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Role of Low-Energy Phonons in Thermal Conduction
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Phonon-phonon collisions in which one of the phonons is of very low frequency have recently become
important for the understanding of the thermoelectric powers of semiconductors at low temperatures.
Such collisions have also an interest from the standpoint of thermal conduction, since previous theories,
which neglect elastic anisotropy, have predicted a very large thermal conductivity for a hypothetical
perfect crystal of very large size. It is shown here that elastic anisotropy has a drastic effect on the collision
probabilities of modes of very low frequency. A relaxation time r can be dered, for any mode, which at
temperatures T well below the Debye temperature and for wave vectors q well within the acoustic range
obeys r(Xq, XT) =X 'r(9,T). As q~0, r ' A,q', where normally, for modes of the longitudinal branch,
a=2 for the crystal classes of highest symmetry, 3 and perhaps sometimes 4 for those of lower symmetry.
For transverse modes a is normally 1. These asymptotic laws, whose range of validity can be roughly esti-
mated, enable us to calculate the contribution of the low-frequency longitudinal modes to the conductivity.
This contribution, though small, may be perceptible at temperatures far above the range where Casimir s
formula applies.

HK modern theory of thermal conduction in
nonmetals dates from the work of Peierls, ' who

first gave a rigorous formulation to the idea, proposed
much earlier by Debye, ' that thermal resistance is due
to the mutual scattering of vibrational waves, a scat-
tering due to the anharmonicity of the interatomic
forces. A number of papers have been written since,
attempting to develop Peierls' picture in greater detail.
As the theory is rather complicated, all these have
made the plausible simplification of treating the medium
as elastically isotropic. With this assumption it is
easily shown that, if terms of higher than the third
order are neglected in the elastic potential energy, the
expression for the thermal conductivity of an infinite
perfect crystal diverges. '4 This divergence is due to the
fact that the relaxation time r of a longitudinal mode
of wave number g goes as q

4 when q is small, ' ' so
that J'rq'dg diverges at the lower limit.

It has been felt generally that this divergence of the
conductivity does not really occur for actual materials,
since observations suggest that, except at very low
temperatures, the conductivities measured for speci-
mens of usual laboratory size are substantially the same
as would be observed for an infinite crystal. To make
the conductivity finite, or, more precisely, to avoid
predicting that the measured conductivity should

depend markedly on the size of the specimen, Pomer-
anchuk' invoked fourth-order terms in the elastic
potential energy. This is rather unsatisfactory, as these
terms must have an extremely small efFect at moderately
low temperatures. Herpin, 4 on the other hand, invoked
imperfections in the crystal structure. This is also an
unsatisfactory escape, since isolated impurities and

' R. Peierls, Ann. Physik 3, 1055 (1929).
P. Debye, Vortrage Nber die kirIetische Theori der 3faterie

used der Elehtrisitat (Teubner, Leipzig, 1914).
s I. Pomeranchuk, J. Phys. (U.S.S.R.) 4, 259 (1941); 6, 237

(1942); Phys. Rev. 60, 820 (1941).
4 A. Herpin, Ann. Phys 7, 91 (1952).
'L. Landau and G. Rumer, Physik. Z. Sowjetunion 11, 18

(1937).

lattice defects also give v. ~q ', while the number of
dislocations and stacking faults present in a reasonably
good crystal is too small to have an appreciable efFect.
Klemens, ' in what is in many ways the most satis-
factory treatment of thermal conduction, dismisses the
divergence by a remark in a footnote to the eGect that
it is eliminated by Umklapp collisions. As far as I can
see, this statement is not correct, at least for the type
of dispersion relation normally expected.

The present study of low-energy phonons was stimu-
lated by their infIuence on the thermoelectric power of
semiconductors. ' ' The most important object of this
paper is therefore to get expressions for the variation of
the relaxation time r (q) of a phonon of wave number q
with p and with temperature, for the low-energy
acoustic modes which contribute to the scattering of
charge carriers in semiconductors at moderately low
temperatures. An important by-product, however, is
the clarification of the role of these low-energy phonons
in thermal conduction. Since the theory of thermo-
electric power is itself a complicated subject, the
application of the present results to thermoelectricity
is given in a separate paper, ' and we shall confine the
present discussion to phonons and thermal conduction.

SrieRy put, the thesis which we wish to develop here
is that the elastic anisotropy of a crystal can cause the
scattering of low energy longitudinal phonons to difFer

profoundly from the behavior predicted for an isotropic
medium. For a great many crystals this difFerence
entirely removes the divergence of the thermal conduc-
tivity; for many others it reduces the divergence to a
logarithmic one. For these crystals the variation of
conductivity with specimen size would be extremely
small at temperatures above a few percent of the
Debye temperature and over the practical range of

e P. G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951).' H. P. R. Frederikse, Phys. Rev. 91, 491 (1953);92& 248 (1953).' T. H. Geballe, Phys. Rev. 92, 857 (1953).' C. Herring, Phys. Rev. 92, 857 (1953); full paper to be
published.
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sizes; however, it might sometimes be measurable.
Among the lower symmetry classes it is possible that
crystals may exist for which the original divergence
applies in full force. Such crystals should show a greater
dependence of conductivity on size; however, the
dependence would be conspicuous only for rather large
single crystals of good quality.

I. THE RELAXATION TIME

Our main concern in this paper will be with tempera-
tures rather smaller than the Debye temperature. In
this range, as the calculations of Pomeranchuk' show,
there are very few collisions involving four or more
phonons, i.e., collisions in which the occupation num-

bers of four or more normal modes are altered. We
may therefore restrict attention to three-phonon colli-
sions. These are a consequence of the term U3 in the
elastic potential energy which is of the third order in
the relative displacements of the atoms, or equivalently,
for modes of long wavelength, of the third order in the
strain amplitudes. Detailed expressions for the matrix
elements of U3 have been given by Herpin. 4 For our
present purpose, since we are interested in long wave-
lengths and low temperatures, it will suKce to consider
merely the dependence upon the phonon wave numbers
when the latter are small. This dependence is deter-
mined by the fact that the strain in any normal vibra-
tion is proportional to the product of the amplitude

by the wave number q, and. the fact that the matrix
element of the amplitude connecting states of quantum
numbers E and E 1 is pro—portional to (X/&p) &, where

or is the frequency of the mode. Therefore for any three
acoustic modes 0, 1, '2, whose wave vectors satisfy

go+%i =Qo&

(dlV p/dt),
lim

mo xo«) gp —gp(p)
(6)

where Ep& ~ is the value of the occupation number Ep
in thermal equilibrium and where (dXo/dt), is the total
rate of change of Ep due to phonon-phonon collisions
when Sp departs from equilibrium but all other modes
have equilibrium occupation. The relation of this
"relaxation time of a single mode" to thermal conduc-
tion will be discussed in Sec. IV below; for the present
we wish merely to investigate the asymptotic behavior
of this quantity for modes of very low frequency. Now
(d1&&&p/dt), is a sum of transition probabilities

(d¹/dt).=W(2~0, 1)—W(0, 1—+2)

