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with a quantum-mechanical system and the range of
the quantum-mechanical diffraction effects—which is
essentially eo'"—is as important as the range of the
interatomic forces, as at temperatures of the order of
the lambda point vo"' is about 3.4A. This means that
even though we are dealing with a perfect gas, never-
theless there is an interaction sphere around each atom,
and its radius is actually larger than that of the classical
helium atom. Any inQuence from the neglected con-
figurations should thus, in our opinion, show up also
in the case of the perfect Bose-Einstein gas.

There is another disturbing fact concerning the par-
tition function (F-I.5) or (5). These expressions should
be valid for the gas phase of helium, as the approxima-
tion (3) should be least inaccurate at high temperatures
and low densities. That means that on lowering the

temperature the partition function should reveal the
gas-liquid transition before the lambda transition, but
this does not happen in the case of (F-I.5) or (5)
(compare also the remarks at the end of C-II). This
becomes understandable, if we remind ourselves that
essentially the attractive forces are neglected in deriving
(F-I.5) or (5) (compare the discussion in F-I).

This paper was written while the author was at
Purdue University, and I would like to express my
thanks to Dr. K. Lark-Horovitz for the hospitality
shown to me in his department. In conclusion, I would
like to express my gratitude to Dr. R. P. Feynman for
pointing out to me some serious mistakes in the first
draft of this paper and for making it plausible to me
that my original belief that (5) would be exact in the
case of hard spheres may not be correct.
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A previously reported microwave method for determining the collision probability for momentum transfer
of slow electrons has been modi6ed so that a variation in average electron energy from 0.0j.2 ev to 3 ev may
be obtained. Measurements of the ratio of the real part to the imaginary part of the electron conductivity
are performed in the afterglow of a pulsed helium discharge in a microwave resonant cavity. The average
electron energy is varied-by applying a microwave electric field in the afterglow and, under appropriate
assumptions, the average electron energy is determined theoretically from this 6eld. Measurements are
also obtained by varying the gas temperature from 77'K to 700'K. The value of the collision probability
for momentum transfer in helium is 18.3&2 percent cm~/cm3 per mm Hg from 0 to 0.75 electron volts and
increases slowly to a peak value of 19.2&2 percent at 2.2 ev.

' "N a recco.t paper by Phelps, Fundingsland, and
~ ~ Brown, ' a microwave method was described for
determining the probability of collision for momentum
transfer by measuring the conductivity of a decaying
plasma after the electrons reach thermal equilibrium
with the gas. The method has been modified so that
a variation in average electron energy from 0.0j.2 to 3
electron volts was obtained. The electron conductivity
in the afterglow was studied as a function of experi-
mental parameters and the effects of electron energy,
impurities in the gas, ambipolar diffusion, nonuniform
electric heating fields, and energy gradients were
investigated. The experimental conditions were such
that the electron energy distribution function was
known. This enabled an expression for the probability
of collision for momentum transfer as a function of
electron energy to be determined from the experi-
mental data.

*This work was supported in part by the Signal Corps, the
Air Materiel Command, and the U. S. OfBce of Naval Research.

t Now at Microwave Associates, Boston, Massachusetts' Phelps, Fundingsland, and Brown, Phys. Rev. 84, 559 (1951).

ELECTRON CONDUCTIVITY RATIO IN THE
AFTERGLOW

Margenau' has given a general theory for the behavior
of electrons in a gas under the action of a high-frequency
field when only elastic collisions need be considered.
From his results the complex electron conductivity
cr, may be written as:

4sr rte'
I
" $(v„/to) jj dfp-

o.=o,+jo;=—— es de. (I)
3 rrtto "p I+(v /&o)s de

Here e is the electron density, e and m are the electronic
charge and mass, co is the radian frequency of the
applied field, fp is the first term in the spherical harmonic
expansion of the normalized electron velocity distribu-
tion function for electrons of velocity ~. The collision
frequency for momentum transfer v is related to the
probability of collision for momentum transfer, I', by
v =I ppe, where pp is the pressure normalized to zero
degrees centigrade.

