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Quantum Effects in the Interaction between Electrons and High-Frequency Fields. I
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The passage of an electron through a cavity resonator is considered for the purpose of studying the appear-
ance of quantum mechanical eRects in an essentially classical experiment as the frequency of the electro-
magnetic field becomes high. Both the electron and the field must be represented, initially, by wave packets-
in space and momentum coordinates for the former, and in electric field and vector potential coordinates for
the latter —in order to correspond to classically meaningful systems. The velocity of the electron at the out-
put of the cavity is investigated. It is found that the expectation value of velocity has a quantum-mechanical
correction term. A more significant eRect, however, is the nonvanishing of the expectation value of the
square of the deviation from the expectation value (mean square deviation from the mean) of the velocity.
This deviation is a random phenomenon which will produce noise in an electron beam. An expression for the
mean square deviation, in which the results of electron and field quantization are separately apparent, is
derived, and its significance is discussed. An order-of-magnitude calculation is made for the ratio of minimum
possible mean square deviation of velocity to velocity increment due to the field, and the frequency for which
this ratio becomes unity is calculated for a particular set of conditions to be of the order of 3X10"/sec.

to describe a simple system does not ordinarily exist in
classical mechanics, where it is assumed that all
dynamical variables may be speci6ed exactly, so that
no guidance can be found in the classical treatment.

The only type of state which has any meaning in
classical mechanics is one for which there is a wave
packet of reasonably small width for every dynamical
variable, since the preparation of the system in a
classical experiment is such that, in principle, it must
be possible to measure all dynamical variables. States
which accurately describe systems in classical experi-
ments must, consequently, be such wave packets.
If, therefore, we are looking for quantum effects in an
essentially classical experiment, we must represent the
system by wave packets, both for the electron and the
field. It becomes apparent that the quantum effects
will be due to the necessarily finite widths of the
wave packets.

Since our. interest lies in those situations in which
quantum mechanical effects first begin to appear, and
are therefore small, we will retain only first order terms
describing these effects. Also, we will regard the inter-
action between the electron and the held as a small
perturbation. The analysis will be nonrelativistic.

I et the electric and magnetic fields of the cavity be
given, respectively, by

E= —4srcP, H= v&(A.

HE trend, in recent years, toward the generation
of higher and higher frequencies by means of

microwave generators, has brought about the following
questions: How high must the frequency be in order that
quantum mechanical effects become apparent, and
what will these effects be? Several authors' 4 have dis-
cussed these questions, but, as has been pointed out
elsewhere, 5 in a largely unsatisfactory manner. The
purpose of the present paper is to analyze a problem the
solution of which will help answer the broad questions
just raised. Additional pertinent problems will be
treated subsequently.

An essential aspect of many microwave generators
and amplifiers is the passage of an electron beam
through an oscillating cavity, resulting in a velocity
modulation of the beam. The beam is then examined
as it passes an analyzer, perhaps another cavity. The
effect on the analyzer depends on the velocity of the
electron after it has passed through the erst cavity.
YVe, therefore, consider the problem of an electron
passing through an oscillating cavity, and investigate
its velocity.

Due to the fact that in a quantum mechanical descrip-
tion of a system all dynamical variables cannot be
specified exactly, there is a large variety of physically
different ways in which to describe a system in quantum
mechanics, the proper choice depending on the prepara-
tion of the system. Thus, a moving particle may be
described by a plane wave or by one of a variety of
wave packets. Similarly, the state of the radiation
oscillators in the cavity can be described by m n f
one of many types of wave functions of t
potential or electric field coordinates. A pro
alogous to the one of selecting the proper wave

Then, in the usual way, ' we expand

A=+; q,u, (r), P=P; p,u, (r), (2)

' L. P. Smith, Phys. Rev. 69, 195 (1946).
s D. Gabor, Phil. Mag. 41, 1180 (1950).
3 C. Shulman, Phys. Rev. 82, 116 (1951).
4 J. C. Ward, Phys. Rev. 80, 119 (1950).
s I. R; Senitsky, Phys. Rev. 91, 1309 (1953); in

reference 7.

ea so
where the subscript j refers to the jth normal mode of

bi the cavity, u;(r) is a normalized function describing the
spatial dependence of the field, r and q and P are the

' See, for instance, L. I. Schiff, Quantum mechanics (McGraw-
Hill Book Company, Inc. , New York, 1949), Sec. 50.