+W(1, 2-+0) —W(0—&1, 2), (7)

where the 6rst two 8"sare to be obtained by integrating
(4) and the last two W's by evaluating similar expres-
sions with 0 and 2 interchanged. For the contribution
of an element dSi to the part of (6) arising from the
first two W's we have, if (2a) and (2b) are adequate
OQ dS»&

an element of area dS» of this surface is

dW(0, 1&2)~
( U['dSi[&9t&iop/Bqi„( ', (4)

where U is the matrix element, given for the acoustic
case by (2a) or (2b), qi„ is the component of qi normal
to dS», and

~&p =&p (Qp+Qi) —
&o (9o) &o (Qi)

measures the departure from energy conservation.
With each mode gp we may associate a relaxation

time r(qo) defined byo

we must have, since &o(q) ~ q,

[ (¹,¹&¹(&o[¹—1, ¹

—1, %+1)['
~ qogigoÃo¹(So+1), (2a)

[(¹,¹,¹I~pl 1&1o+1&%+1 ¹

—1) I'
0-.qpqiqp(¹+1) (¹+1)¹.(2b)

lim
dW(2-+0, 1)—dW(0, 1~2)

g, (p)

PdW(2 —A, 1)—dW(0, 1-+2)j
8Ãp

Here and below the factor implied in each proportion-
ality sign is independent of the 1Ps and the magnitudes
of the wave vectors, but depends on the directions of
the wave vectors and the polarizations of' the three
modes. We may note, 6nally, that even if modes 1 and
2 are high-energy modes to which the acoustic approxi-
mation ~ ~ q does not apply, the proportionality of the
squared matrix element to qp¹or go(¹+1)will still
hold if mode 0 is in the acoustic range.

The transition probability for the process Xp, ~~¹,i—1, 1gp~Ep+1, or for the reverse process, is
appreciable only in the neighborhood of the surface S~
in q»-space where the energy conservation condition

A&op+ to&»i = popo (3)

is satisled. The transition probability associated with

qpqiqo(¹& ~ —¹&i)dSi[ as&»/aqi
~

~ (8)

If any of the q's are too large for (2a) and (2b) to
apply, as for Umklapp collisions, only the proportion-
ality to these g's is altered in (8). Consider now the
contribution of the last two W's in (7). For these
transitions the modes 1 and 2 must have lower fre-
quencies than mode 0, so the area of S& is of order qp'

as qp—4. The expression analogous to (8) contains
¹&o&+¹"i+1,a quantity of the order qp ', in place of
¹&o&—¹&o&.As the last factor in (8) is finite as qo~,
the total contribution to (6) from the last two W's in

(7) is O(qp4). Thus 1/r(qo) will be O(qp') as q«-»0 if
integration of (8) on dSi gives 0(qo') or smaller, while
the value obtained from (8) will predominate if it is
larger than O(qp'). Thus the problem of determining
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the asymptotic dependence of r(qp) on qp is reduced
to the problem of evaluating the integral of (8).

In the next two sections we shall determine the
behavior of the integral of (8) by determining the form
of the energy conservation surface S» and the magnitude
of the normal derivative of Ace on it. However, one or
two scaling laws for r(qp) can be derived without any
detailed information on these topics. Consider a range
of temperatures low enough so that all the phonons
which take appreciable part in the scattering of phonons
of type qQ are in the acoustic range. In this range let
us compare the relaxation time of qQ at temperature T
and that of ) qQ at temperature )T. Since all phonons
are in the acoustic range, the conservation surface S»
for XqQ divers only by a scale factor X from that for qQ.

Therefore the dSi in (4) is ~X'. Since E"'(Xq,P,T) is
the same as E&'&(q, T),

~

U~' ~ XP, and as the last factor
in (4) is independent of scale, every W in (7) is ~X'.
Thus in the low temperature range

r(Xq,XT) ~X '.

Finally, we may note that for fixed q's (8) and its
counterpart for the last two W's in (7) contain T only
through a term linear in the X~')'s. Therefore in the
limit of high temperatures, where all modes are highly
excited,

(10)

provided, of course, that higher order processes such as
four-phonon collisions are still negligible compared with

three-phonon collisions.

II. THE ENERGY CONSERVATION CONDITION

%e are interested in the form of the surface S» in

qi-space on which the energy conservation Eq. (3) and
the wave vector conservation Eq. (1) are simultane-

ously satisfied, for a given qQ, coQ. Moreover, our main
interest is in very small values of qQ. Consider the two
surfaces &o(q) =err and cp(q) =a&,+Mp in q-space. Let the
second of these be displaced rigidly by the vector —

qQ,

as shown in Fig. 1. The line of intersection (if any) of
this displaced surface with the first surface is then a
line in q»-space on which the two conservation condi-
tions (1), (3) are fulfilled, and as a&i varies this line

generates the desired surface 5». It is clear from the
examples of Fig. 1 that as gQ

—+0 intersections will

always occur in the neighborhoods of points such as
P, Q, where the frequencies of two branches coincide,
but may or may not occur in 'places far removed from
such points. We shall use the term point of degeneracy
-to designate any such point q where two or more modes
of wave vector q have the same frequency. Degeneracies
at certain points of q-space or along certain lines or
planes are often necessitated by crystal symmetry. ""
Degeneracies .may also occur accidentally, " although

MBouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
.(1936).

» C. Herring, Phys. Rev. 52, 361 (1937).
is C. Herring, Phys. Rev. 52, 363 (1937).

this is not likely to occur for crystals of high symmetry
at points of the acoustic branch close to the origin, the
region of major interest to us. We have to examine the
possibility of satisfying the conservation conditions as
qQ +0 for fixed direction of qQ, for the following cases:

(i) At points R of the pii surf-ace notin the neighborhood

of any point of degeneracy, when at every such point R
the component of group velocity in the direction of qp is
less than the phase velocity of the mode 0. This is the
case for points such as R in Fig. 1(a). For such points
the diferent branches of the co»-surface have a finite
separation, so as qQ

—&0 no such point can be a point of
intersection of one branch of the co»-surface with a
diGerent branch of the displaced A&2-surface. But inter-
sections of a given branch of the former with the same
branch of the latter are also impossible for suSciently
small zQ, since when only a single branch is involved
(1) and (3) imply

qo a (q)/aq, +o(&o') =

and this must become impossible as qQ
—+0 if the compo-

nent of the group velocity cjpp(qi)/Bqi along qp is less
thall (o (qp)/gp. The latter condition will probably nearly
always be fulfilled when mode 0 is a longitudinal mode
(i.e., belongs to the highest frequency branch of the
acoustic spectrum) .

(ii) At points J not in the neighborhood of any point
of degeneracy, when for some sucls points J the component

of group velocity in the dv'rection of qp is greater than the

phase velocity of mode 0. Here again intersections of
diGerent branches are ruled out, but intersections
involving only one branch will occur, since as qQ

—4
Eq. (11)will always be satisfied somewhere. An example
is shown at J in Fig. 1(b). For the present case the
intersection line will approach a limiting position on the
co»-surface as qQ~0, and so the area of those parts of
the conservation surface S» which lie outside the
neighborhoods of contact points will approach a finite
limit.