'H. Margenau, Phys. Rev. 69, 508 (1946).
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In a microwave cavity, the quantity which is
measured is the electron conductivity averaged with
respect to the measuring electric 6eld E over the
volume of the plasma and is given by the relation

(~.)= (~,)+q(,)= ~,E„'dV E„2dV.
dy EJp

(2)

Since s is generally a complicated function of velocity,
Eq. (1) is dificult to manipulate mathematically.
The assumption that v '&«' over the velocity range
covered by the distribution function fo is physically
true and simplifies the mathematics. The ratio of the
real part of the conductivity to the imaginary part
divided by the pressure, designated by p, is obtained by
Eqs. (1) and (2) yielding

I (P /oo)v4(dfo/dv)dn E 'dV
1 (0.„)~v &o

p==
p. (-;)= p 00

w'(dfo/d~)di E 'dV

ELECTRON ENERGY DISTRIBUTION FUNCTION

In the afterglow of a pulsed discharge the electrons,
whose average energy is high during the discharge,
lose their energy through elastic collisions with the
gas atoms. Eventually the electrons reach energy
equilibrium with the gas atoms and have a Maxwellian
distribution with an electron temperature T, the
same as the gas temperature T,. The electron tempera-
ture T, is defined in terms of the average electron
energy by (I)=,'kT, Above one -mm . Hg pressure
in helium, energy equilibrium is established between
electrons and gas atoms within one millisecond after
the discharge has ceased. Sy either heating or cooling
the cavity, the electron temperature may be varied
over a range of 77'K to 700'K and the distribution
function will be Maxwellian. Application of an electric
field in a plasma can also increase the average electron

for the case v '«m'. When the energy distribution
function is independent of position in the cavity, the
quantity p is independent of averaging with respect to
the electron density and measuring field. Measurements
of p as a function of energy give information about the
velocity dependence of P or fo. For the more com-

plicated case where fo is a function of position in the.
cavity, the spatial variation of the electron density and
the measuring field must be known before any infor-
mation about P or fo may be obtained. Equation (3)
and the associated conductivity measurements are
used in this experiment to obtain the velocity de-

pendence of P over as wide a range of velocity as is
possible with the present microwave technique. The
experimental conditions must be arranged so that the
electron energy distribution function is known.

=nergy. In this case, the energy distribution function,
and hence the average energy, will depend upon a
balance between the energy gained from the field and
the energy lost due to recoil with the gas and the energy
transported to the walls by diffusion, conduction,
and convection. Energy losses due to inelastic collisions,
attachment, and recombination may be neglected.
Margenau' has shown the steady state distribution
function for electrons in an atomic gas, in the absence
of inelastic collisions and diffusion losses, to be Max-
wellian under the assumption that s '«co'. The equiv-
alent electron temperature is given by

T,= To+Me'Eo, '/ (6oi'km') (4)

ELECTRON DENSITY DISTRIBUTION

The correct density distribution can be obtained by
solving the ambipolar diffusion equations taking into
account the spatial variation of electron energy. The
equations' governing the diffusion of electrons in a
space charge field E, are

r = —v(De) —p E,e,
r+.= v(D~n~) +p~ K,N+-,

BN~/Bt = V ~ r~,

where F and j.+ are the electron and positive ion
particle currents, e and e+ are the electron and positive
ion densities, D+ and p+ are the positive ion diGusion

o W. Schottky, Physik. Z. 25, 342 (1924).

where E~ is the applied heating 6eld. However, in a
microwave cavity the heating field is a function of
position and deviations from Eq. (4) resulting from

energy gradients may become important.
The expression for the average energy when the en-

ergy is a function of position can be shown to be given by

T,= T,+aoEo'+boV (eVT.)/~po', (5)
where

ao =3IIe'/(6oo'ktpl') and bo =M/(6'~').
It is seen that the first two terms, which represent
thermal energy and energy gained from the field, are
identical with those in Eq. (4). The term containing
V (NVT, ) represents the first-order change in average
energy resulting from conduction and convection of
energy from regions of high energy to regions of low

energy. Equation (5) is derived under the assumption
that P is constant, which is a good approximation in
helium at low energies.