~ The function, u,"(r), is a solution of the equation, vsu+ (co/c)'u
=0, subject to the conditions nXu=0 on the boundary of the
cavity, 1'~u~sd'r=1, and divu=0. The origin of the coordinate

particular, system lies outside of the cavity and is farther from it than the
initial width of the electron wave packet.
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coordinate and momentum operators of the radiation
oscillators, satisfying the commutation relationship
[q;,p, j=ilt, all other pairs commuting. We are looking
for an initial state of the field for which both the field
strength and energy are approximately specified. If the
field is left undisturbed, we want these quantities to
continue to be specified with the same degree of ap-
proximation. If, in addition, we require that the product
of the uncertainties in q and in p be a minimum, then
the main features of the state of the 6eld are essentially
determined, ' and we proceed to describe it.

In the p representation of the Schrodinger picture,
we specify the initial state of the field for the jth mode
by the wave function

(«' l —:

to, (p;,0)=I I
exp-

&'~;)

4zrc' t' zb, ,Ep

Ape, 4 4zrc

where Eo is a nonvanishing constant, and the sth mode
is the oscillating one. If the 6eld is not subjected to any
external inhuence, the absolute value of the wave
packet described by Eq. (3) remains unchanged for the
non-oscillating modes, and oscillates sinusodially about
the origin without change in shape with frequency
cd, /2zr and amplitude Ep/4zrc for the oscillating mode;
that is, it can be shown' that

(4c
I t"(p' t) I'=

I

-- —

I

Ea(p;)
4zrcz t' b,.Eo

)&exp —
I p~+

k~, E ac
2 -

si netdI . (4)

Since
I p, (p, ,t) I

is the probability of finding a given p
at time t, we see that the most probable electric field is
just the classical one, b& Epu&(r) i s&ntp, and the uncer-
tainty in magnitude of the 6eld is determined by the
Gaussian distribution of Eq. (4). In the Heisenberg
representation, the state of the oscillating mode of the
undisturbed 6eld is described by the vector of which the
nth component is given by

g„(e)= ]e~e—
M(zz I)

—f

where $=Ep'(gzrhrp, ) '. For the non-oscillating modes,
we have A„&"=b„o,jets. The probability of 6nding in
the cavity an energy ekco„not counting the zero point
energy, is given by I

A„&'
I
s. This is a Poisson distribu-

tion, with maximum and mean at zz=p=Ep'/Szrhrp, .
The only arbitrariness left is that which corresponds to the

choice of initial phase in the classical field; if we consider the
Schrodinger picture of a free field which meets the above require-
ments, then the state of the field at any instant of time can serve
as the initial state. A particular choice of initial time does not
reduce the generality of our problem, however, since the entrance
time of the electron wave packet is yet to be specified.' Equation (4) and the subsequent expressions for A„&N& may
be derived by methods similar to those used in the analysis of the
harmonic oscilla, tor, such as those found in reference 6, Sec. 14, for
example.

We see, thus, that the instantaneous field strength and
the energy are both approximately specified by their
classical values. This is the closest one can come to
a classically meaningful field. "

For the state of the electron, we want a wave packet
for which both position and momentum are approxi-
mately specified. Here, however, we cannot require that
the degree of approximation remain constant if the
electron is left undisturbed, for the width of a free
electron wave packet in coordinate space changes with
time. The best we can do is assume a wave packet
for which the product of the uncertainties in position
and in momentum is a minimum at the initial time
t=o and for which both uncertainties are reasonably
small. We take the initial state of the electron to be
described by the wave packet"

ta(r, 0)=b fzr ' exp( —r'/2b'+ibex),

where b and ko are constants related to the width of the
wave packet and its velocity, respectively. If the
electron is left undisturbed, the probability of finding
it at the point r at time t is given by"

) I'zt ~' —:
I v (r,t) Iz=b-'~-' I+I

L.mb')

—(r—vot)'-
Xexp (Sa)

b'+ (I'zt/mb)'

where vp is the vector (Akp /m, 00); and the probability
of finding the electron with a momentum p is inde-
pendent of the time and is given by

I p(p) I
=bb '~ l expL —(b/k)'(y —mvp)'j (6)

We note that both of these probabilities are Gaussian
distributions, each with a maximum at the respective
classical value.