It is easy to show that this case must occur for small
(but not infinitesimal) values of a&i, whenever the mode

qQ belongs to one of the transverse branches, i.e., does
not belong to the highest frequency branch. For when
co» is small enough to be practically uninfluenced by
dispersion, the construction of Fig. I amounts to finding
the intersection of the ~»-surface with the surface
formed from this by a linear projection of each point
away from that point I" of the co»-surface which has
u», q»~coQ, qQ. Such a linear projection is illustrated in
Fig. 1(c), which, however, is drawn for a longitudinal
mode and a rather large ratio qp/gi, instead of the
case we wish to consider now. As gQ

—+0, such an inter-
section will always occur in the neighborhood of any
point where the co»-surface is tangent to a line through
F. Such a tangency will always occur unless (as in the
case shown) F lies on the innermost branch of the
co»-surface, i.e., unless the mode qQ is longitudinal.

(Although it is legitimate to make a construction
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FIG. 1. Construction of the conservation surface SI for small q0,
for typical cases: (a) mode 0 a longitudinal mode, large g&,

.
(b) mode 0 a transverse mode, large I&, (c) mode 0 a longitudinal
mode, q~ comparable with g0. In each case the full curve is a
cross section of the surface co=coI, origin at OI, the dashed curve
is ~~=~I+coo, origin at the point 02 which is displaced from OI
by —qp. Note that when, as in (c), arL is small enough so that
dispersion is negligible, the cup-surface (dashed curve) is tangent
to the caq-surface (full curve) in the direction qp, and is in fact
obtained from the latter by a uniform projection of all points
away from this point of tangency Ii, i.e., by moving each point
outward along the line joining it to Ii so as to increase its distance
from P in the ratio (cod+cop)/pu.

like that described, based on the conception of a point
of tangency P, it should be noted that there will

normally be a tiny separation of the two frequency
surfaces in the region of their near-tangency, because
of dispersion in the velocity of sound. This makes it
unnecessary to consider collisions with qt=F.)

(iii) At points in the neighborhood of a point of
degeneracy Q, or of a lime or plane of degeneracy, tohere

for all directions of approaching Q the frequency separa
tions of the branches tohich come together at Q are all of
the first order im the distance from the degeneracy point,
lime, or plane. For this case, illustrated in Fig. 1(a) and

(b), the ppt-surface and the displaced cps-surface will

always intersect in the neighborhood of Q, regardless
of group velocity considerations. Except in the vanish-

ingly improbable case where the intersection occurs
exactly at Q, the points of intersection will occur at
distances from Q which are O(qp) as qpLO.

If Q ranges over such a degeneracy line, therefore,
this part of S& will be a thin cylinder about this line,
and the contribution to the area of St will be O(qp).

Although line degeneracies are the most important

type in the present category (iii), degeneracy at all
points of a boundary plane of the Brillouin zone is
possible for crystals of certain space groups, "and will

be important for the relaxation times oE low-energy
longitudinal modes in these cases. The crystals for
which this will occur are those with a boundary plane
of the Brillouin zone normal to a twofold screw axis.
The part of the conservation surface S~ neighboring
such a plane has an area which obviously approaches a
Rnite limit as go~.

As we shall see in the next section, the contributions
from isolated degenerate points Q are usually unim-

portant when, as we are assuming under the present
heading (iii), the frequency separations of the branches
are of the 6rst order in the distance from Q. The
principal case where such a point may be important is
that of a crystal of such low symmetry that no de-
generacies occur except at .q=co=o. For this contact
point g» and q2 are both of the same order as qo. Whether
the point is at q=0 or not, the contribution to Sr
from such a point will be O(qp').

(iv) At points P in the neighborhood of a point or line
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of degerteracy, where for all directions of approachilg I'
the frequency separutioN of some poir of brartches is of
the secold order iN the distance from P. This case is also
illustrated in Fig. 1(a) and (b), and again it is obvious
that the A&1-surface and the displaced co2-surface will
always intersect in the neighborhood of I'. However,
the distances of the points of intersection from I' will
now be of order qo: instead of qo.

If I' ranges over a degeneracy line, therefore, the
contribution to the area of Si will be O(qpi).

If I' is an isolated point of degeneracy of the type
specified, e.g., the point q=p in the optical branch of a
crystal of high symmetry, the contribution to the area
of Si will be O(qs).

Degeneracies of the present type (iv) do not occur
over a plane surface in g-space.

We have not enumerated any cases where the varia-
tion of energy separation with distance from the
degeneracy point or line is linear in some directions,
quadratic in others. Such a phenomenon can only occur
for degeneracy lines or points on the boundary of the
Brillouin zone; the influence of these is usually dwarfed
by that of interior contact lines at low temperatures.

III. ASYMPTOTIC BEHAVIOR OP THE
RELAXATIOH TIME

Each of the conservation regions enumerated in the
preceding section gives a contribution to the reciprocal
relaxation time of the mode go which is proportional to
the corresponding contribution to the area AS1 of the
conservation surface S1, but which also involves other
factors dependent on qo. It was shown in Sec. I that
1/r(qe) is proportional to the sum of the integral of
(8) and a term of order qs'. As qs-+0 for a fixed direction
the factor (1Vi& i —Esi i) in (8) is O(qs), provided oii
and or& remain 6nite, as they will in all cases except
that of Fig. 1(c). When this proviso is fulfilled, the
integral of (8) over a given part of the Si-surface gives

contrib. to 1/r(qs) ~ qsshSt~ Brio/Bqi„~ ', (12)

provided the factor implied by the proportionality sign
in expressions such as (2) for the matrix element
remains finite as q0~0.

The assumption of 6niteness of the matrix element
needs to be examined group-theoretically, of course,
since the commonest cause of degeneracy is the occur-
rence of symmetry operations in the space group of
the crystal, and it is conceivable that this same sym-
metry property may cause the matrix element in
question to vanish. The necessary examination is carried
out in Appendix A and summarized in Table III there.
The result is that, at least for degeneracies on interior
lines and boundary planes of the Brillouin zone, sym-
metry never requires the matrix element to approach
zero as q~0, except for certain special directions and
polarizations of the mode qo. For crystals of the cubic
system no mode po is "special" in this sense with
respect to all members of an equivalent set of lines of

Type of phonon
collision

Behavior of
Illustration 1/v (qo} for

in Fig. 1 most modes Remarks

(n)
(iii) plane
(iv) line

2+~0, 1,
gl»go

"
(iv) point
(iii) line

.(iii) point

0~~1, 2

J in (b)
Q in (a)
P in (a)

P in (a)
gin (a)

Q in (a)

G in (c)

gp

gp

gp

q
5/2

gp

gp

gp

gp

Valid for any T
High T only
Vahd for any T

if interior line
High T only
Valid for any T

if interior line
Valid for any T

Valid for any T

Valid for any T

Except for cubic crystals, there will usually exist special combinations
of direction and polarization with longer relaxation times (higher expo-
nents) than shown in the second to fifth rows.

degeneracy, i.e., with respect to all three (100) type
axes in qi-space, or with respect to all four (111) type
axes.

