The
method has been used in this range by Shapiro, ' for
instance, to calculate cross sections for formation of a
compound nucleus by protons, deuterons, and alpha
particles. It has been used in the resonance region by
Devaney, ' for instance, to discuss alpha decay. The
method and, of particular interest here, Devaney's

s Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).
s H. Feshbach and V. Weisskopf, Phys. Rev. 76, 1550 (1949).
4 M. M. Shapiro, Phys. Rev. 90, 171 (1953).
s J. J. Devaney, Phys. Rev. 91, 587 (1953).
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application of it are also discussed in the text by Blatt
and Weisskopf. '

A picture will be presented here which involves an
additional step in the transition between the compound
nucleus (or parent) and the separated particle and
target (or daughter) nucleus. It is believed to be par-
ticularly suitable to the discussion of processes which
involve the compound particles, deuterons [where the
usual compound nucleus, C(Z+1, A+2) in this case,
is formed), and alpha particles, since neither of these
are fundamental constituents of nuclei. Wider applica-
tion is believed to be possible but only the process of
alpha decay will be considered here.

A relation will be found between the many-body
alpha decay constant, i.e., the experimentally observed
decay constant, and a one-body decay constant. It will
be shown that, granted the assumptions, the many-
body decay constant should be represented as the
product of a dimensionless "preformation factor" and a
one-body decay constant. The implication is that the
solution of the problem of alpha decay would be ob-
tained by finding as independently as possible ex-
pressions for each of these two factors which most nearly
fit the observations on alpha decay or any related
observations that could be made. In particular, it is
assumed that the traditional model is not necessarily
the only, or even the best, representation of the one-

body aspects of the problem of alpha decay.
The first part of this paper (Secs. II and III) will be

concerned with the details of a possible alternative
one-body model. This model will be found to have
properties interestingly difFerent from those of the
traditional model. It is suggested, but not required,
by the picture of the alpha decay process which will be
used subsequently (Sec. IV) to discuss the relation
between the many-body and a one-body decay constant.

The nature of the quantities which constitute the
preformation factor will also appear in this latter dis-
cussion. No attempt will be made to solve the problem
in nuclear physics which would lead to expressions for
them, although some estimates will be made by relating
them to quantities now in the literature. Some numerical
examples which will be used in the comparisons between
the present one-body model and the traditional model
can also be used to show the range of values in which
the total preformation factor ought to lie, when either
of these two models is used as the basis of the accom-

panying one-body decay constant.
This one-body —many-body problem is certainly one

of the more important problems in alpha-decay theory.
Nevertheless it should not be forgotten that there are
other important problems, none of which will be dis-
cussed here. Among these are the efFects of nuclear
shape associated with the presence of quadrupole mo-

J. M. Blatt and V. F. Weisskopf, TheoreticcL nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952). For alpha decay
see p. 568.

ments, ~ a specific example of the efFects of a non-
central electrostatic interaction between the escaping
alpha particle and the protons in the residue, ' and the
effects of appropriate changes in the shape of the
barrier. ' These aspects of the decay process will play
a role in the determination of nuclear radii from alpha
decay data. Of possibly greater importance, they will
have a significant efFect on the correlation of, for in-
stance, alpha-decay constants and nuclear spin change,
or, in general, on the explanation of the so-called
"forbidden" alpha-particle groups.

II. THE SURFACE WELL MODEL

The one-body model to be discussed here can be
based on the following arguments. It is presumed that:
(a) an alpha particle does not exist its a nucleus;
(b) in the absence of the external Coulomb field there
would be an attractive interaction between the daughter
nucleus and the alpha particle which would be very
strong at the instant of the appearance of the latter at
the nuclear surface, but which would approach zero
very strongly as the two separated.

The existence not only of the particular Coulomb
potential which applies in alpha decay, but also that
of the potential in r &E, in other words the existence of
a potential for the discussion of the motion of an alpha
particle, depends on the existence of the alpha particle.
Some difFerent potential even in r &E would be appro-
priate for neutrons, for instance. Thus, in a one-body
interaction potential between the daughter nucleus and
the existing alpha particle, a region from which the
latter is excluded can be represented by an infinite
potential in that region without implying any such
peculiarities in the potential appropriate for funda-
mental particles. The potential near the nucleus indi-
cated by the arguments of the preceding paragraph is a
well at the nuclear surface. A potential of this type has
been referred to as a Jastrow potential by Greenberg. "
Jastrow" used it, with an exponential form for the
nuclear interaction, to discuss nucleon-nucleon scat-
tering. Its use in more general applications is apparently
being made by Greenberg. In the present paper the net
potential for the one-body alpha decay problem will be
approximated by a square well at the nuclear surface
surrounded by the usual sharply cut-ofF Coulomb inter-
action as illustrated in Fig. 1. In this figure, R is the
channel radius as usually defined; that is, it is the loca-
tion of the center of charge of the alpha particle when

' See, for instance, D. L. Hill and J. A. Wheeler, Phys. Rev. 89,
1102, 1133 (1953).' See, for instance, M. A. Preston, Phys. Rev. 82, 515 (1951);
S. M. Dancoff, Atomic Energy Commission Unclassified Report
AECD-2853 (unpublished).

See, for instance, M. L. Chaudhury, Phys. Rev. 88, 137
(1952)."J.M. Greenberg, Phys. Rev. 87, 209 (1952)."R. Jastrow, Phys. Rev. 79, 389 (1950); 81, 165 (1951);91,
749 (1953). See also M. M. Levy, Phys. Rev. 86, 806 (1952) and
reference 6, pp. 170, 186, 187, and 300.
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FIG. 1. The potential function for the surface well model. Ro is
taken to be the radius of the alpha daughter, R is the channel
radius and AR=R —Ro. The exterior classical turning point is
at te.

the nucleus and the alpha particle just begin to overlap
in the sense that nuclear interaction begins.

This "overlap" situation is usually particularized by
thinking of the nucleus and the alpha particle as being
well defined spheres which, if they approach each other,
do not interact until their surfaces are in contact.
If it is also supposed that the center of charge of the
alpha particle is at the center of the alpha particle,
then this highly idealized picture requires that the
channel radius be the sum of the radii of the two
spheres. Further, it must be considered that the alpha
particle is entirely outside the nucleus when the center
of charge of the alpha particle is at a vanishingly small
distance outside the channel radius R.

The present object is the investigation of a model in
which wave functions are written for a well formed alpha
particle only in those regions where the alpha particle is
entirely outside the nucleus, but to write them every-
where in those regions. One can continue with the
idealized picture described above by supposing that the
alpha particle is said to be absorbed as nucleons into
the nucleus when more than half of the alpha particle
sphere has penetrated the nuclear surface. Then in

Fig. 1, Ep and AE. would be designated as the radius of
the daughter nucleus and the alpha particle, respec-
tively. The potential for a well formed alpha particle
in r&E. is drawn as a well at the nuclear surface to
indicate the assumptions that a well formed alpha par-
ticle does not exist in r &Rp and that there is a Coulomb
barrier for well formed alpha particles, i.e., that the
potential energy of a well formed alpha particle close
to the nuclear surface is less than (2Ze'/R).