In order to interpret Eq. (3), one must know not
only the energy distribution function, but also the
electron density distribution. The spatial distribution
of the temperature given by Eq. (4) will be used as a
6rst. approximation to determine the electron density
distribution when the average energy is a function of
position. It will be assumed that the dominant electron
loss mechanism is ambipolar diffusion.
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coefficient and mobility, D and p, are the electron
diffusion coefficient and mobility de6ned by

2.0

1.6—

D n =
) (v'/3v~) fp4'Ilv'd. v,

0

li n = (e/3nsv )(Bfp/Bs)4~v'dp

(9)

(10)

O

0.8—
E

=0

For the Maxwellian distribution function whose tem-
perature is given by Eq. (4) D and li are functions
of position. In solving Eqs. (6), (7), and (8) the usual
assumptions of ambipolar diffusion are made, i.e.,
I+= I = I' and e+.=e =e. Eliminating 8, from
Eqs. (6) and (7) one finds

r= [ @+V(D n) ——p, V(D+n) j//(IJ++p, ). (11)

Since p+«p and D+ and p+ are essentially independent
of position, Eq. (11) becomes

r= D+[Vn+i—J~V (D n)/D+p, j. (12)

In order to evaluate Eqs. (9) and (10), the velocity
variation of v must be known. The simplest assumption
is that v = cppv", although any power series in u may
be manipulated equally well in the following treatment.
The ratio of V(D n)li in Eq. (12) is obtained from
Eqs. (9) and (10) by using the above assumption
fol vm ~

V(D n)/ii = (fp/e)V(T, &' ""'n)/T, "~'. (13)

Combining Eqs. (8), (12), and (13) and using the
relation D+/p~= kT,/e, one obtains

Bn/Bt= D„V[Vn+V(T—o "I'in)/TpT "Is) (14)

It is assumed that the variation of density with time
has the form

n= np exp( yi), —

and, hence, Eq. (14) becomes

(1+T,/T, )V'n+ (2—Ii/2) Vn V (T,/T, )
+n[(1—a/2) V (T,/T, )+~/D, )=0. (16)

The problem consists of solving Eq. (16) for its charac-
teristic functions corresponding to the proper boundary
condition, proper:patial variation of T„and a given
value of h. In general, the characteristic function corres-
ponding to the lowest characteristic value is the impor-
tant physical solution. Equation (16) is solved for two
diGerent cavities. One is a rectangular parallelepiped in
which the plasma fills the entire cavity; the other is also
a cavity of the same shape but with the plasma contained
in a cubical bottle concentric with the cavity. The ap-
plied electric field has a spatial configuration correspond-
ing to the fundamental mode of the cavity and is a func-
tion of only two coordinates. The boundary conditions
for the cavity are that the electron density vanish along
the walls of dimension A, 8, and C and for the bottle
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Fxo. j.. Electron density as a function of position for
various values of h and T,p/T, =4.

that the density vanish along the walls of dimension d.
The dimensions of this particular cavity are A = 7.16
cm, 8=7.88 cm, and C=6.48 cm. The dimensions of
the cavity containing the bottle are A=6.90 cm,
8=7.51 cm, C=6.28 cm, and the dimension of the
bottle is d=2.82 cm.

Since the heating field is a function. of two directions,

y and s, the electron density may be written as
n=npns(y, s) cos(prx/A). Equation (16) may be sepa-
rated into a two-dimensional second-order diGerential
The equation is transformed to a diGerence equation
which is solved numerically by relaxation techniques.
The results for the cavity in which the plasma 6lls the
entire volume are best depicted by plotting ns(y, s)
as a function of y/8 for s=O and are shown in Fig. 1.
The curves give ns(y, O) for various values of h for T,p,

the electron temperature at the center of the cavity,
equal to 4T,. The curves are compared with a cosine
distribution which is the solution of Eq. (16) when the
temperature distribution is independent of position.
For larger ratios of T,p/T„ the deviation from a
cosine distribution increases.

The shape of the curves in Fig. 1 for the various
values of h is readily explainable. The oG-center
maximum is caused by the lower temperature near the
walls, the electron pressure decreasing monotonously
toward the walls. This effect is enhanced for h(2 as
then the diGusion coeKcient increases with temperature.
resulting in a Qatter electron pressure distribution near
the center with steep gradients near the walls. In Fig. 2
curves of nz(y, O) as a function of y/8 are shown by
the solid curves when h=1, i.e, , I' constant, for a
range of T,p/T, from 4 to 11.The curves illustrate the
increase in the density distribution peaks near the
walls as the electron temperature T,0 increases. From
the results shown, it is obvious that in any calculations
involving the density averaged over the volume of the
plasma it is necessary to use the proper density
distribution.