The only thing remaining to be done, therefore, in
order to evaluate (11) for each of the cases enumerated
in the preceding section, is to determine the behavior
of j Bhoi/Bqi„~ for each case. For all the cases enumer-
ated under (iii) and (iv), the &a(qs+qi) and o~(qi) in
(5) refer to different branches. Therefore in cases of
type (iii) the derivatives of these two frequencies with
respect to q1 will approach entirely diferent limits as
qs~p, so that

~
Bhoi/Bqi„~ remains bounded. In cases of

type (iv) the latter quantity is O(qsl). In case (ii) the
frequencies oi(qs+qi) and id(q&) refer to the same
branch, so we have on differentiating (5)

BAG)/Bqi~= qp' B (oi/BqiBqi~+O(qp ). (13)

Since the second derivative in (13) in general divers
from zero almost everywhere, we may conclude that
for points of type (ii) ( Bha&/Bqi„( will be 0 (qs) as qs~0.

Inserting into (12) these results and the forms
deduced in the preceding section for ASI, we arrive at
the exponents shown in Table I for the contributions
to 1/r(qs) from the different possible parts of the
conservation surface. Also included in the table, on the
last line, is the contribution arising from the last two
W's of (7). The rows have been arranged in order of
increasing powers of go. Thus the asymptotic behavior
of 1/r(qp) will be determined by the first of these
contributions which is present for the given crystal and
the given direction and polarization of the mode qo.
The entries are valid at any temperature for which
higher-order collisions are negligible, subject only to
the possible freezing-out of some of the processes at
low temperature, as noted in the last column.

It is now a straightforward matter to compute, for
any space group, which of the rows of Table I are
required by crystal symmetry to be present. Such a
calculation will give an upper limit to the exponent of
qs in the asymptotic behavior of 1/r(qs). We can of
course not predict with certainty that this upper limit

TAM, E I. Contributions to the asymptotic behavior
oi 1/~(qo) as q,~o.
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will be realized for any given crystal, unless we know
the complete elastic spectrum of this crystal, for two
reasons: one has to do with the group velocity in-
equalities involved in deciding whether case (ii) applies;
the other is that accidental degeneracy may cause a
higher row to apply than symmetry degeneracy. How-
ever, it is likely that the upper limit to the exponent
will be realized for longitudinal modes (i.e., modes of
the highest frequency branch) in many cases. For
transverse modes, or course, the argument given under
(ii) of the preceding section shows that the first line of
Table I always applies.

It would of course be very laborious to construct a
table giving the group-theoretical upper limit to the
exponent for each of the 230 space groups. However,
if we consider only the contributions to 1/r(qs) which
arise from acoustic modes q1 inside the Brillouin zone,
as distinguished from modes on the boundary and
modes belonging to optical branches, the prob1em
simpli6es greatly, since one need consider only lines of
degeneracy lying inside the Brillouin zone. The enumer-
ation of these line degeneracies and the decision as to
whether case (iii) or case (iv) applies can be made from
a knowledge merely of the point group of the crystal.
The procedure for a given point group G is as follows. "
Determine those subgroups of G whose unit represen-
tations are contained in the polar vector representation
of G once and once only. '4 Each such subgroup G' will
be the "group of the wave vector"" for a line of
points q; in q-space, i.e., G' will comprise those oper-
ations which take a mode of wave vector q; into the
same or another mode of the same wave vector. SeIect
those representations of the various G' which are
contained in the polar vector representation of G and
which are two-dimensional (higher dimensionalities
will not occur) or which, though one-dimensional, are
required by the time-reversal symmetry of the problem"
to coincide in frequency with another one-dimensional
representation. These will be the representations to
which the various line degeneracies belong. Coincidence
in frequency of two modes belonging to one-dimensional
representations of a G' will occur only for the cases
listed in Table II of reference 11.For each such repre-
sentation or pair of representations of a G', determine
whether a vector operator with the transformation
properties of a vector normal to q; can split the de-
generacy in first order. If it can, the frequency sepa-
ration in the neighborhood of the line will be linear in
the distance from the line, so that case (iii) will apply. "
If it cannot, the frequency separation will be quadratic
and case (iv) will apply.

Table II summarizes in the next to the last column
the results obtained for the various point groups by
the procedure just outlined. However, these results

"For a fuller exposition of the theory underlying this procedure
see references 10, 11, and 12.

'4 For tables of characters of the point groups see E. Wigner,
Nachr. Akad. Wiss. Gottingen, Math-physik. Kl. , p. 133 (1930).

TABLE II. Asymptotic values of the exponent o in 1/r(qo) ~ qo',
for longitudinal acoustic modes in various crystal classes.

System
6& for lines

Class of degeneracy

Type of
frequency
variation
near line,

for
acoustic
branch

Dominant
value of a
for most
directions

With-
With out,
disper- disper-

sion& sionb

Cubic

Hexagonal

Trigonal

Tetragonal

Orthorhombic,
monoclinic,
and triclinic

Oa
0
Ta
T
D6a
D6
C6.
Csa
C6
D3a
Caa

D3
C3.
C3;
Ce
D4a
D4
C4,
C4a
C4
Vg
S4

C4., Cac
no degen.
C2u, ' C3v
C3.
no degen.
C6~
no degen.
C6
C c

no degen.
C3,
no degen.
C3,
no degen.
Cs,
C c

no degen.
C4,
no degen.
C4,
C4'
no degen.
C2v'
C,c
no degen.

lines

lines

lines

lines

lines

lines

lines

lines

lines

lines

(iv) (iii)

(iv) (ili)
(iii)

(iv)
(iv)

(iv)

(iv)
(iv)

(iv)
(iv)

2 2
4 2
2 2
3 2
4 2
2 2
4 2
2 2
2 2
4 2
3 3
4 3
3 3
4 3
3 3
3 3
4 3
2 2
4 2
2 2
2 24. 2
2 2
2 2
4 3or4

must be used with caution, as they may be quite
misleading in a certain class of cases. For example,
consider the scattering of a low-frequency longitudinal
mode qs by modes qi in the neighborhood of the line
q„=q,=o in the Brillouin zone of a cubic crystal. If
the crystal is of class 0&, the transverse modes are
degenerate all along this line, and there will be a
scattering contribution from a surface in q&-space
closely surrounding this line. If the crystal is of class 0,
on the other hand, the procedure outlined above pre-
dicts no degeneracy along this line, hence no contri-
bution to the scattering, if qo is small enough. But in
the acoustic approximation, i.e., with neglect of the
dispersion of the sound waves, the frequencies along
this line are given by a secular equation involving the

a Tabulated a is lim t
-d lnr(q, T)/d 1ngj.

q-sO
b Tabulated e is lim lim t —d inv (Xq,XT)/d ln() q) j.

g~O) ~0
e Cases where two one-dimensional representations of Gs are required by

time-reversal symmetry to have the same frequency.

Except for the cubic classes and for the cases where @=4,
there will usually be special combinations of direction and polari-
zation of the mode go with longer relaxation times (higher o than
those shown). However, u will never exceed 4.

For any direction of qo which is not "special" in the sense men-
tioned above, an entry 2 in the table will be the true value of a,
rather than merely an upper limit, except when the group velocity
condition (ii) of Sec. II is fulfilled. Similarly an entry 3 will be
the true value when (ii) does not apply and when the temperature
is sufBciently low. For an entry 4 to be the true value, it su%ces
that these two conditions be satished and that there be no acci-
dental degeneracy.