The description entailing the assignment of such
sharply defined radii to the two particles and the
speci6cation of the location of the center of charge of
the alpha particle is more detailed than is warranted or
probably necessary. If the assumptions mentioned in
the previous paragraph are granted, it should be suffi-

cient to retain the definitions of E and Ep and to
designate AR and the well depth simply as parameters
which describe the attractive nuclear interaction in

that approximation which consists of a square well at
the nuclear surface.

A relation between the observed (many-body) alpha
decay constant and one derived with any one-body
model will be proposed in Sec. IV. One aspect of the
mechanism to be used, the possible reabsorption of a
well formed alpha particle into the nucleus as nucleons
rather than its emission to the outside region, has been
indicated already. The assumption of the possibility of
such a process means that the potential function for a
well formed alpha particle cannot be conservative. It
will be argued later, however, that the mean life of an
existing well formed alpha particle prior to emission or
reabsorption is sufficiently long to allow one to write
alpha particle wave functions in that part of the region
r &8 which is available to it, but only for those periods
during which it is in existence. Thus the potential
might be called "quasi-conservative. "

An additional question arises with specific regard to
the potential function of Fig. 1. One might consider an
approach to the problem of deriving the preformation
factor, as opposed to the phenomenological arguments
used in Sec. IV to show its existence, by setting up
equations to represent a smooth outward How of proba-
bility at a rate appropriate to the observed decay con-
stant. The net current of well formed alpha particles
out of the region in which they do not exist would be
obtained by the use of an imaginary term in the poten-
tial in that region. Such a treatment might possibly,
but not certainly, indicate that a large imaginary
potential rather than a large real potential and a small
imaginary potential, would be more appropriate in
f&Ep. Either would give a small net current; that is,
the limiting case of an infinite imaginary potential also
leads to a node in the wave function at r=Ep, so that
the discussion to be given here would not be altered by
such a change.

During those periods when the potential of Fig. 1

applies, and if these periods are sufficiently long, one
has the conventional picture of a well formed alpha
particle attempting to penetrate a potential barrier. The
only difference during such periods between this and
the traditional one-body model, for instance, is in the
size and location of the region available to the alpha
particle prior to decay; the barrier is the same.

The principle object of this section, then, is to ex-
amine the characteristics of this phase of the process
by discussing a one-body model based on the potential
function of Fig. 1. Its inclusion in a many-body model
of alpha decay will be discussed thereafter. The one-

body equations to be derived here have been identically
reproduced by the method of complex eigenenergies
introduced by Gamow" and by Bethe's quasi-stationary
state method. "The former method is faster (although

"See reference 1, p. 156. Also see E. C. Kemble, The FNNdg-
mentai Principles of Quantum Mechanics (Mcoraw-Hill Book
Company, Inc. , New York, 1937), p. 192.

"H. A. Bethe, Revs. Modern Phys. 9, 69, 161,(1937).
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W =8 (ikey)/2.—

The radial wave function must be of the form (1/r) P (r).
Far out in the region beyond the barrier, Region III
(see Fig. 1) g(r) must have the form

y"'(r) ~ 2 exp(ip), (2)

"M. A. Preston, Phys. Rev. 71, 865 (1947).
'5 For references and discussion see Bloch, Hull, Broyles,

Bouricius, Freeman, and Breit, Revs. Modern Phys. 23, 147
(1951).

' Actually the Coulomb functions would apply to the problem
of the decay of a bare nucleus. Nevertheless they will be used
here, although a correction will be made for the potential produced
at the nucleus by the atomic electrons, when calculations are
made. G. Ambrosino and H. Piatier, Compt. rend. 232, 400
(1951), suggested that the potential energy should be corrected
as above and that the total energy should be corrected for the
difference in total electron binding energy between the parent
and the daughter. Rasmussen, Thompson, and Ghiorso, Uni-
versity of California Radiation Laboratory Report UCRL-1473,
September, 1951 (unpublished), quoted (as then) unpublished
work of Serber and Snyder as showing that if one makes both of
these corrections, he is correcting for the same thing twice. In their
own subsequent publication, R. Serber and H. S. Snyder, Phys.
Rev. 87, 152 (1952), did not use this particular phraseology but
their arguments show that it is so. In the case of alpha decay of a
heavy element it is found that even were the alpha-particle
velocity very high compared to any orbital electron velocity
(which it is not), so that the electrons would undergo no re-
arrangement during the passage of the alpha particle, the excita-
tion energy of the residue would be only about 500 ev. The
principal part of the electron binding energy difference between
the parent and daughter atoms is due to the charge change at
the nucleus, and only a negligible part of it is due to the rearrange-
ment of the electrons. Since the residue is (essentially) the
daughter atom in a very nearly unexcited state, the observed alpha-
particle kinetic energy plus the recoil energy is the total energy
as generally de6ned. Further it is the proper total energy to use in
calculations regarding the (experimentally observed) decay of
atoms, provided that the potential used is also that in the atom,
i.e., the screened nuclear-alpha Coulomb potential. In egect, the
screening correction to the potential energy can be made, it turns
out, by adding the electron binding energy difference to the ob-
served decay energy in those terms arising from the region r&E.
and then using the unscreened potential. For references and dis-
cussion of this problem as it applies to beta decay, see Freedman,
Wagner, and Engellcemeir, Phys. Rev. 88, 1155 (1952).

more formal than instructive) and. will be used here.
It has been used by Devaney' and by Preston' and,
of course, much of the content of the derivation is
contained in their work. It is convenient to reproduce it
in its entirety, however, for ease of continuity and be-
cause it is desired to keep a term which is somewhat
more important in this model than it was in their work.
It also seems desirable to use, where convenient, the
nomenclature of the Coulomb functions" which, when
multiplied by (1/r), are the solutions of the radial wave
equation for this problem in that region where the
Coulomb interaction applies. "

Devaney' has pointed out that previous alpha decay
models are included as special cases of his discussion.
In general, his procedure will be followed so that this
will be true here also. Thus the first results will be in
terms of the logarithmic derivative at the place r =R.

I.et the complex energy be given by

where
p=kr,

k = [(2MW) '*/A],

(3)

(3a)

and M is the reduced mass of the alpha particle. The
expression on the right side of Eq. (2) must be that
approached at large distances by

P"'(r) = I'Gz, +QF r„

where Gl, and FI. are the irregular and regular Coulomb
functions, respectively, for relative angular momentum
quantum number L.

From consideration of the asymptotic expressions for
the Coulomb functions, "it is seen that

=iP.

Hence, in the barrier, Region II,
~"()=~(G.+i&.). (6)

It is shown in the Appendix that in this region, pro-
vided that r is not too near the classical turning point,
rz (see Fig. 1), the Coulomb functions can be accurately
represented by

G~= IC'(p)
I

*' exp[~(p)],

Fr (1/2) I
C'(p——) I

l exp[—co(p)],

I
C'(p)

I

=2~/p+ (I+l)'/p' 1, —

(7)

(g)

(9)

pPg

IC (~) lid~, (9a)

&= (s'Z"/I )[iV/(2W)]', (9b)

and s' and Z are the atomic numbers of the alpha par-
ticle and daughter nucleus, respectively.