A similar calculation was performed for the cavity
containing a cubical bottle of dimension d. The results
are shown by the dotted curves in Fig. 2 for k=1 and
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At a pressure of 1 mm Hg or below, the perturbation
term becomes important. It should be remembered
that the condition of v '((cu' is imposed throughout the
discussion. In order to insure that v '&0.04cv', at a
frequency of 3000 megacycles one must have

O p p &350/T, '. (20)

o4-

eo =4
g

O.I 0.2 0.5 O. 4 0.5 0.6
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y/d (FOR DOTTED CURVES)

Fro. 2. Electron density as a function of position for
various values of T,0/Tg and h= i.

T.p/T, =11 and 81. Since the nonuniformity of the
heating field is small over the volume of the bottle, the
deviation of the curves from a cosine is negligible.
Hence, over this region of electron temperature, a
cosine distribution is sufFiciently accurate for represent-
ing the density distribution provided that ambipolar
diffusion is the dominant loss mechanism.

ELECTRON CONDUCTIVITY RATIO FOR CONSTANT
COLLISION PROBABILITY

When the energy distribution function is Maxwellian,
the conductivity ratio given by Eq. (3) becomes

p=pp n(T, /Tp) *'E 'dV -NE 'dV, (17)

where pp ——1.505(P /&o)(2kT, /m)& for the case when
the collision probability is constant. This is approxi-
mately valid for helium. The solution of Eq. (17) is
considered when a heating 6eld is present. The electron
density distribution is predicted by the theory of
ambipolar diGusion in a nonuniform field and the
electron temperature is given by Eq. (5). Thus the
e8ects of a nonuniform heating field and the associated
energy gradients on the electron density and tempera-
ture distributions are included to a 6rst-order approxi-
mation. For the cavity in which the plasma fills the
entire volume, the solution of Eq. (17) for T,p/T,
greater than 10 is given approximately by

p= ppf(T. p/T p) (1+3/po') (18)

The function f(T,p/T, ) is obtained from a numerical
integration of Eq. (17). Below T,p/T, =10, the correc-
tion factor 3/Pps, decreases becoming zero at T,p/T, = 1.
We can see from Eq. (18) that at pressures below 10
mm Hg, the in6uence of energy gradients becomes
important and the value of p increases.

A similar calculation is performed for the bottle
enclosed in a cavity, yielding the following expression
valid for T,p/T, greater than 10:

Therefore, 2000'K is approximately the maximum
temperature that can be maintained in the cavity
alone before gradients have an important inhuence
and still satisfy the condition of Eq. (20). In the bottle
25 000'K is approximately the maximum temperature.
From the above discussion, it follows that the conduc-
tivity measurements above thermal energies should be
made in a bottle so that a wide range of electron energy
can be obtained without introducing complicated
correction factors into the theory. For this case, when
ambipolar diffusion is the dominant loss mechanism,
the density distribution is well approximated by a
cosine distribution and the electron temperature is
determined by Eq. (4).

EXPERIMENTAL PROCEDURE

The technique used for measuring the electron
conductivity ratio p is described in a paper by Gould
and Brown. 4 The presence of a plasma introduces a
change in the conductance and susceptance of the
cavity. This change can be determined by measuring
the ratio of the microwave power transmitted through
the cavity to the power incident as a function of signal
frequency in the vicinity of cavity resonance. The
microwave cavity used in the experiment is a rec-
tangular parallelepiped and is designed to resonate in
its three fundamental modes at wavelengths of 9.5,
10.0, and 10.5 cm. The 9.5-cm mode is used to produce
a pulsed discharge in helium of variable pulse length.
The 10.0-cm mode is used to increase the average
electron energy in the afterglow, and the 10.5-cm
mode is used to measure the characteristics of the
plasma. The apparatus and procedure associated with
each mode will be discussed separately and will be
referred to as the breakdown mode, heating mode,
and measuring mode. The general block diagram of the
experimental microwave equipment is shown in Fig. 3.
8-in. coaxial transmission line is used throughout.

In the breakdown mode, a tunable pulsed magnetron
(QK61), supplying 100-watts peak power, is used to
produce a pulsed discharge in the cavity. This magne-
tron is pulsed for a duration varying between 0.1 to 5
milliseconds and at a repetition rate varying from 20
to 120 cps. A well regulated pulsed voltage supply,
used to modulate the magnetron output, is necessary
in order to stabilize the discharge so that accurate
measurements in the afterglow can be performed.