CON VERS HE RR I NG

eIastic constants c»», c»2, and c44 in just the same way
as for class O~, and so in this approximation there is
degeneracy on this line. The truth is, therefore, that the
frequencies of the two transverse modes going with a
q»- in the x direction are always diferent, but that as
q»
—&0 their difference becomes a smaller and smaller

fraction of the frequency of either. If the temperature
is low, the modes q» which are most important in the
scattering of qo will be modes which come very close to
being degenerate aIong the coordinate axes, and for
any given ratio of 5~0 to AT the scattering processes
will become, as T—&0, qualitatively the same as for
class O~. Thus to assess the significance of the entries
in the next to the last column of Table II one should
have, for comparison, values of the exponent computed
with neglect of dispersion. These can easily be obtained,
by analyzing the consequences of crystal symmetry for
the solution of the 3)&3 secular equation for acoustic
waves without dispersion. The results are given in the
last column of Table II.

At temperatures suKciently low for (9) to apply,
the temperature variation of 1/r(qp) is given by

1/r(qp) ~qp T' (14)

where a is the exponent given in Table II.
Finally, a word or two should be said about how

small qo must be in order for the asymptotic behavior of
Table II to be approximately realized. Consider, for
example, the intersections near the points P and Q in
Fig. 1(a). For the conditions shown, the linear behavior
of pp& near Q is approximately valid out to the inter-
section, but the quadratic behavior near I' has become
more nearly a linear one before the intersection has
occurred. Thus the contribution to 1/r(qp) from the
neighborhood of I' already departs considerably from
the asymptotic behavior. The departure is less pro-
nounced at the point diametrically opposite I'. Still,
it is clear that for these two types of points the contri-
bution to 1/r(qp) from any given pp&-surface will not
have the asymptotic form until coo is a small fraction
of co».

A sample plot of the type of Fig. 1 was made for the
low energy acoustic spectrum of germanium, using the
known elastic constants. " A study of this suggested
that the contribution from a given scattering phonon
frequency co~ to the 1/r(qp) of a longitudinal mode
should be fairly well proportional to qo' for ~o&0.05co»,
but not at all for coo=0.10or». Now because of the way
the various factors in (8} depend on q~ or cp~, the
phonons which contribute most to the scattering at
low temperatures are those with energies k~» rather
larger than AT. For suKciently small qo, the median
Kv, of all the contributions to 1/r(qp) can in fact be
shown to be close to 3AT for a crystal of the type giving
1/r(qp) ~ qp' at low T. For such a crystal, therefore,
we might expect the asymptotic behavior to be approxi-

'53ond, Mason, McSkimin, Olsen, and Teal, Phys. Rev. 78,
176 (1950l.

mated for longitudinal modes with Lro below something
1ike 0.15AT.

For a crystal giving 1/r(qp) ppgpp, with an over-all
degree of elastic anisotropy similar to that found for
germanium, one might expect asymptotic behavior to
be approximated out to a slightly larger value of cop/Mg

than that mentioned in the preceding paragraph. On
the other hand„ the median co» would be lower. So the
critical k~p/kT for asymptotic behavior might well be
about the same.

For crystals which give 1/r(qp) ~ gp' the asymptotic
behavior should be realized when qo is sma11 enough so
that the conservation condition can onIy be satisfied
by modes q» with frequencies in the equipartition
range. The limiting qo for this will depend on the
minimum separation in sound velocity between the
transverse branches. If this separati. on is of the order
of 10 percent, for example, absence of an energy-
conserving collision in Fig. 1(c) requires that the radii
of the dashed curves, measured from F, be no more
than, say, 7 percent greater than those of the corre-
sponding full curves, so that happ/u»&0. 07. If this is to
hold for values of kco» as small as —,'AT or less, we must
have, as the condition for asymptotic behavior to be
realized, something like Lro &0.03AT.

For longitudinal modes qo of an elastically isotropic
continuum, only the last two lines of Table I apply;
this is the result of Landau and Rumer, ' Pomeranchuk, '
and Herpin. 4 It is interesting to consider the behavior
of r(qp) with decreasing gp for longitudinal waves in a
crystal which is almost elastically isotropic, but not
quite. For such a crystal, at low T, r(qp) will behave
as for an isotropic body until qo gets small enough for
intersections of types (iii) or (iv) to occur. The critical
qo below which such intersections will occur will be
one for which ~0 is of the order of the frequency diGer-
ence between th, e two transverse branches, for the
modes most important in scattering. Thus this critical
go will become smaller and smaller the more nearly the
crystal approximates elastic isotropy. When go &( this
critical value, the relaxation time will usually be
determined by one of the upper rows of Table I.

IV. THERMAL CONDUCTION AT LOW
TEMPERATURES

We wish now to see if the 1ong relaxation times which
the theory predicts for longitudinal acoustic phonons of
long wavelength can have a significant effect on the
thermal conductivity. To this end we shall use the
standard formula' for the thermal conductivity, which
is based on the assumption that the recovery of the
phonons from the perturbing inQuence of the tempera-
ture gradient is describable by a relaxation time r(q).
According to this formula each mode of a unit volume
of the crystal contributes an amount e„v„7.C, to the
thermal conductivity tensor p„„, where v(q) is the
group velocity of the mode q and C, is its heat capacity,
We shall first undertake to show that for the calculation
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of the contribution of the modes of very low frequency
it is indeed legitimate to use this formula, with r(q)
interpreted as the relaxation time of a single mode,
defined by (6). Then we shall derive expressions for
the contribution of these low frequency modes to the
conductivity. These expressions will depend on the
size of the specimen, since as q~0 phonon-phonon
scattering will eventually become less important in
determining r(q) than scattering from the boundaries
of the specimen. The result will therefore be a predicted
dependence of thermal conductivity on size, valid at
temperatures where the great majority of the phonons
are limited by phonon-phonon scattering and only the
lowest frequency longitudinal modes are dominated by
boundary scattering. It will thus give information on
how the size effect diminishes as the temperature is
raised from the range where all modes are dominated
by boundary scattering" to the range where boundary
scattering is completely negligible.

We have first, then, to justify the use of the relaxation
times of single modes, i.e., of (6) combined with bound-

ary scattering, to calculate the contribution of low

frequency modes to the thermal conductivity. This
procedure could fail if, and only if, the rate of random-
ization of the energy flux associated with, a particular
mode in thermal conduction were significantly diferent
from what it would be if all the other modes were in

equilibrium. These two rates of randomization may
dier considerably for modes of thermal energy and
above, but for the low-energy longitudinal modes they
cannot differ very much under most circumstances.
The reason is that in a thermal gradient the latter
modes, because of their long relaxation times, are much
more "off balance" than the modes with which they
have most of their collisions. "An exception may occur
at very low temperatures, when the Umklapp collisions
which the phonons require in order to get rid of their
heat current may become rare enough to give a relaxa-
tion time comparable with the r(qs)'s we have been
discussing. Also, at lowest temperatures all modes
become limited by boundary scattering, so all have the
same unbalance. In this condition (6) will not correctly
describe the phonon-phonon scattering rate, but this
will not matter much because boundary scattering
predominates.