If by de6.nition

then
f"/(&~) =[(4") '(—d0 "/dp)]» (10)

and

(12)

(12a)

(12b)

The number y which arises from the differentiation of
IC (p) I

'
in Eqs. (7) and (8) was omitted by Preston"

and by Bethe."It would be contained in Devaney'ss e'.
Its value will generally be about —0.02.

Equation (1) is now to be used to replace W wherever
it occurs in Eq. (11) and separation is then made into
real and imaginary parts to the first power of exp( —2~)
or of P. The term which arises from keeping the first
power of ) is the one mentioned previously, which was

(1+y)—(i/2) (1—y) exp( —2')f"= (11)
1+(i/2) exp( —2a))

where
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omitted by Devaney and Preston but which is of some-
what greater importance in the surface well model.
A further remark on the source of this term will be
made later, in Sec. III, when more details will be given
on exactly what is meant here by the traditional model.

The result of the separation of Eq. (11) into real and
imaginary parts is

Pr= —kRIC I '(1+&)+s(kR IC I

' exp( —»)
—[MR)& (1—y) )/[2kk i@i '*(1yy)7). (13)

The nomenclature used in Eq. (11) is repeated in
Eq. (13), but it is to be understood that where the
energy appears in the latter it is the real part E.

A factor (1—2y) in the last term on the right side of
Eq. (13) has been replaced by the ratio (1—p)/(1+&)
for convenience. Not only is p small, but the term itself
is small.

It is now necessary to discuss the function to which
f'z is to be equated, i.e., the corresponding function fr
in Region I at r=R. Following Feshbach et al. ,' this
function is written as

fz P (P) —[(i'd&)/2$(&)P/c&P )s (14)

since the second term in Eq. (1) is, in absolute value,
so small compared to the first. Upon equating f' and f"
it is found that

and
P(~) =-kRI+I:(1+~),

k
i
C

i

l exp( —2o&)
X= (25/M)

[It'/(M—R) j(&)f'/&)W) + (1—y)/[k i@ i
l(1+y)j

(16)

Equation (15) is not to be construed to mean that the
right side is an expression for f (Z), i.e., Eq. (15) is
not an identity. Rather, once an expression for fr(le)
has been chosen, and if other necessary parameters
such as R and I. were to be assigned, then the decay
energy for the corresponding (idealized) one-body model
would be found from Eq. (15) and the decay constant
would be found from Eq. (16). In practice, with the
traditional model, say, and data for an alpha particle
group for which I. is known, Eqs. (15) and (16) would
be solved simultaneously for E.and the depth of the well.

For the potential function illustrated in Fig. 1, the
logarithmic derivative of the one-body wave function
in Region I is determined from

gP(r) = (Kr)'[Jz+;(&&r)J &z+,&(&&R&&)

—J (z+;& («r) J'z+;(&&Rp) $, (17)

where I(: is the wave number in the well and Eo is to
represent the elclear radius only. The functions J are
Bessel functions of the indicated order. From this
equation it is found that

f'(E)—=L+1—
&&R (t&/u)

an(P~

-Ps/(~R) j(ap/aW).
=R(1—[(2L+1)/ («R)7 (t&/u)

+ (t&/u)' —[2/(vrKRu) 7'} (19)
where

t&= J~f(KR)J &z+f&(KRp)+J &~&&(«R)J~f(«Rp), (20)

u= (a'R) 'qP (R). (20a)
"The quantity LJz+l(x)J &z+t&(x)+J &z+1&(x)Jz+t(x)g ap-

pears, during the derivation, on the right side of Eq. (19). This
quantity can be shown to be the Wronskian WLJz+l (x),J-&z+1& (x)g;
further, it can be shown that x8' is a constant. Evaluation of the
constant by letting x be large gives W= (—1)z+'P2/(xx)7. Also
see E. T. Whittaker and G. N. Watson, A Course of Modern
ANalysis (Macmillan Company, New York, 1946), p. 380, ex-
ample 13.

After a little manipulation, the results of using Eq.
(18) in Eq. (15) and Eq. (19) in Eq. (16) can be put
in the forms

and

where

«Rt&= (gz,+L+1)u

X&&
——[2k/(MRS, )jk i

C
i

' exp( —2o&),

gi=kRi+i:(1+v)

(21)

(22)

(23)

III. COMPARISON WITH THE TRADITIONAL
MODEL

The traditional potential energy function has been
used as the basis of derivations of the alpha decay con-
stant which have led to many different results. This
situation will be discussed briefly to show what will be
meant here by "the traditional model" and why.

In an unpublished investigation of the one-body
model of alpha decay" "now being made, it has been
shown" that the most accurate derivation based on the
traditional potential function, which is now in the
literature, is that by Preston. "Comparison of Preston's
result with what is called here, as a consequence of that
investigation, the "exact" result showed that the differ-
ences are just those terms which Preston pointed out

"G. H. Winslow and O. C. Simpson, Argonne National Labora-
tory Report ANL-4841, June, 1952 (unpublished)."G. H. Winslow and O. C. Simpson, Argonne National Labora-
tory Report ANL-4901, December, 1952 (unpublished).

20 G. H. Winslow and O. C. Simpson, Argonne National Labora-
tory Report ANL-4910, January, 1953 (unpublished).

5,=1+(«R) '(gz, '+gz, L(L+1)—
—[2/(~u)7)+ (1—v)/gi (23a)

The superscript I has been added to X to show that the
result is for other than 1.=0, and the subscript zero is
used to emphasize that this is a one-body decay
constant.
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that he was neglecting. The numerical eGect of these
terms is small. Indeed, as far as calculated radii are
concerned, the numerical eGect of the approximations
made by Bethe" and Rasetti" is not large. These latter
two results are identical; they yield calculated radii
which diGer by only about 0.4 percent" from those
given by the exact result, whereas the radii from some
of the other equations can dier by as much as ten
percent for the same input data.

This "exact" result was determined by showing that
it was identically reproduced by the method of complex
eigenenergies used in Sec. II, by Bethe's quasi-station-
ary state method, and by Rasetti's method of examining
the change in time of the nonstationary wave function. ~

These latter two methods give somewhat greater insight
into that term in Eq. (13) which is proportional to X.
It arises as a result of recognizing that there is a small

part of the wave function which extends into the
barrier. This recognition must be made during the
normalization process when Bethe's method is used or,
equivalently, when, with Rasetti's method, the proba-
bility remaining in the source is calculated. Thus this
term is, logically, a necessary adjunct of the recognition
that the phase of the interior wave function is less than
m at r=E. The recognition of this latter fact is the
principal difference between Preston's or the exact
result and the Bethe-Rasetti approximation. Since the
phase of the interior wave function at r=E turns out
to be smaller for the shell potential than for the tradi-
tional potential, that part of the wave function which

extends into the barrier plays a more important role in
the surface shell model than in the traditional model.