The initial state for the entire system will now be
described by the wave function

p (r,p;,0) =
p (r,o)H, t, (p, ,o).

"In classical mechanics, the width of the wave packets is
initially —and continues to be—zero. The closest approach, there-
fore, of a quantum mechanical situation to the classical one is that
in which the wave packets referring to all the dynamical variables
have the least possible width. This will occur when the product
of the uncertainties in q and p is a minimum, which is the condi-
tion used. Moreover, such a situation will give the least possible
correction to the classical result, and from this point of view, too,
it may be considered closest to the classical situation. It is thus of
particular interest in indicating the fundamental quantum me-
chanical limitations to the classical phenomena.

"We have used a spherically symmetrical wave packet for
simplicity. The analysis can easily be generalized to the case
where the initial wave packet is specified by

(bgbzbp) 4. ' exp( —ge/2bP yz/2bez ss/2bpe+z7—rpg)—
Note that the wave packet is initially outside of the cavity.

"A. Sommerfeld, Wettenmeehanzk (Frederick Ungar Publishing
Company, New York, 1947), p. 166.
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By starting with the Hamiltonian,

H= nm '[p+(clc)Z~ nuP
+p;[2n c'pin+ (co '/8n. c') q 'j (7)

and assuming that the electron velocity is suKciently
small so that we can neglect the eGect of the magnetic
field on the electron as compared to that of the electric
6eld, the equations of motion in operator form in the
Heisenberg picture become

d'r(t)/dts = 4n-c (e/m) P; P;(t)u;(t),

where, by u(t) we mean u(r(t)). These, of course, are
formally similar to the classical equations of motion, in
view of Eqs. (1) and (2). From Eq. (8) we obtain for
the velocity at time t,

The exponential operators can be taken under the in-
tegral sign to operate on exp(ik r). Using the relation-
ship,

~A~B ~B~A~[A, B]~
—'([A, [A,B]]+[B,[A,B]]).. .

7

where the dots indicate exponentials of higher com-
mutators, we obtain

t itk'k q )itk p~
u;(t)= d'kU(k) exp] +ik r

) exp] (. (13)
i2m ) i m

We can now 6nd the expectation value of the velocity
(v). Bringing the expectation value operation under the
time integral in Eq. (9), we have

pt
(v(t))=(v(0))+4~c— dti E (pi(ti)u (ti)) (14)

v(t) =v(0)+4nc—
i

dti P p, (ti)u;(ti).
m "o

(9)

u;(r) =
) d'kU;(k) exp(ik r)

We can now use Eq. (9) to calculate the expectation
value of the velocity at time t. We can also use the same
equation to calculate the expectation value of the
square of the deviation from the expectation value
(mean square deviation) of the velocity at time t.
ln a purely classical consideration, this deviation would,
of course, vanish. The reason that it does not vanish in
a quantum mechanical calculation is that the wave
packets cannot have in6nitesimal width in both coordi-
nate and momentum spaces. This deviation, when
interpreted statistically, is a random phenomenon
analogous to a noise current, and we see that it is a
purely quantum mechanical eGect. We now proceed
to calculate both the expectation value and the mean
square deviation of the x component of velocity.

The Hamiltonian of Eq. (7) is a constant, so that
p;(t) and u;(t) can be obtained from the initial opera-
tors by the relationships

P,[tj=exp[(i/jt)Ht]P;(0) exp[—(1/k)Ht j, (10)

u;(t) =exp[(i/Pi)Ht ju;[r (0)7 exp[ —(i/It)Ht5 (11).
Since we are going to substitute from Eqs. (10) and

(11) into the perturbation term in Eq. (9), we can
approximate by neglecting the interaction term in the
exponents of Eqs. (10) and (11). The right sides of
these equations can then be evaluated without much
diKculty. Equation (10) becomes that for a freely
oscillating field, and p;(t) can be obtained directly from
the equations of motion for a free 6eld to be

p;(t) =p;(0) cosco;t—(&o;/4nc )q;(0) sin~d;t. (12)

The right side of Eq. (11)may be evaluated by express-
ing u;(r) in terms of its Fourier transform U;(k):

(p;(t) )= —b;, (Ep/4rc) since;t. (16)

This, as was to be expected, is just the classical time-
dependence of the field for the oscillating mode. "
The expectation value for the non-oscillating modes
vanishes, of course.