Having accepted the use of (6), let us consider
explicitly the contribution of the low-frequ'ency longi-
tudinal modes to the thermal conductivity ~ in a given
direction x, i.e., to gu, srCs For the low-en. ergy modes
of interest to us, C, is very close to the Boltzmann
constant k, so if c is an average longitudinal sound

velocity we can write

~=constant+ (c'k/8n') 7 (q) q'dq cos't)dQ, (15)

"H. B. G. Casimir, Physica 5, 495 (1938); Berman, Simon,
and Ziman, Proc. Roy. Soc. (London) 220, 171 (1953).

"See also reference 6, p. 115.

where 0 is the angle between the group velocity of mode

q and the direction in which I(: is measured and where
the integration is over longitudinal modes with q's in
some neighborhood of the origin. Variations in the
dimensions or crystal grain size of the specimen, and
sometimes also variations in its dislocation content,
can affect the value of the integral in (15). However,
in the case of interest to us these factors will have
much less effect on the contributions from modes with
shorter v's, and so we have lumped these together in
the "constant" term. This will clearly be justified if
r(q) increases suKciently rapidly with decreasing q;
a simple calculation, which need not be given in-detail,
shows that the size-dependence of the integral in (15)
outweighs that of the "constant, " in the limit of large
specimens or high temperatures, whenever r(q) cr q

'
with a) 3/2. This is fulfilled for all the cases listed in
Table II.

For a crystal sufficiently free of dislocations, then,
we can calculate the size-dependence of the conduc-
tivity, in the range of sizes and temperatures where
this dependence is very small, by evaluating the integral
in (15) with a r(q) which follows one of the laws given
in Table II until cr(q) becomes comparable with the
diameter I. of the crystal, and which for smaller q
departs from its behavior in an infinite crystal and
approaches a constant limit rb=L/c. The usual pro-
cedure in cases of this sort is to assume 7- ' to be
compounded additively out of rs ' and the phonon-
phonon scattering probability, i.e., the value A q given

by Table II. This procedure is correct if the boundary
scattering can be regarded as occurring uniformly
throughout the volume of the specimen, a condition
which might be approximated in a polycrystalline
specimen with only a small acoustic mismatch from
one grain to the next. For a single crystal specimen,
however, the boundary scattering occurs nowhere

except at the edges of the specimen, and to make an
accurate calculation it is necessary to take account
of the distribution of the energy Rux over the cross
section of the specimen. ' This refinement amounts to
using in the usual theory a r& which varies with q; the
e6ective 7b turns out to be twice as large for large q as
for small, "large" and "small" referring to whether the
phonon-phonon r(q) is « or )) rb However, .we shall

not attempt to introduce this rehnement here, as it
does not modify the computed conductivity contribu-
tions in any major way. In fact, for an order-of-magni-
tude calculation it is accurate enough simply to assume
r= (A,q ) ' when this quantity is &r&, and =0 when
it is )rs Equations (16.) to (18), which have been
computed in Appendix 8 using the assumption of
additivity of reciprocal relaxation times, can in fact be
obtained from this simpler assumption, to within a
small error in each numerical coeKcient. If angular
brackets are used to denote averages over solid angle,
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these equations are

c'k cos'0
~=constant-

4x 7t,&A2:
(o= 2) (16)

c~k cos~0 ln7.g

s =constant+ —,(a= 3)
6x' Ag

(17)

2'c k cos 07'~
~ =constant+ — ——,(a=4) . (18)

8m. A4'

A ticklish question has to do with whether the
neighborhoods of the "special directions" of q(), for
which the entries in Tables I and II are invalid, can
contribute signihcantly to the conductivity. If there
are only isolated directions which are "special, " we

may assume that near any such direction the matrix
element in (2) is of the first order in the angle P between

qe and this direction. Then the A, of (16) or (17) will

be of order P, and the average over directions will in

general diverge. Divergence of this calculation of course
merely means that one should have used a higher value
of a than that given in Table II, probably usually 4.
The situation is even worse when there is a plane or
cone of special directions. However, if the direction in
which I(, is measured is perpendicular to the group
velocity of all the special modes, the cos'0 factor in
(16) or (17) will be of order P, and the average over
directions will converge. Thus we may conclude that
use of (16) to (18) with the a values of Table II is

often, perhaps usually, not legitimate for noncubic
crystals when Table II gives a&4, except when the
axis of measurement is perpendicular to the special
directions of group velocity. The latter condition may
frequently be fulhlled for a direction of measurement
normal to the axis of a uniaxial crystal.

Equations (16) to (18) are of course only valid at
temperatures suKciently high so that boundary scat-
tering is negligible for all modes except the low-fre-

quency longitudinal ones. At temperatures low enough
for all modes to be dominated by boundary scattering
the theory of Casimir" must be used.

It remains to make some rough quantitative esti-
mates of the values to be expected for the coefBcients
A, occurring in Eqs. (16) to (18), and hence of the
magnitudes of the size-dependent terms in the con-
ductivity. Reasonably reliable estimates of A.2 can be
made for semiconducting crystals for which the phonon
eGect on the thermoelectric power ' has been measured.
For example, from a comparison of theory' and obser-
vation for germanium one can deduce A~=3)(10—'
cm' sec ' at 80'K, and proportional, of course, to T'
at other temperatures. The uncertainty in this value
arises from uncertainties in the nature of the processes

by which phonons scatter the charge carriers; it is

such that the value quoted might be in error by a
factor two. Insertion of this into (16) gives, with the

known conductivity'

~=s„(1—0.017L—
&)

at 80', where ~ =2.7 watts/cm deg is the conductivity
of an in6nite specimen, and I.=c7-& is the boundary
scattering length in millimeters, roughly equal to the
diameter of the specimen if the latter is a single crystal,
or to a few times the grain diameter, if a polycrystal.
The coeKcient 0.017 in (19) varies roughly as T ',
since in this region rc goes about as T ".However, it
would not be safe to extrapolate this coeiYicient to say
20' by this law, since a simple calculation shows that
below about 50' the values of g for which the asymptotic
expression for r(q) is of the order of r& fail to satisfy
the inequality IEcq&0.15kT derived in the preceding
section as necessary if the asymptotic expression for
r(q) is to be trusted. If the behavior of germanium is
at all typical, we may conclude that for crystals with
a=2, very accurate measurements mould be required
to establish the I. & dependence of the size-dependent
term in the temperature range where this exponent
can safely be predicted. At lower temperatures (but
still far above the range where Casimir's formula
applies) the size effect should be more easily detectable,
but less simply interpretable.