It is the so-called exact result referred to above which

is meant here by "the result of the traditional model. "
Its properties ha, ve been discussed by Preston; they
will be reviewed here in the process of comparison with,

the properties of the surface shell model. The equations,
in the notation used here, can be quickly obtained from

y'(r) = (ter) V~;(ter). (24)

After determination of the corresponding f' and
(itf'/r)W)tr and substitution into Eqs. (15) and (16),
the results are that

X ~=prXP, (27)

where ) ~ is an observed alpha decay constant and,
for the moment, pr. is to be considered only as a device
by which the traditional model and the surface well
model can be compared. It is also convenient to write
for both models

R=Rp(= rpA &)+~,
where Ro is considered to be the radius of the daughter;
hence 3 is the mass number of the daughter. In the
surface well model hR is one of the parameters in the
square well approximation to the nuclear potential at
the nuclear surface. It plays the role of the "effective"
alpha particle radius, i.e., it corresponds to the p used
by Blatt and %eisskopf. ' It is apparent, however, that
Xo~ calculated with the surface well model will depend
separately on Eo and AE but that the value calculated
with the traditional model, or with Devaney's' model,
will depend only on the sum R.

Decay data" for Po"' have been used as an example
to calculate values of logpp with the two m'odels. Various
values of E and AR were used; the results with the
traditional model are shown in Fig. 2 (a) and those with
the surface well model are shown in Fig. 2(b). Apart
from the difference in the way the values of logpp for
the two models depend on Rp (or rp) and on AR, it can
be seen that for a given ro and AR, the decay constant
that would be calculated with the surface well model
would be much larger than the one that would be
calculated with the traditional model. The explanation
for this is seen by examining the depths of the wells as
given in Table I. In classical language, the greater
kinetic energy in the surface well would mean a higher
frequency of impact with the barrier wall.

The next comparison to be made is that of the way
in which the two one-body decay constants change
with I.. The calculations were made with g=20 and
kE= j,0 at each value of I., as an example. Calculated

and that XP has the same form as in Eq. (22), except
that 5, is to be replaced by Sz, where

~ =1+(R) 'I.g '+g —L(L+1)j+(1—~ug .
It is now convenient to write

«RJ~1(zR) = (gr, +L+1)J~;(eR) (25)
TABLE I. Comparison of well depths (in Mev) in Pos" decay

for diferent radii (in 10 ", cm).

"F.Rasetti, Elements of unclear Pitystcs (Prentice-Hall, Inc.,
New York, 1936), p. 100.

~ H the derivation is made with WKB connections throughout,
as was done by Kemble (see reference 12, p. 178), the result again
yields calculated radii which dier by only about 0.4 percent from
those given by the exact result. When following any method in
which probability currents are used speciically, as Kemble did,
it must be recognized that the amplitude of the outgoing wave in
the well, from which wave the current incident on the barrier wall
is calculated, is, to the required accuracy, just half of the ampli-
tude of the (nearly stationary) total wave function in the well.

~ Rasetti's method has been carried out in great detail only for
J=O. lt seems certain, however, that agreement with other
methods would be obtained for any J.

QaR

7.75
8.25
8.75
9,25

0.5
Surface well model

1.5
—78.13—76.88—75.69—74.56

—5.23—5.02—4.81—4.61

2.5

2.98
3.05
3.12
3.20

Traditional
Any

8.17
8.26
8.34
8.40

~The data used in the examples were taken from the new
table of isotopes: Hollander, Perlman, and Ghiorso, Revs.
Modern Phys. 25, 469 (1953). The author wishes to emphasize
that reference to this very convenient table should not decrease
the credit due to the original observers to whom the table refers.
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-2.0— .75
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0.6 0.9 I.O I. I l.2 l.3 I.4 I.5 l.6
ro

Fin. 2(a). Values of ratios po of experimentally observed decay
constant of Po'" to those calculated with the traditional model for
various values of R and nR as a function of rsL= (R—nR) (208) &j.
All distances are in units of 10 '3 cm.

consistent application of the traditional model and was
erst pointed out, as already mentioned, by Preston.

These roots of Eq. (21), on the other hand, increase
so slowly with L that S, is essentially constant. Indeed,
it has been found with this example that 5, changes
only by about three percent between L=O and L=6.
Thus the Gamow method" of treating the eGect of
changes in L by only including the changes in the
exponential term, which represents an arbitrary de-
parture from the traditional model, is the exact result
of the surface well model.

It is of interest to examine the dependence of the
roots of Eqs. (21) and (25) on L a little more closely.
The squares of these roots are proportional to the
kinetic energies in the wells; it is these energies which
will be considered. With the same example as used to
discuss log() P/Xs') and with R= 9X10 " cm and (for
the surface well model) DR= 1.2X10 " cm, it is found
that the kinetic energies in the wells depend on L in
the manner shown in Fig. 4. Here, again, Curve u is
for the traditional model and Curve b is for the surface
well model. It is seen that this energy increases linearly
with L(L+1) for the latter model but not for the former.
Further, as indicated previously, these energy changes
are a much smaller fraction of the total kinetic energy
in the surface well than in the traditional well where
the kinetic energy at L=0 is of the order of 0.5 Mev.

Since the total energy was held constant for this
example, these kinetic energy changes correspond. to
increases in well depth. The fact that the changes are
a small part of the total kinetic energy in the surface
well model can be used to Gnd an expression for them
with the aid of Eq. (21). Since the result was found to
agree with the exact calculation for this case of constant
total energy, the same procedure was used to examine

-3.0
0.8

RI = 9.25
I I I I I I I I

09 I 0 I I I 2 I 3 I 4 I 5 I 6
fo

0.2

-0.2

Fro. 2(b). Values of ratios, pp, of experimentally observed decay
constant of Po'" to those calculated with the surface well model for
various values of R and nR as a function of ro( (R—nR)(=208) &g.

All distances are in units of 10 "cm.

values of log (Xs~/Xs') are shown in Fig. 3, where Curve a
is for the traditional model and Curve b is for the surface
well model. It is seen that the former goes through a
maximum at L='2, whereas the latter decreases mono-
tonically. The formal explanation can be made briefly.
If the first nonzero root of Eq. (25) is found at suc-
cessively increasing values of L, it is found that the size
of these roots increases rather rapidly. As a result S~
initially decreases more rapidly than does exp( —2&v)

and it is only after L,= 2 that the decrease in log(XP/Xs')
begins. This is possibly the most startling result of a

04
O

-0.6

O -0.8

-l.2

-1.4

-l.6

FIG. 3. Comparison of log(Los/Los) for constant energy and
radii. Curve u is for the traditional model and Curve b is for the
surface well model.