In the measuring mode, a continuous-wave tunable
magnetron (QK59) is used for measuring the conduc-

p =pp0. 93$(T.p/Tg) —1)1/1+0.03/pp'). (19) 4 L. Gould and. S. C. Brown, J. Appl. Phys. 24, 1053 (1953).
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tivity ratio during the afterglow. The microwave power,
incident on the cavity, is adjusted by the proper
attenuation to a few microwatts so that the va1ue of
the measuring electric field is less than 0.1 volt/cm.
The perturbation of the plasma characteristics from
a field of this value is negligible. The ratio of the trans-
mitted power to the incident power is measured by the
power measuring section which uses transient receivers. '
These receivers are operative for a period of 20 to
100 microseconds and can be delayed in time with
respect to the breakdown pulse so that any time in the
afterglow can be measured. At a particular time in the
afterglow, the signal frequency is adjusted to the
resonant frequency of the cavity and plasma, and the
apparent ratio of the incident to transmitted power
is adjusted to unity by varying the gain of the receivers.
A plot of the change in this ratio as a function of the
square of the signal frequency change from resonance
is linear. The frequency change is measured directly
by the frequency measuring section. Similar measure-
ments are obtained with no plasma in the cavity. The
difFerence in the slopes of the linear plots with and
without a plasma present (plasma conductance)
divided by the difference in the resonant frequency
for both cases (plasma susceptance) yields the ratio
of the real to the imaginary part of the conductivity,
o,/o. ;. The accuracy of the conductivity measurements
by this null technique is &2 percent.

In the heating mode, a continuous wave tunable
magnetron (QK60) is used for producing the electric
field in the cavity which increases the average electron
energy. Measurements of the unloaded Q, obtained
from standing wave ratio measurements as a function
of signal frequency, and the power incident on the
cavity, determine the electric field in the cavity within
an accuracy of &3 percent. In the afterglow of a
discharge the electric field, for a constant incident
power, will be a function of the electron density. The
electric field will have a maximum value at that time
in the afterglow when the signal frequency corresponds
to the resonant frequency of the cavity and plasma.

PULSED MAGNETRON
{QKGI)

—ATTENUATOR

WAVEMETER

TRANSIENT
RECEIVER

WAVEMETER
POWER

HEp SLOTTED SECTION~ ATTENUATOR

LOAD ~ BOLOMETER
DIRECTIONAL AND
COUPLERS BRipGE

FREQUENCY
MEASURING

SECTION

OLOMETER
AND

BRIDGE

=
ATTENUATOR

C W MAGNETRON {QK59)

FIG. 3. General block diagram of experimental equipment.

' Rose, Kerr, Biondi, Everhart, and Brown, Technical Report
No. 140, Research Laboratory of Electronics, Massachusetts In-
stitute of Technology (unpublished).
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PIG. 4. Conductivity ratio as a function of cavity temperature.
The x's are the experimental points and the solid line the theo-
retical curve for I' =18.3.

The electric field should remain constant for a suffi-

ciently long time so that the electrons cao reach
equilibrium with the electric field. If the unloaded Q
of the cavity is low, the change in Q due to the presence
of plasma will be small, thus minimizing the variation
of the electric field with electron density. An output
loop connected to a matched load is adjusted so that it
only couples out power from the heating mode. Sy
changing the coupling between the cavity and the
matched load, an additional loss is reQected back into
the cavity and the unloaded Q for this mode, measured
at the input terminals of the cavity, decreases. A
decrease in Q„from 5000 to 200 is easily obtained by
this method. For the applied fields used in this experi-
rnent, the time necessary for equilibrium is of the order
of tenths of milliseconds. Unloaded Q's of the order of
several hundred allow the electric field to remain
constant for the order of a millisecond thus insuring
equilibrium with the field. It is during this interval
of time that the electron conductivity ratio is measured.