Similar conclusions can be drawn, with a little more
uncertainty, for crystals with a= 3. Such crystals might
be expected to behave as germanium would if scattering
of the low-energy longitudinal phonons by modes with

q& near a cube edge direction were suppressed. The
dominant modes for scattering would then be those
with q& near a cube diagonal direction. If the matrix
element for scattering by such modes is roughly the
same as for those with g~ near a cube edge direction,
the ratio of the A3 for the hypothetical case to A2 for
the actual case would be determined by the relative
areas of the conservation surfaces S~ for the two cases
and the relative values of the density of states. These
can be estimated from the known elastic spectrum.
The result is As=4X10 " cm' sec ' at 80', and of
course proportional to T' at other temperatures. From
this and (17) and the conductivity of germanium we

get, for the hypothetical substance,

Alr/Ir =0.021 ln (Lr/Ls) (20)

at 80'K, where AI(; is the difference in the conductivities
of two specimens with diameters (or grain sizes) L,
and Ls, respectively. The coefficient in (20) should be
roughly proportional to T ', but here again both this
proportionality and the logarithmic dependence would

probably break down below say 60 .
A rather larger e8ect will occur for a crystal with

a=4, if such exists. As an estimate of the probable
size of the A4 of such a crystal would be dificult to
make and doubtless very unreliable, we shall be content

"J.F. Go8, thesis, Purdue, 1953 (unpublished); T. H. Geballe
(unpublished).
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V. CONCLUDING REMARKS

%hat we have calculated in the preceding section is
only the high-temperature tail of the curve giving the
inhuence of specimen size L on conductivity as a
function of temperature. This curve, shown schemati-
cally in Fig. 2, approaches the Casimir limit La B~/BL
=1 as T—+0. Near this point the ordinate falls below
unity by an amount determined by the magnitude of
the Umklapp and impurity scattering of modes with
leo AT. This part of the curve can be described, at
least roughly, by the equations given by Klemens. ' At
high temperatures, on the other hand, the ordinate of
the curve is determined almost entirely by the behavior
of longitudinal modes with Rv((AT; it is calculable
from the equations of the preceding section. In the
intermediate region of temperatures the detailed be-
havior is harder to predict, but might be very roughly
estimated by interpolation between the two extremes.
To show more clearly the difference between these
extremes, let v~ be the relaxation time for boundary
scattering, v., a mean relaxation time, due to other
processes, for all modes of thermal energy, and C a
constant proportional to the. speci6c heat. Then the
procedure used by Klemens is roughly equivalent to
writing

C f rc't
if r,«rs. (22)

rg '+r, ' L rg)

The formula (16) of the preceding section, on the other
hand, gives, for a cubic crystal,

~-Cr, ! 1
l

a

P'~'Cr, rq'i)
(23)

where D is a constant. From these equations it is clear,

merely to set a rough upper limit to the size-dependent
term in (18). The latter formula is applicable only
when the maximum qp for the validity of the asymptotic
formula r ~ qo ', estimated in the preceding section as
about 0.03kT/Ac, is one for which r(qo)(7t, If. this
condition is not fu16lled, the dependence of x on ~~

will presumably be more gradual than that given in

(18).With rq= L/c we find, therefore, that in the range
where (18) is valid its size-dependent term h~ must
satisfy

A~(5&&10 '(kT/hc)'cLk. (21)

If L= 1 mm, 7=300'K, c=5X105 cm/sec, this is 0.17
watt/cm deg. Thus even for crystals with a=4 it is

likely that the divergence of the conductivity contri-
bution from low frequency longitudinal modes will have
only a small to moderate eGect on the conductivities of
specimens with diameters or grain sizes of the order of
a millimeter or less. For large single crystals, the
limitation (21) becomes unimportant, and an easily
measurable size eGect, with h~~ L&, is conceivable.
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FIG. 2. Schematic temperature-dependence of the sensitivity of
the effective thermal conductivity of a rod-like specimen to
changes in its diameter J..

for example, that increasing the amount of impurity
scattering decreases the ordinate of Fig. 2 at the
left-hand end, but increases the ordinate at the right-
hand end.

Although the high-temperature tail in Fig. 2 is not
of very great interest for its own sake, the theory
underlying it turns out' to be of considerable importance
for the understanding of the thermoelectric powers of
semiconductors at low temperatures. The interpretation
of data in this field is greatly simpli6ed if one can
safely assume that the relaxation times of the longi-
tudinal phonons which the charge carriers emit and
absorb are long compared with those of the correspond-
ing transverse phonons, and that the dependence of
these times on q and T is substantially the same as the
asymptotic form deduced in Sec. III. The range of
validity of these asymptotic forms might conceivably
be indicated by experimental studies of the size eBect
in thermal conduction at temperatures corresponding
to the right of Fig. 2. Moreover, such studies might
give rough values for the A coefficients occurring in

(16) to (18), which enter importantly into the thermo-
electric eGect.

I am indebted to Dr. B. Goodman for a number of
helpful comments, to Dr. T. H. Geballe for discussions
of experimental data, and to the staff of the Institute
for Advanced Study for their hospitality during the
year 1952-1953.

APPENDIX A. SYMMETRY RESTRICTIONS ON
THE MATRIX ELEMENTS OF U3

As q~0 in a Axed direction the strain tensor due to
the mode 0 approaches some limiting form ¹ &qpQp&„

times a sinusoidal function of long wavelength. The
strain amplitude tensor up depends only on the direction
of qp and on the branch of the acoustic spectrum to
which mode 0 belongs. The matrix elements (2) of the
anharmonic potential U3 become asymptotically matrix
elements of the change U'(No) in elastic energy due to a
homogeneous strain of the form Np. In this Appendix
we are interested in the behavior of the proportionality
constant in (2) at points of the conservation surface Si
in the neighborhood of a line or plane of degeneracy in
g~-space. As qp~0, a part of the conservation surface
will shrink down onto the line or plane of degeneracy.
Let us consider, for definiteness, the behavior of the



constant of proportionality in (2) at the sequence of
points in q&-space formed by the intersection of the
shrinking S~-surface with an arbitrarily chosen straight
line normal to the line or plane of degeneracy. For this
sequence of points the proportionality constant in (2)
is asymptotically proportional to

( LXQO 1 X2o=0[ U'(uo) (Lq~o ——0, N2Q ——1g(', (A1)

where the modes 10, 20 are the modes in the degeneracy
line or plane which are approached by 1 and 2, respec-
tively (q&==q&+qo). Thus, 10 and 20 have the same
wave vector q&p arid the same frequency, but are not
the same. The task of this Appendix will be to deter-
mine under what conditions symmetry considerations
require (A1) to vanish.

Since U' is linear in the components of. the sym-
metrical part of the strain tensor up, its transformation
properties under the operations of the space group of
the crystal will be those of a symmetrical second rank
tensor. It will thus consist of an invariant part, arising
from the dilatation of up, and a part transforming
according to the representation D2 of a spherical har-
monic with /=2. Of course, D2 is in general reducible
into a sum of representations 6; when considered as a
representation of a crystallographic point group. For
certain directions and polarizations of mode 0 the part
of U' going with one or more of these representations
5; may vanish. Now the initial and final states in (A1)
may or may not be orthogonal. If g& and q2 approach
q&p from the same direction, modes 10 and 20 will be
orthogonal and the initial and final states will be
orthogonal. In such case the part of U' transforming
according to the unit representation can make no
contribution to (A1). But if q~o lies on a line of sym-
metry near which the frequency separation of two
branches varies linearly with distance from the line in

any direction, the directions of q~ and q2 from g~p will
in general be different, and so it may happen that mode
10 represents the limiting mode of the lower branch as
gyp is approached from one direction, while mode 20
represents the limiting mode of the upper branch as g~p

is approached from a different direction. In such case
modes 10 and 20 need not be orthogonal, and the part
of U' belonging to the unit representation will in
general give a nonvanishing contribution to (A1).
Since the latter contribution is not related by any
symmetry operation to that of the D2 part of U', and
since it vanishes only for special choices of the direction
of gp and the orientation of the line along which tIy~gyp,
we may state the partial result: When the frequency
seParations of two branches vary linearly with distance in
any direction from a Line of degeneracy, symmetry does
not require the constant of proportionality in (Z) to vanish,
as qo +0, at a general poi—nt of the conservation surface
near this line, except possibly when qois paraLlel to the Line.