~' See reference 1, p. 173.
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(&experimental/&thenretiml) fOr the 6rat Weak grOup. '

Parent

Cm~
Cm~
Pu'40
Pu238

Pu~
U238

U238

U234

U232

U230

Th232
Th~0
Th~3
Th~
Ra~
Ra~

3.32
3.22
3.14
3.41
4.33
2.70
2.07
2.48
1.89
2.78
1.85
1.80
1.57
1.98
1.54
2.28

1.05
1.01
0.99
1.07
1.36
0.85
0.65
0.78
0.60
0.88
0.58
0.57
0.50
0.63
0.49
0.73

1.73
1.68
1.66
1.80
2.28
1.45
1.11
1.33
1.01
1.48
1.00
0.97
0.84
1.06
0.84
1.24

1.8
1.7
1.7
1.9
2.2
1.5
1.1
1.3
1.1
1.5
1.0
1.0
0.9
1.1
0.9
1.25

a Column a: Traditional model, L =2.
Column b: Surface well model, L =2. These numbers would be essentially

those obtained from the traditional model if only the effect of I. on the
exponential term were included.

Column c:The results if no L terms are included. They were obtained by
elimination of such terms from the results in Column b and are to be
compared with the results obtained by the use of Kaplan's approximation
to Preston's formulation of the traditional model, Column d.

Column d: F. Asaro, reference 27.

the energy changes with a constant well depth. This
case is more dificult to solve exactly since the total
energy appears in both a and (k~C~&). The resultss

is that

Finally, some numerical calculations pertaining to
the main group and first weak group of alpha particles
emitted by even-even isotopes have been made. It was
assumed that L=O for the main group and L=2 for the
weaker group. The values ro ——DR=1.2&( j.0 "cm were
picked arbitrarily, and the ratio (pp/p, ) was calculated.
Some preliminary calculations showed that not only
was S, insensitive to changes in L, but it was also in-
sensitive to the small energy diGerences involved here
and to changes in the values of ro and AR. This last
result has been shown, actually, only for ro= AR. Thus
S, was assumed to be the same for each group from the
same isotope, which made it unnecessary to calculate
any values of ~ for the surface well model.

"This result should be compared with the discussion of the
relation between the energies and spins of nuclear states given by
A. Bohr and B. R. Mottleson in Phys. Rev. 89, 316 (1953).The
association of the values of (AE)z, given by Eq. (29) with states
of the daughter nucleus has been suggested by O. ,C. Simpson.
It would be argued that there are many possible nucleon. con-
figurations corresponding to a given state and that one such con-
figuration should be that of an alpha particle at the surface, i.e.,
in the surface well. Numerically speaking, the values of (AE)z,
calculated from Eq. (29) are too large, particularly for the heavier
alpha emit ters. Nevertheless the result is attractive and the answer
to the numerical dif5culty may be an incomplete potential func-
tion, i.e., it may not be su%ciently correct to consider the depth
oi the well as axed (apart from the angular momentum term)
when I.is changed.

(AE) r, ——[iris/(2MRRp) 1[L(I.+1)j
[1+Rp/(gphR) g

X (29)
[1+R/(gphR) j

It was, of course, necessary to 6nd I(: in order to calcu-
late (pp/ps) for the traditional model, since it is just
the large changes in Sp with changes in L which cause
that numerical difference between the models which is
to be demonstrated here. The same values of ro and AR
were used as with the surface shell model. Insensitivity
of the traditional model to values of R was not shown
here by direct calculation, but it can be shown by com-
parison with some numbers calculated by Asaro. '"

Asaro, with the use of Kaplan's" approximation to
Preston's" result, calculated radii with data for the
main groups of several even-even isotopes and then
used these radii to 6nd values of a so-called v.~h.„,~,.„l
(theoretical half-life) for the weaker group emitted by
each isotope. This second calculation was again made
with Kaplan s equation, i.e., no term which is explicitly
dependent on L was included. Asaro then tabulated
values of (rexperimentni/~theoretical).

Because of the insensitivity of (pp/p&) to the radii
(provided, of course, that the same radii are used with
each group from a given isotope) it is reasonable, for
the moment at least, to refer to these ratios as
(rnxpnrjmnntni/rth«, «;.») fOr the Weaker grOuP, in the
sense used by Asaro. The results are given in Table II.
No arguments can be given for the preference of one
model over the other on the basis of the values of these
ratios themselves. The drop by a factor of two (roughly)
as one proceeds down the table can probably not be
explained by any model of this type, i.e., a ore-body
model with complete spherical symmetry, with a barrier
having a vertical inner face, and in which the distances
are given literal meanings, i.e., in which the same radii
are used for each group. It is suggested, however, that
when the principal interest is alpha-decay theory as
opposed to the empirical use of alpha-decay systematics,
the eGect of L on the exponential term, at least, should
be included in such ratios wherever possible. That is, it
should be expected that such terms must appear in a

K
3

9

I

0 2 6 20
L (I+I)

30 42

FxG. 4. The increase in kinetic energy in the well as I. is in-
creased. Curve u is for the traditional model and Curve b is for the
surface well model. Since E was held constant the curves repre-
sent the increase in the depths of the wells.

27F. Asaro, University of California Radiation Laboratory
Report UCRL-2180, June, 1953 (unpublished), Table 19.

ss I. Kaplan, Phys. Rev. 81, 962 (1951).
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complete expression for the alpha-decay constant. Thus,
here, the assignment of I.=O to the main group and of
1.=2 to the first weak group seems reasonable.

IV. THE MANY-BODY DECAY CONSTANT

Suppose a channel radius is calculated in the tradi-
tional way by using, for example, data for the main
group of an even-even isotope; that is, the calculation
is made by equating the experimental decay constant
directly to the expression for the one-body decay con-
stant derived with the traditional potential function.
It was shown in the previous section that if this radius,
after some reasonable separation into Rs and DR )see
Eq. (28)j, is now used to calculate a decay constant
with the surface well model, then the result will be
considerably larger than the experimental decay con-
stant. Nevertheless, the radius used in the latter calcu-
lation seems reasonable in the sense that it will be very
nearly the same as might be found by summing a
radius, taken from some other consideration, for the
alpha daughter and a reasonable value for the nuclear
interaction distance between the daughter and the
alpha particle.

Two remarks immediately suggest themselves. First,
the procedure by which this radius was obtained is
inconsistent with the idea that alpha decay is not a one-

body process. Although several of the remarks on this
topic~" imply that the traditional model is complete
when applied to the main group from an even-even
nucleus, nevertheless it should not be expected a priori
that any one-body model would be complete for any
case. Second, if it is desired to continue the use of such
values of the channel radii because of their general
applicability but if it is also considered that, because
of its nature and properties, the surface well model
should have some relation to actual alpha decay, then
consideration of what might cause an appropriate re-
duction in decay probability is forced.