The expectation value of u;(t) can be evaluated in the
r representation. "Using Eqs. (13) and (5), we have

(;(t))=b—' —: I d' d'k

t
—r' )itk'k

Xexp] —ikey [U(k) exp] +ik r
[(2b' I (2m i

itk p ( r'—
Xexp exp~ +ikey ~. (17)

m I 2b~

If we express the function exp( —r'/2b'), on which
exp(itk p/m) operates, by means of its Fourier trans-
form,

exp( —r'/2b') =b'(2n. )
'* d'k 1

Xexp( —ktsb'/2) exp(iki r), (18)
"The expectation value of the field at a well-defined point, for

which we have (u(r)) =u(r), is just the classical iield Zou(r) sin&A.
'4 The calculation is in the Heisenberg picture. Although it is,

perhaps, simpler to calculate (u(t)) in the Schrodinger picture,
later calculations involving I will require use of the Heisenberg
picture, so that for uniformity we use it in the present case, too.

Since we have neglected the interaction term in the
Hamiltonian occurring in Eqs. (10) and (11), we can
write

(p (t) (t))=(p (t))( (t)) (15)

The expectation value of p;(t) on the right side of Eq.
(15) is that for a free field. It can be obtained imme-
diately in the p representation of the Schrodinger
picture by making use of Eq. (4). We obtain
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the result of the p operation may be written down im-
mediately, since exp(itk p/imp) now operates on eigen-
values of p. Integrating then with respect to r and
ki, we obtain

(u, (t))=
~

d'kU;(k) exp(ik. vpt) exp[ —O'P(t)$, (19)

where

detail. However, the dispersion in velocity, as measured
by the mean square deviation in velocity, is a much
more significant eGect, As far as the production of
velocity modulation of an electron beam is concerned,
the former eBect merely changes the signal amplitude
slightly, while the latter effect produces noise.

We therefore consider the expectation value of the
square of the deviation from (v(t)). Writing

P(t) = (f/2)P+ (ht/2mb)&.
v, (t) =v, (0)+»., (22)

It is to be noted that if the second exponential factor
under the integral sign were missing, (u, (t)) would be
equal to u, (vpt), the classical value. It is this factor
which accounts for the quantum mechanical eGect.
It is interesting to note that 28(t) is just the half-width
at time t of the free electron probability density, as
can be seen from Eq. (Sa). The 6rst term in 5'(t) is due
to the original width of the wave packet, and the second
term is due to the spreading of the wave packet. The
effect of this exponential on the integral is small if
U;(k) becomes small for those value of k' for which the
absolute value of the exponent is no longer small com-
pared to unity. We assume that the absolute value of
O'P(t) is small compared to unity for the range of k'
from which significant contributions to the integral
arise. Then

(u;(t))— d'kU;(k)[1 —O'P(t)$ exp(ik. r) ~r=vpi

=
~

d'kU;(k)[1+8(t)V'] exp(ik r)
~
r=vpi

where, from Eq. (9),

we have

([ .(t) —( *(t))j')= L( *'(o))—( .(0))'3

+[((»*)')—(»*)'j
+[(v,(0)»,+» v, (0))—2(v, (0))(»,)], (23)

since v, (0) and», do not commute. The first square
bracket on the right side of Eq. (23) can be evaluated
easily. From Eq. (6), we obtain

(v '(0))—(v (0))'= lt'/2m'f ' (24)

We proceed now to evaluate the second square bracket.
For simplicity of notation, the x subscript will be
dropped from the I's henceforth, with the understand-
ing that I stands for the x component of u, and like-
wise for the U's. We have, using the expression for
», from Eq. (22),

= [1+6'(t)V'ju;(r)
~
r =vpi

= L1—~'(t) (~'/c') lu (vpt), (20)

~2 t ~t
((» )')= 16m'c'— dt, dt,

nP ~p "p

where, in the last step, we have made use of the proper-
ties of u(r) described in footnote 7.

For v(0), we have

(v(O)) = (1/~)(p(0))+ (c/~c)(A(O)).

XQ Q (N, (ti)N;(tp) p;(ti) p, (t&)).
j

Neglecting the interaction term in the Hamiltonian of
Eq. (11), just as in the case of Eq. (15), the integrand
becomes

Since the electron wave packet is initially outside the
cavity, (A(0)) vanishes, and (p(0)) is seen immediately
from Eq. (6) to be mvp. From Eqs. (14), (15), (16), and If iW j,
(20) we therefore obtain

r, Z ( '(t ) (t ))(P'(t )P (t )).