For cases where the initial and 6nal states in (A1)
are orthogonal, we may put for U its part transforming
as D2. When, as is usually the case, the modes 10 and

20 belong to the same irreducible representation A~p

of the group of the wave vector of a line of symmetry
on which q~p lies, the obvious thing to do first is to see
whether, for each 6; in D2, h, XD~p contains 2 ~p. This
will always happen for at least one of the 6;, since for
any direction of the line of symmetry there will always
be at least one oc the 6;which is the unit representation
h~ of the group of the wave vector. The part of U'

belonging to this unit representation can never give
any contribution to the off-diagonal matrix element
(A1), so we may restrict consideration to the other 6;.
If any of these 6;„~ has a cross product with A~p con-
taining h~p, the contribution of the corresponding part
U of U' to (A1) will be in general nonvanishing
unless either U, '=0 or the choice of basis 10, 20 in Ayp

is just that which diagonalizes U . If the modes 10, 20
vary with the direction from which the symmetry line
is approached, the latter condition can be satisfied
only for particular directions. The proviso of the last
sentence is always fulfilled when 6&p is a two-dimensional
representation on a line of degeneracy in the interior
of the Brillouin zone, since if 10 were the same from
all directions, it would be taken into a multiple of
itself by all operations of the group of the wave vector,
so 6]p would have to be one-dimensional. Therefore
we can state the result: Le/ D&p be a two-dimeesioeal
representation of the group of the wave vector" for a line

of symmetry inside the Brillouin zone, and let 6, be an
irreducible representation of this group, other than the

unit representation, contained in D2. Then if 6;&(Ago
contains Dyp symmetry does not require the constant of
proportionality in (Z) to vanish at a general point of the

conservation surface near this line, us q~
—+0, except when

the direction and polarization of the mode 0 are such as
to @sake U, '=—0.

Except for special directions and polarizations of the
mode 0, to which we shall return later, we have now
answered the question before us for interior lines of the
Brillouin zone on which there is a group-theoretical
degeneracy. However, even though we have chosen to
omit a general discussion of lines of symmetry lying in
the boundary of the Brillouin zone, there are two types
of cases still to be covered. These are interior lines and
boundary planes, respectively, on which the degeneracy
is due only to time-reversal symmetry. "Now interior
lines of this type —enumerated in Table II of reference
11—are all derivable from cases covered iri the itali-
cized statements above, by lowering of the symmetry
of the crystal. Therefore if the matrix of any U in
the subspace spanned by 10 and 20 does not have to
be a mere multiple of the unit matrix for the more
symmetrical case, it does not have to be so for the
present case either. It is easily shown, as before, that
as the symmetry line is approached from different
directions, the limiting form of mode 10 is not always
the same, and so we can extend the conclusions of the

'~ Dered in Sec. IlI, or more fully in reference 10.
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preceding paragraph to degeneracy lines of the present
type.

For boundary planes of degeneracy —those perpen-
dicular to a screw axis"—the situation is most con-
veniently appraised by considering the matrix of any
U in the subspace spanned by the four modes going
with a given frequency and having wave vectors qyo

and —qIO. In this subspace a real basis can be chosen,
and if 6 is the group of space group operations taking
this subspace into itself, the general form for the
matrix of any U; in this subspace can easily be written
down, this matrix vanishing if and only if 6;Xh&0 does
not contain d, ~o, all representations being now real
representations of 6. When the matrix of U' does not
vanish, we wish to know whether it is diagonalized
simultaneously with the matrix of the operator Ii which
determines the form and frequencies of the modes 1, 2,
at points just off the plane, in terms of the subspace
spanned by 10, 20. This F is an operator of zero wave
vector with the transformation properties of the compo-
nent of a polar vector normal to the plane. It is easily
proved that Ii and U' can be simultaneously diagonal
if and only if they belong to the same representation of
6, or if one of them (U') belongs to the unit represen-
tation. This type of argument can be extended to
provide an alternative proof of the results derived
above for symmetry lines.

Table III summarizes the conditions which the mode
0 must satisfy in order that the constant of proportion-
ality in (2) be required to vanish, as qb

—&0, everywhere

TABLE III. Conditions on the mode 0 under which symmetry
requires the constant of proportionality in (2) to approach zero
at a general point of the conservation surface near a boundary
plane or interior line of degeneracy. The Z axis is taken along the
symmetry line, or normal to the boundary plane. When there are
just two twofold axes normal to the Z axis, the X and I axes are
to be taken along these.

on the part of the conservation surface neighboring a
degeneracy line or plane of the type we have been
discussing. A straightforward application of the criteria
enunciated above shows that there is no case in which
vanishing is required for all modes 0, so the results are
given in the form of propert. ies which the special modes
0 must have in order that vanishing be required. When
the 6rst of the italicized criteria above is used, the
requirement is that qo be parallel to the line; this is
stated in the last column. When the second italicized
criterion. is used, the requirement is that the strain Qp

in the mode 0 be of one or more specihc forms; these
are listed in the next to the last column.

It is clear from inspection that no mode 0 can be
special with respect to all threefold axes in a cubic
crystal, or with respect to all fourfold axes. For uniaxial
crystals, on the other hand, a longitudinal mode with
q& parallel to the axis will always be special.

APPENDIX B. DERIVATION OF (16) TO (18)

We wish to evaluate

where
4p

r (rI)

g'deaf)

(81)

r(q) =orb '+A.q'j— (82)

BI
I
" q'dq

r)rb ' & b (1+rbA, q )'
(83)

and g' is a value of q small enough for the asymptotic
expression for the phonon-phonon scattering to be valid
for q(q', yet large enough so that increasing q' would
not appreciably change the dependence of I on ~&. If
a&3 the integral (81) does not converge as q' —+ao.
However,

Type of degeneracy

Boundary plane

Q10

Strain tensor type
for special modes
(second criterion)

C, or CI x'+y2 —2z'-, x'—y2, xy

Direction
of qo for
special
modes
(first

criterion)

converges if u& —,'. Now"

x'dx (3—a)n.

~ b (1+x')' a'
csc (83)

Interior line,
degeneracy due
to symmetry only

Interior line,
degeneracy due
to time-reversal
(conditions for
degeneracy listed
in reference 11)

Cs
C4
C3
C2~
C2

x2+y —2z', xz, yz
x +y —2z ) xz) yz
x'+y' —2z2

x +y —2z~~ xz~ yz
x +y —2z

~ xz~ yz
xb+yb —2z'
x +y —2z ) xz) yz
x2+y2 —2z', xz, yz

Inserting this in (83) and integrating on 7b ', we obtain
for large q',

r b P'r P1l'I constant ——— —csc—.
(3 a) (Arb) b~ a— a

(84)

Equations (16) to (18) are special cases of this.

~' D. Bierens de Haan, nouvelles tables d'integrales degas
(Royal Academy of Sciences, Amsterdam, 1867), Table 17, No. 18.