Further, when any particular one-body model is
used, it is found that the channel radii calculated for
most groups of alpha particles emitted by noneven-even
nuclei, or even for the main groups of those even-even
nuclei which have less than 128 neutrons, are con-
siderably smaller than those calculated for the main

groups of the heavier even-even nuclei. On the basis of
comparison with the latter channel radii, the former
are customarily said to be "abnormally small. " The
radius so calculated with decay data of Po'" itself

(128 neutrons) is nearly "normal. "Further, no reason-

able assignments of relative angular momentum quan-

tum number I. will allow the calculation of "normal"
radii for many of the groups from noneven-even

nuclei. ""If these small channel radii are treated di-

rectly as nuclear radii, or if a constant interaction

~ Periman, Ghiorso, and Seaborg, Phys. Rev. 75, 1096 (1949).
~ Perlman, Ghiorso, and Seaborg, Phys. Rev. 77, 26 (1950).
"See reference 8, M. A. Preston.

distance is used to obtain the nuclear radii from them,
then the latter become abnormally small.

This problem is common. In addition to their occur-
rence with the one-body models, these abnormally small

radii are also to be found in a table published by Blatt
and Weisskopf, " credited to Devaney and calculated
with his many-body model in which a constant value
of p (=DR) = 1.2X10 "cm was used. When the parents
are, say, Bi"' Po"' and Po"' the values calculated
for ro are, respectively, 1.14, 1.21, and 1.31, all in units
of 10 " cm. These numbers when calculated with
Bethe's" approximation to the traditional model and
DR=1.2)&10 " cm are 1.05, 1.22, and 1.32, respec-
tively. Presumably there should be a relative angular
momentum quantum number involved in the case of
Bi"'. If 1.=4, say, "then Devaney's value for ro would

be raised to about 1.23&(10 "cm. Blatt and Weisskopf
also consider values of ro as low as 1.2&10 "cm to be
spurious, as compared to the "normal" values of 1.3
)(10 " cm to 1.4)(10 " cm. They again suggest the
reason commonly quoted in discussions of a one-body
model, i.e., an inexactitude in the equations such that
they do not take into account an expected increased

difhculty of assembling an alpha particle when it is
necessary to dip into the Pb~' core for some of the
constituents.

Other estimates of nuclear radii —from total cross
sections for fast neutrons, for instanc- —do not show

such a pronounced. eBect in this region. As an example,
the "radii" given by Hildebrand and, Leith33 for 42-Mev
neutrons would correspond to ro for lead or bismuth,
being about three percent less than that for thorium
rather than the 10 to 20 percent drop noted in the values
deduced from alpha decay data. Further, it has been
suggested" that the radii of noneven-even nuclei should

be larger, if anything, than those of neighboring even-

even nuclei.
The arguments which will be made in this section

concerning a factor which will reduce the decay proba-
bility below that predicted by a one-body model will

lead to a result which involves two quantities. One of

these will be an "intrinsic alpha-decay constant" which

is not, however, directly equal to Devaney's intrinsic

alpha-decay constant. The second will be the proba-

bility per second that an alpha particle at the nucleus

(or at the nuclear surface) will be absorbed into the

nucleus as nucleons, i.e., that a compound nucleus will

be formed. The appearance of the second. of these two

quantities might allow the explanation of the ab-

normally small radii, whereas the first quantity alone

might fail in this respect. In conjunction with estimates
of these probabilities, to be made in the next section,

it will be suggested on the other hand that small channel

radii might not be abnormal.

~ See reference 6, p. 578. The exact source of the values of level
spacing which were used does not appear to be given.

~ R. H. Hildebrand and C. E. Leith, Phys. Rev. 80, 842 (1950).
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Although such estimates will be made, no attempt
will be made to derive expressions for these probabilities
in terms of such quantities as nuclear spins, relative
angular momentum, level widths and spacings, etc.
Rather, the way in which they would -be expected to
appear in an equation for the alpha-decay constant
will be shown by a sort of phenomenological argument.
The following presumptions are added to those of
Sec. II: (c) in the absence of the external Coulomb
field there would still be a noninfinite probability per
second for the emission of alpha particles; (d) the
presence of the barrier, which is the net eGect of the
Coulomb and nuclear interactions, makes it possible
that an alpha particle, once formed, might become un-
formed and reabsorbed as nucleons rather than be
emitted through the barrier. In addition, in order to
apply the concept to a model of the traditional type in
which the alpha particle is not excluded from the region
occupied by the nucleus, it is necessary to amplify
somewhat —essentially to modify —the previous pre-
sumption (a) that alpha particles do not exist sos nuclei.
To do this use is made of a suggestion by Bethe" that
"there might be some slight tendency for the preforma-
tion of alpha particles in nuclei due to their great
stability. "This suggestion is applied literally where the
corresponding one-body model is of the traditional type.
In the case of a surface well model it is considered that
there is a tendency for the "preformation" of alpha
particles at the nuclear surface. In either case it is
assumed here, "in order to advance the argument, that
there are periods during which one-body wave functions
apply in some region behind the Coulomb barrier;
that is, some one-body potential (not necessarily, of
course, any sort of square well potential) is to be used
during these periods, but only during these periods.

Suppose there is only one alpha particle in existence
behind the Coulomb barrier at a time, i.e., suppose
that there is one species with no alpha particle behind
the barrier (hence, actually, no well and no barrier)
and a second species with one alpha particle behind the
barrier. Let ) &~ be the decay probability of the first
species to the second, i.e., let it be (or at least very
nearly be) the decay constant in the absence of the
external Coulomb field. Let )2~ represent the decay
constant of the second species to the first, i.e., let it
be the probability per second that an alpha particle in
the nucleus or at the nuclear surface, as the case may be,
will break up and its constituents be reabsorbed. Thus
the second species branches by decaying to the first
with decay constant ) &~ and by emitting alpha particles
with decay constant ) 0~. If the generic relationships
between these two species are set up, the effective alpha
decay constant can be determined. It turns out that,
if ) o~ is much smaller than either X~ or X2, a reason-
able expectation, then there is a net decay by alpha

~ Supporting arguments are given in Sec. V,

emission with the decay constant

X ~=X ~) ~/(X ~+X ~) (30)

V. DISCUSSION

The many-body model is distinguished in this paper
from the one-body model by the requirement that it be
recognized in the former that an alpha particle is not
always present behind its accompanying Coulomb
barrier during the interval between the formation of
the alpha active parent and its decay. This requirement
is considered to be separate from that of finding the
potential which best represents the interaction between
an existing alpha particle and the residue during those
intervals when there might be an alpha particle present
behind its Coulomb barrier.

The method of Feshbach, Peaslee, and Weisskopf, '
which was used by Devaney' to discuss the many-body
theory of alpha decay, has been referred to as the use
of an "equivalent two-body potential" by Francis and
Watson. " (The phrase "one-body" used in this paper
and generally in discussions of alpha decay has the
same meaning as "two-body. ") The model has also
been used in this way by Blatt and Weisskopf, ~ for
instance, to estimate a normalization constant for the
interior wave function of an escaping particle. It would

"See reference 13, Part D of $54, p. 96."D.C. Peaslee, Phys. Rev. 74, 1001 (1948)."V. F. Weisskopf and D. H. Ewing, Phys. Rev. 5?, 472 (1940).
"Feshbach, Porter, and Weisskopf, Phys. Rev. 87, 188 (1952).
as N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
o See reference 6, p. 421.