(p'(t )p (t ))= (p'(t ))(p (t ))=o

pt
(v(t))=vp+Ep dtiu (vpti) si—npiti

m~o

since either the ith or the jth mode, or both, are in
their lowest energy states (non-oscillating). We thus
have

~2 t p2 pt pt

Ep — dti5 (t—i)ug(—vpti) slncoti. (21)s pi m40 0

Xp (;(t),(t ))(p;(t )p;(t )). (25)The first two terms on the right side of Eq. (21) are the
classical expression for the velocity of an electron, with
initial velocity vp, traversing a cavity with electric field We evaluate the factors (I;(ti)u;(tp)) and (p;(t,)p;(tp))
Epu, (r) sinp~t. The last term gives a first order quantum separately. From Eqs. (3) and (12), we have [omitting
mechanical correction. We could study this eGect in the argument in p(0) and q(0) for simplicity of nota-
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tion:

(P (tt)P (t))

/PP ib;.~sP; 't
dP, exp —

&I
—+

Ex) ~ „E2 4m'c )
X{P cosco, t&costs;ts —P 'It 'I q;P, sinter;t&cosa&;ts

+P,q; cosa&, tt since, ts]+P ')'t 'qP sin~, tt sinn, ts)

PP ib;.EoP;q
Xexp —pI ——

& 2 4xc )
where P=4mcs/ko&;. Making use of the fact that in the

P representation q is represented by ilia/BP, we obtain

(P '(t1)P, (ts) )=8;.(4x'c) 'Es sintd, tt sinter, ts

+ (8ircs)—'leo, expLi(o, (ts —t t)]. (26)

We note that the first term on the right, which is equal
to (P, (tt))(P, (ts)), is the classical value, and the second
term is of purely quantum mechanical origin. We also
note that although the first term vanishes for non-
oscillating modes (as it should, being classical), the
second term does not.

In order to evaluate (it;(tt)N, (ts)), we use Eqs. (13)
and (5), obtaining

(it;(t&)I;(ts) )

=b 'it l) d'r "—d'k—,) d'k, U, (kt) U, (k,)

)ittkt'&—jkpg
I exp

I y jkt ~ r
(2b' ) 42m )
t it,k, .pq t it,k, 'h,

«xpI I expl + iks r
I

m ) ( 2m

It is interesting to note that if we omit the last four
factors of the integrant, the integral represents the
classical value, namely it;(vptt)Q&(vpts). If we omit the
last two factors only, we obtain (I;(tt))(it;(ts)). The
last two factors of the integrand produce an inter-
ference effect between it;(tt) and it;(ts). The last four
factors in the integrand all produce quantum mechanical
eGects to the extent that they are diGerent from unity
in the ranges of kt and ks which contribute significantly
to the integral. As in the case of Eq. (19) for (I;(t)), we
assume that these eGects are small; that is, that the
exponents are small compared to unity in the significant
ranges of k, and k, . Applying the same reasoning as
used in Eq. (20), we obtain"

ik(ts —t t)
(~'(tt)~t(ts))=-I 1+ 2'

f'bq '
+2

I

—I+I I tlt2 Vl'V2
I

E2) &2mb)

X(it, (r&))(N;(rs)) I
rl=vstl &2=vet2,

where the subscript on V indicates the coordinate on
which it operates. Using Eq. (20) and keeping lowest
order terms only, we have

(I;(tt)tt;(ts))—= 1+
I

—
I (»+Vs)'

k2

thqs i7i(ts —t t)
+I I (t,v,+t,v,)+ V1' V2

&2m') 2'
Xit, (r t)I, (rs) I

r t =vst t, rs =vot s

We can now evaluate ((Av,.)')—(hv,.)'. From Eqs. (25),
(22), and (16), we have

)itsks pq ( r'—
Xexpl I expl

m &2bs )
g2 pf pl

=16irscs—' dt, ~ dts[P (I,(t,)I;(ts) )
m p ~p

X(P, (t,)P;(t,))—( .(t,))(,(t,))
X(P.(t ))(P.(t ))]. (27)

"In the previous expansion of the exponential functions
)Eq. (20)j,we retained terms up to the first power of the exponent,
and have considered each term of the exponent to be of the same
order; that is (kkt/2mb)' and (kb/2)' are of the same order of small-
ness compared to unity for the signi6cant range of k. In the
present case the two terms in the exponent of the real exponential
function (the next to the last factor in the integrand of Eq. 26a)
which is being expanded are obviously of the same order as the
above two terms. The imaginary exponent (of the last factor)
must be examined separately, however. We have

kqksk(ts —tq)/2m~k'kt/2m~(kkt/2mb) (kb/2).