Thus Eq. (27) is now given additional significance
beyond that given it at the time it was written in that
the many-body alpha decay constant is, according to
this picture, to be written as the product of a dimen-
sionless "preformation factor" and a one-body decay
constant. The preformation factor is given by

(31)

The reciprocal of pr, is, except for the effects of I. in
the one-body decay constant, just the "departure
factor" (for the traditional model) as used by Perlman,
Ghiorso, and Seaborg. "

The solution of the problem of deriving expressions
for X~~ and X~~ is not to be attempted here, as was
stated previously. However, it is considered that the
probability ) ~ is to be associated with an intrinsic,
non-Coulomb barrier, alpha-decay constant and that
the probability ) 2~ is conceptually equivalent to the
sticking coefficient $ as used by Bethe," Peaslee, "
Weisskopf, and Ewing, "for instance, or, more particu-
larly, to the probability I' discussed by Feshbach,
Porter, and Weisskopf. "Thus according to this argu-
ment the problem of the probability of formation of a
compound nucleus, once the particle involved is at the
nucleus, should also appear in the discussion of the
theory of alpha decay.
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certainly seem reasonable to adopt this attitude where
the "particle" involved is a fundamental particle, al-
though some arguments to be raised later suggest that
this attitude should be modified even in such a case.

When one comes to consider the case of a compound
particle, such as an alpha particle, reference should be
made to the derivation by Weisskopf4t 4' of I' (not the
I' of Feshbach, Porter, and Weissimpf") =(2~k)/D,
where D is an appropriate level spacing, as a nuclear
period. It was derived by showing (under the specified
assumptions) that I' is the repetition rate of a ~ip(t) ~'

which corresponds to a particular grouping of nucleons.
Such a grouping might correspond to an alpha particle
which, however, is "nonexistent" between repetitions
of this

~
1t (1)

~

s. Thus the method should meet the prin-
cipal requirement of a many-body model which was set
forth above.

On the other hand, further reference to the derivation
of this period I' shows that it should be interpreted in
this case as the interval between successive appearances
of an alpha-particle grouping at, but within, the surface
of the parent nucleus. Now, according to Feshbach,
Porter, and Weisskopf, " there is evidence that the
compound nucleus in a nuclear reaction, even when the
bombarding particle is a neutron, is formed less rapidly
than had been hitherto assumed. This would mean that
the formation of a compound nucleus is inhibited by
something more —by some other "barrier" —than by
the ordinary centripetal barrier, by the partial reRection
at a potential jump, or, for charged particles, by the
Coulomb barrier. It would be expected that this inhibi-
tion would be even more pronounced for an alpha
particle and, further, that it would operate in both
directions. In Devaney's model it is the Coulomb
barrier which permits the existence of the weLL-dined
state whose period is P. It is argued here, however,
that this state would still be reasonably well dined in
the absence of the Coulomb barrier because of the
existence of the further "barrier" discussed above.

The decay constant ) &~, then, might be obtained by
multiplying D/(2~5) by some number less than unity;
that is, ) &~ is used here to represent the probability
per second for the actual division of the compound
nucleus (parent) into two entities, the daughter nucleus
and a well formed alpha particle. Were there no
Coulomb barrier these entities would usually move
apart immediately after formation. The decay constant
would be A~~ except for the low but not zero reRection
at a potential "jump" caused by the rapidly varying
attractive nuclear interaction potential. It is this com-
plete separation which is held in check by the Coulomb
barrier. Since the latter is so broad and high, the return
of the system to its original condition is more likely
to occur than is alpha-particle emission.

Expression (30) is to be considered as an approximate

4' See reference 6, p. 386.
~ V. F. Weisskopf, Helv. Phys. Acta 28, 187 (1950).

expression of these ideas. The goodness of the approxi-
mation depends on the life of the divided but unsepa-
rated system. Again, however, if the probability of
reformation of the compound nucleus (parent) is
inhibited as described above, the approximation should
be reasonably good, even to the extent of using a
strict one-body decay constant for )p~, since many
traversals of the region allowed to the alpha particle
would occur, on the average, before either reformation
of the compound nucleus (parent) or escape of the alpha
particle through the barrier. Further, by the very
nature of the expression for pr, [Eq. (31)7 its value will
be less than unity, and so a factor has been found which
will reduce the decay probability below that predicted
by a one-body model.

It has been stated that Eq. (31), which involves the
two quantities X&~ and X2~, might provide a means for
explaining the so-called abnormally small radii even
if X~~ alone could not do so. If a proper derivation of
these two quantities should show that ) &~ is relatively
much greater in those cases where the small radii occur,
then the explanation could be effected even with the
same interaction distance for all cases. That is, a de-
crease of pz, of the proper magnitude, caused by an
increase of X2~, could lead to the calculation of normal
channel radii.

An attempt to make a rough estimate of X~' and ) 2'

has led, on the other hand, to a somewhat different
explanation. This suggestion is equally applicable to
Devaney's model, to the traditional model, or to ex-
pression (30) with the result of the surface well model
used for Xp'. Suppose in the latter case that X2' is
written as

Xs' ——[v/ (26R)7P, (32)

where $ is the probability of formation of the compound
nucleus (parent) per impact of the alpha particle on
the surface of the daughter nucleus and v is the velocity
in the well. At least for the main groups from even-even
nuclei it might be possible to write also that

X '= [D/(2~5) 7P. (33)

If, for Po"' as an example, D is taken from Devaney, "
then one can And the values of rp and DR which will

satisfy Eq. (30) for this model. It is found that the
corresponding values of the channel radius E are not
exactly constant as they would be in Devaney's or the
traditional model, but they are nearly so. The value
rp=1.31X10 " cm corresponds to DR=1.2&&10 " cm.
Generally, for o. decay and with distances of this size,
[./(2~R)7»[D/(2~a) 7.

If now one proceeds to Po'" the same effect is ob-
served here as with the other models, i.e., the channel
radius is small. The value of [v/(2AR)7 is very nearly
the same for every nucleus if AR is the same for every
nucleus. But the question is now asked, why should one
necessarily expect hR to be constant and associate the
small rp which then accompanies a small channel radius,
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with an error in the theory? In the surface well model,
at least, hR is a parameter in a square-well approxi-
mation to the nuclear potential at the nuclear surface.
It might very well be the case that such a parameter
would be diferent between the two cases where the
daughter nucleus is the closed shell nucleus Pb"' and
where the daughter lacks two neutrons of being the
closed shell nucleus. If this position is taken, then it is
found for Po'" that r0=1.31&(10 " cm corresponds to
AR='0.6X10 " cm. If one goes back to Devaney's
result" for this nucleus, for instance, and uses 0.6)&10 "
cm for his p, then his result for ro becomes 1.32)(10-"
cm. This agreement is not surprising, of course. The
leading term in Eq. (23a) is, for L=O, just (hR/R)
X[1+g'/(i~R)'j. Thus, if only this term is used along
with the above expressions for 7~i' and 7~2'(X2'))Xi'),
the expression for X ' becomes identical with Devaney's
Eq. (2.21) with L=O.