Since we have considered (kb/2) (kkt/2mb), we see that the
absolute value of the imaginary exponent is of the same order as
the other exponents.

(I;(tt)it, (ts))

d'kt d'ksU;(kt) exp(ikt. vptt) U'(ks)

Xexp(iks vsts) expL —kP5'(t&)]expl —ks'P(ts)]

Xexp{—2k, ksb'L(t, ts)'*]}

XexpLi(A/2m)kt ks(tt —ts)]. (26a)

As in the case of evaluation involved in Eq. (17), we
replace exp( —r'/2b') on the right of the p operator by
its Fourier integral representation given by Eq. (19),
with the variable of integration changed to ks, say.
The p operation can then be carried through. An in-
tegration now with respect to r and ks, successively,
yields
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If We Set &P;(t1))(P;(t2))=—C;, (I14p;/82rC ) ezp[i4O;(t2 —t1)]
—=Q;, then, from Eq. (26),

&p, (t.)p, (t.))=C,+Q;

C; is the classical term and Q; is the quantum mechani-
cal correction. Substituting into Eq. (32), and bearing
in mind that C;=0 for j/s, we obtain

&(».)')—(».&'

e2 pt
«2(c,[&u, (t1)u.(t2) &

—(u, (t,))(u, (t,))]+p; Q;(u;(t,)u;(t2) )).

We retain only first-order quantum mechanical correc-
tion terms, so that in the summation term under the
integral sign we replace (u;(t1)u, (ts) & by u, (Vpt1)ut (Vpts).

We thus obtain

&(»*)')—&»-)'

e2 ~t
= 16x2c2— d]»

m Q
2 j 40

QQ
SlnGo, f» SlnGo, f2

Sm'c2

P h, y2 ~by2 iIt(ts —t1)-
X tttsl I+I —I+-

&2) 4m

XV1' V2us(rl)us(r2) I r1 =roti r2=vot2

AGOg

exp[in»(t, —tt)]u, (t1)u;(t,) .
~' 8xc2

The imaginary term drops out in the integration, and
we have, after simplification,

2' e
Q 54d; dxu;(x, 0,0) exp[i(4d;/vp)x]

2ti 'Vp 7 st2

e2 b I'*2 ( 4ps )
+2Eo' dxl sin—x—I~u, (r)

5$2vp ~ st 0 'Vp )

I" (
dxl x sin—x l~u, (r)

2~bv, 2 ~., hz=0
(28)

where x» and x2 mark the limits of the part of the x axis
lying inside the cavity (u=0 outside these limits).
We now evaluate the last bracket on the right side of
Eq. (23). By means of reasoning similar to that used
previously, we obtain"

'4 The a/ex in the expression ((8/Bx)N, (t)) operates on every-
thing in front of it, not merely on tt, (t).

&v,(0)» )
eA

t
t (4)'l
e,&p. pp) (

—~~,pp)rtt' &O E aX)

eA
= —42rc— dt1(p, (t1)& d'kU(k)

ikk, t1
Xexp[ik vpt1 k—232(t,)]l kp+

2mb2 )
Similarly,

&»".(o)&

eA 8
= 47I'LC dt1&—ps(tt) ) us(t1)—

m2 jQ gX

eA fO

= —42rc—~ dt, (p, (t,)) d'kU(k) exp(i k, vto,)
m U

( i7ik, tt
Xexp[ k232(tt)]l ko+ 2k

2ttib2 ) .

Making use of Eqs. (21) and (16), and retaining only
the lowest order term, we obtain

(»*V.(o))+&v*(o)».&—2(v*(o)&&».)
gpePP p 2 ( 4ps

dxl x sin—x
I

—u, (x,0,0). (29)
ttisbsvp2 ~ *, 0 vo ) Bx

Substituting Eqs. (24), (28), and (29) into Eq. (23),
we anally get

( '(t)) —( .(t))'
k2 2Epe t *2 |' 4O, ) r)

1—— dxl xs'n *
I

u, (x,0,0)
22tisb2 2rtvps ", E vo ) r)x

g 2es
Is

st (-~ ) 2-
+ dxl x sin—x lvu, (r)

m 'Vp st ( Vp
2 4

g 2esbs

+ dxl sin—x IVu, (r)
2tti'vp' ~.,
2' e f +2

+ Q h4p, dxu;(x, 0,0)
m2VQ2

Xexp[i(pp~/vo)x] . (30)

We can see that the first and second terms on the right
side of this equation are due to the quantization of the
electron, and the third term, the derivation of which
has been reported previously, ' is due to the quantiza-
tion of the field. The first term may be attributed to
both the initial uncertainty in velocity and the spread-
ing of the wave packet subsequent to the time 1=0;
the second term is due to the initial width of the wave
packet (or the initial uncertainty in position). The
third term contains the eGect not only of the oscillating
mode but of all the non-oscillating modes. The reason
"I.R. Senitzky, Phys. Rev. 90, 386 (1953).
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is that even for the lowest energy modes there is a finite
probability of finding a nonzero field. However, the
physical meaning of the third term is obscured by the
fact that in the absence of a cavity the electron inter-
acts with all the lowest energy modes in free space, and
nevertheless the motion of the electron is considered
uniform. What we are interested in is the difference
between the electron motion in the presence of the cavity
and the motion in free space. For the very high fre-

quency modes the apertures of the cavity become large
compared to the wavelength; the Geld (as represented

by the function u(r)) leaks out, and does not.differ much
from the free space field. Therefore our summation
should cut oG at a certain frequency. Below that fre-

quency, the effect of field quantization in Eq. (30) is
small compared to It'/2m'b', and will be neglected,
unless there is a resonance effect for a particular mode,
that is, unless st;(x,0,0) has the same periodicity as

exp/i(re, /vs)xj, and the contribution of a particular
integral in the summation becomes large. Since there
is no resonance effect in free space, this is certainly a
real eGect due to the cavity and should be taken into
consideration.

If we separate the 8/Bx terms in the gradients from
the other terms in Eq. (30), we can perform an integra-
tion by parts on these terms. H, in addition, we assume
that the cavity is of such structure that the derivatives
of N(r) with respect to y and s vanish at y=s=0, 's we

obtain
ks ( Esettp

( *'(t))-('(t))'=
2m'b' L mvgo, )

g 2~2$2N 2 g2 I 2

Bs+2~a—g —)D, (', (31)
~NB&o2 fS & M'

where A, 8, and D are dimensionless quantities de-

fined by

d0f, (0)ttsin0+0 cos0],
J„„

a case in which there is no resonance interaction between
the electron and field. We therefore neglect the quan-
tized field term and assume that A and 8 are of the
order of unity. We also assume that the derivatives of
I with respect to y and z vanish, so that we can use
Eq. (31). Because of the assumption, made at the
beginning of our analysis, that the interaction between
electron and field produces a small perturbation, we
have Eseuo/mvgo((1. " Thus, we obtain (the symbol

indicates order of magnitude)

(v,'(t) )—(v, (t) )'~h'/2m'b'+ 'Esse'-Nssb'/m'vss.

This, of course, is a function of the initial electron wave-
packet half-width b. We can minimize this quantity
with respect to b. The result is

D *'(t))—( (t))'3 '

The ratio of this expression to the square of the ex-
pectation value of velocity increment which the electron
undergoes in passing through the cavity is significant,
since this ratio is essentially a comparison of noise to
signal. From Eq. (21) we have

e
(Ave)—Es— dttlg (vst) slnGot

5Z ~p

~o8No f~"

J' d0f, (0) sin0 Eseus/nuu.
8$COg gg1

Ke obtain, therefore,

L( '*'(t))—( *(t))'1-.-
(hv, )' EplpgVp

We see that this ratio increases with increase in fre-
quency and decreases with increase in field strength.
Rewriting it as b(u, /Epttse(v/&o, ), one notes that it is of
the same order of magnitude as the ratio of the energy
of a photon to the energy which the electron may re-
ceive from the field in a half-cycle. We can also write

p8g'g

d0f;(0)e'.
&sS

8=, d0f, (0) cos0, D, =
J~ gsl Hi&

Vtcqs a,
~s-13y~s—

)
—

)
Xs 4 vs) Ess/8s-

(32)

We have used the following notation: 0; =co,t, I;(vot, 0,0)
=Nsf;(0;), where I,= V & and V is the volume of the
cavity. The function f;(0) is of the order of unity, since
n (r) is normalized over the volume of the cavity.