The above estimates are only based on a suggested
possibility. To make them does not exclude the possi-
bility that detailed considerations leading to proper
expressions for XP and XP would show that pr, changes
from alpha emitter to alpha emitter in such a way that
R=rpA&+DR, with ro and AR constant, even in those
cases where present methods yield abnormally small
radii. It must be remembered in other connections also
that Xp is only one factor in an expression for ) ~. For
instance, Fig. 3 shows the way in which Xo~ depends on
L for two possible descriptions of the one-body phase
of the alpha decay mechanism; the way in which Pz,
might be expected to depend on L has not been shown
here.

The two solutions of the one-body phase of the
problem which have been used here might be considered
as extreme cases. Not only variations of each of them
but also combinations are possible. For instance, one
could use a square well with the potential in r(RO
large but not in6nite. As between the two extremes, it is
believed that a model of the surface well type is to be
preferred. If there is a well-de6ned nuclear surface, as is
certainly implied by the subtraction of an "eGective"
alpha particle radius from the channel radius to obtain
the radius of such a nuclear surface, ' then it is more
logical to introduce this surface as a factor to be con-
sidered during the derivation of the alpha decay con-
stant. The surface-well model allows one to combine:
(a) the well-defined elclear surface; (b) the exclusion
of alpha particles, as such, from the interior of a nucleus;
(c) the "slow" formation of a compound nucleus";
(d) the improbability of a pure Coulomb potential at
the elclear surface. Along with this combination of
ideas it yields, as an exact result, a linear dependence of
loglto on L(L+1); thus this is the dependence of the
barrier penetrability term in logX ~. The deep surface
(square) well is consistent with a large attractive inter-
action between an alpha particle and a nucleus at close
distances. The nature of the dependence of the energy
levels in the surface well on L(L+1) is considered to be

preferable to the nature of that dependence in the
traditional well, in spite of the present diKculty with
its magnitude. Finally, it is much easier to use what are
presently considered to be normal channel radii, to-
gether with an expected pr. (1, with the surface well
model than with the traditional model. These remarks
about the content of the surface well model still apply
after one has made those specific assumptions and
approximations which lead to Devaney's expression for
the alpha-decay constant.

I wish to express my appreciation of many instructive
and searching discussions to Dr. 0. C. Simpson of this
laboratory, who first introduced me to the problem of
alpha-decay systematics and theory.

APPENDIX

The question of the accuracy of the WEB wave
functions when applied to the solution of the alpha
decay problem has been discussed by many others.
Among these are Devaney' and Preston, '4 to whose
work frequent reference has been made here. The
present author would like to add some brief remarks to
this discussion. They will be developed more fully
elsewhere. 4'

The WEB functions for large p are trigonometric
functions as are the asymptotic expressions for the
Coulomb functions. If, in the evaluation of the argu-
ment of the WEB functions, reciprocal powers of p are
neglected compared to p, to lnp, and to constants, and
if L(L+1) is replaced by (L+2)', then this argument
diGers from that which appears in the asymptotic ex-
pressions for the Coulomb functions" only by

e = 1/(24') —[I.(L+1)j/(24rla)+

It is to be remembered that q=20 is typical for this
problem.

In addition, with the typical value p(R) = 10, one can
examine the behavior of the WEB functions near the
nuclear surface. For L in the range up to L=4 it has
been found4' that: (a) The usual WKB functions, i.e.,
those containing L(L+1) in the "centrifugal" term,
obey certain Coulomb function recursion relations to
about 10 ' percent; (b) The WKB functions with
I.(I.+1) replaced by (L+-,')', the functions used in this

paper, obey these recursion relations to about 0.06
percent; (c) The ratio of the irregular WKB functions
modified as in (b) to the usual irregular WKB functions
(ratio ='1.01) is the same as the ratio of the irregular
Coulomb functions to the usual irregular WEB func-
tions as given by Bloch et al.44 to about 0.1 percent.

43 G. H. Winslow and O. C. Simpson, continuation of references
18—20, now in preparation. This report has been issued as Argonne
National Laboratory Report ANL-5277, April, 1954 (unpub-
lished).

44 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Phys.
Rev. 80, 553 (1950).
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Thus, since one of the recursion relations used contains
both the regular and irregular functions, the modi6ed
WEB functions are the same as the Coulomb functions
to about 0.1 percentin this range of the sariabtes p and rt.

In other ranges of these variables the modified func-
tions might or might not be preferred. 4'

The notation which has been used in this paper is a
mixture of that used by Bloch et al. ," Bethe," and
Preston. "Bethe's C has been replaced by Preston's co

on the grounds that C is generally used to represent a
constant of some sort. Bethe wrote the quantity ~C

~
as

~C (p) ~
in certain places but did not bring t) into evi-

dence. It is believed to be preferable to use the p as a
notation for kr, and to reserve the symbol x, which was
used for kr by Preston'4 and for kR by Devaney, ' for
its older meaning as the ratio of the energy to the height
of the barrier.

Examination of Eq. (16) shows that it could be
written as

X=4E(hkRS') '[Gz, (kR)g '
with

S'= [ks/(iVR—')$(af '/aW) z+ (1 y) g r. '—
but, depending on the model used, it might be more
convenient in computation to include one factor of
[Gr, (kR)) ', ~C ~&, in the expression of 5'. The expo-
nential term will be common, however, to a model to
which Eq. (16) applies. To the first power of (L+-',)',

logip exp( —2(a) = (D/E:*)f(x)
+0.75445 (D/E &) '[(1—x)/xg'*(L+-')'

"Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).

where4'
D= 1.09449[ZA/(A+4) g,

f(x) =cos—'x&—[x(1—x) j&,

E is the alpha pa-rticle energy in Mev "corrected" as
described in reference 16, and, as before, Z and A are
the atomic and mass numbers of the daughter. The
first term in the expansion in powers of (I.+-',)' con-
tributes to the third decimal place in logis exp( —2&v)

already when L=O, where the value of the term is
about 0.009. Expansion to higher powers shows that
the term in (L+-,')' does not contribute to the third
decimal place until L=3, where its value is about
0.002, and the term in (L+—,')' does not contribute
until L=6, where its value is about 0.001.

The ratio x is conveniently written as

x=E R/E,
where, with E. in units of 10 "cm,

E=2.8797s[ZA/(A+4) 7.
Further convenient formulas related to the g~ of

Eq. (23) are

k'R'i C
i
= 1.32547 (D/E;)'x(1 x)+ (L+—-')'

and

~= —[4kR(C (-:(1—*)j-i
)&[1+(ksR'~C ~)

—'(1—2x)(L+r) ).
It was mentioned in the text that p is generally about
—0.02 (and, hence, is frequently omitted); the correc-
tion term in the equation for p is only about 0.05 or so
at L=5.

4' Values for the necessary atomic constants have been taken
from J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys.
25, 691 (1953) and Li, Whaling, Fowler, and Lanritsen, Phys.
Rev. 83, 512 (1951).