It is obvious that the mean square deviation in

velocity of the electron at the output of the cavity
depends on a detailed consideration of the spatial
dependence of the field, strength of the field, velocity
of the electron, and width of the initial wave packet.
In order to obtain an idea of the order of magnitude of
the mean square deviation, without going into the
many details of a particular experiment, we will intro-
duce some simplifications and assumptions. We consider

' This assumption corresponds to the usual experimental ar-
rangement, in which the path of the electron lies where the Geld

is strongest.

The last factor in this expression is the ratio of the
energy of a photon to the most probable energy in the
cavity.

It is interesting to consider a numerical example, and
find the conditions for which p becomes unity. We as-
sume that the volume of the cavity is of the order of X',
and that the initial velocity of the electron is one-tenth
that of light. We can then see from Eq. (32) that g
becomes unity when the most probable number of
photons in the cavity is of the order of 10 . If, in addi-
tion, we make an assumption about the Q of the cavity"

"This ratio is of the order of the ratio of velocity increment
which the electron may obtain in the cavity to the initial velocity.

~ The unloaded Q of a cavity is de6ned as cuW/, P where W is
the energy stored in the cavity, and P is the average, power loss in
the walls. Now (energy stored) ~ (volume) ~ Xs. Also, (power loss)
~(wall area))&(skin depth) '~XsXX &. Thus Qa:M. We assume
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and consider a speci6c amount of power being fed into
the cavity, we can calculate the frequency for which p
becomes unity. If we take Q 10s)I,*', where )t is given in
centimeters, and consider the case in which 10 ' watts
is fed into the cavity, then p becomes unity for ~~10 '
cm. The electron wave packet half-width b which
minimizes the mean square deviation in velocity for

the same frequency dependence for the loaded Q, which is the one
pertinent to the present discussion.

this wavelength and the above assumptions is of the
order of 10 4 cm. Thus, the minimum mean square
deviation of the velocity becomes comparable to the
modulation in velocity, for the particular conditions
assumed, when the wavelength is of the order of a tenth
of a millimeter.

The author is indebted to Professor Julian Schwinger
for enlightening discussions related to the foregoing
subject matter and for his reading of the manuscript.
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Penetration of 6-Mev Gamma Rays in Water
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The penetration of 6-Mev gamma rays has been studied out to 190 cm in water. The dose rate has been
measured with an anthracene scintillation detector as a function of the distance from the N" source. The
results agree closely out to 160 cm with the distribution calculated according to the theory of gamma-ray
penetration as developed by Spencer and Fano.

A MEASUREMENT has been made of the broad
beam penetration of high-energy ( 6 Mev)

gamma rays from N" in water. Very little experimental
data have been heretofore available on broad beam
penetration with simple geometries and none at all
in this energy region. The results are also of interest
as a check on the theoretical method of calculation of
gamma-ray penetration as developed by Spencer and
Fano '

The N source is obtained by circulating demineral-
ized water through the high-Qux region of the Materials
Testing Reactor and then piping it into a Qat cylindrical
disk, 30 cm in diameter, which serves as the source.
The disk is made of a tightly wound coil of ~-in. i.d.
Saran tubing. It is located in a large body of water
with a minimum of 4 ft of water in all directions from
the coil. A detector is positioned so that it can be
moved along the axis of the cylindrical disk. Variations
in source intensity due to changes in water Qow or
reactor Qux are compensated for by means of a monitor.

The detector and monitor are anthracene scintillation
counters. The anthracene cylinders are 1~ in. . in diam-
eter and 1 in. high and are optically attached to RCA
5819 photomultiplier tubes. The output current of the
photomultiplier is read on a low drift ac electrometer.
This current is a measure of the dose rate.

The following important reactions are expected to
occur upon neutron irradiation in the reactor:
0' (n P)N's 0' (n P)N' and 0' (rs y)0'. The N's

production should be predominant. In order to verify

' L. V. Spencer and U. Fano, J. Research Natl. Bur. Standards
46, 446 (1951);Phys. Rev. 81, 464 (1951).

this and to check on the existence of any spurious
activity from impurities, decay curves have been
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