For the vacuum system, a standard forepump and a
three stage oil diffusion pump are used in conjunction
with metal valves' wherever necessary. The helium
pressure is measured by a McCleod gauge calibrated to
an accuracy of &1 percent over a range of 0.10 to
20 mm Hg. The method for introducing the helium is
as follows: A "fritted" glass filter, one end of which has
a break-off seal, is connected to the main vacuum
system by a metal valve. The glass filter may be placed
in a liquid helium Dewar Rask. . A liter Pyrex bottle,
connected to the cavity side of the system by another
valve, serves as a reservoir for the helium. After the
system is baked, a vacuum of about 10 ~ mm Hg is
obtained when the system is isolated from the pumps.
At this point liquid helium is poured into the Dewar
Qask. When the "fritted" glass filter is completely
immersed in the liquid helium, the break-ofF sea1 is
broken and helium is evaporated into the system.

' S. C. Brown and J. E. Coyle, Rev. Sci. Instr. 25, 570 (1952).
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FIG. 5. Conductivity ratio as a function of the electron tem-
perature at the center of the cavity. Experimental points for
pp=s mm Hg and x's for p0= IO mm Hg. The solid lines are
calculated theoretically.

If impurities are present, experimentally measured
values of p are not independent of pressure or time as
indicated by Eq. (3). Constancy of p as a function of
these variables was taken as a measure of gas purity,
and the helium produced from liquid helium as just
described met these conditions.

RESULTS

Measurements of p as a function of gas temperature
and pressure were obtained in a copper cavity. Pro-
visions were made for cooling the cavity to dry ice
(195'K) and liquid air (77'K) temperatures and for
heating the cavity from room temperature to 400'C.
The results are shown in Fig. 4. Included in the figure
is a sketch of the cavity showing the relative positions
of the coupling lines for the measuring mode and the
pulsed breakdown mode. The crosses represent the
experimental points and the solid line represents the
theoretical curve for p when I' is constant and equal
to 18.3 cm'/cm' per mm Hg. According to Eq. (17),
for the case of I' constant, p is given by

P =bi+b2v+b3u2.

Equation (3) becomes

(22)

Eq. (18) in which the efFects of energy gradients are
included and P is 183 cm'/cm' per mm Hg and
constant. It is seen that the predicted increase in p
due to the importance of energy gradients is evident
from the data at 5 mm Hg. At T p=3300 K the diGer-
ence between the theoretical curves for po ——5 mm and
10 mm Hg is 12 percent. The experimental data show
that the density distribution predicted from the theory
of ambipolar diBusion in nonuniform fields is the proper
one. In general, interpretation of measurements in the
cavity would be rather dificult for gases in which I'
is not known, since a knowledge of I' is necessary
to calculate the proper density distribution for the
evaluation of p.

Measurements of p as a function oI the heating
electric field were also obtained for the case of the bottle
enclosed in the cavity. The averaged experimental
results for p as a function of the electron temperature
are shown in Fig. 6. The scatter in data is &2 percent.
The relation between the electron temperature and the
electric field is given by Eq. (4) which, for helium, is

T,o= (To+72.5Eo@2), where the field is in volts/cm.
Included in Fig. 6 is a sketch of the cavity and bottle
showing the relative positions of the coupling lines for
the measuring, heating, and breakdown modes.

The relation between p and P depends upon the
spatial distribution of the electron density and the
electric field. The electric field configuration is assumed
to be that of the fundamental mode. The electron
density distribution is assumed to be cosinusoidal.
If a power series in velocity is assumed for I', the
collision probability, is of the form

p=1.505(P /(v) (2kT,/m)i. (21)
3

p=Q A,I„ (23)

It is seen that the experimental points agree with the
above equation over the range of 77'K to 400'K.
Above 400'K, the values of p obtained are higher than
the theoretical curve. It is believed that impurities
liberated from the walls of the cavity at the higher
temperatures produced the higher values of p. At a
given temperature, the high values of p could be lowered
by outgassing the cavity for several days at a tempera-
ture of 430'C.

Measurements of p as a function of the heating
electric field were obtained in the copper cavity. The
electric field was measured according to the usual
microwave techniques. ' Transient operation was used
to measure the Q of the heating mode simultaneously
with the electron conductivity measurements. The
results are shown in Fig. 5. The experimental data are
represented by the crosses and points. The dotted
curves are theoretical results for p corresponding to
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FIG. 6. Conductivity ratio as a function of the electron tem-
perature at the center of the quartz bottle. The solid line represents
the experimental curve, the'dotted line the theoretical curve,
P =18.3, and the x's are calculated from the power series ap-
proximation.
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where

A. = (2kT,/m)'"b, L(3+s)/2]!cv(3/2)!,

eE 'dV

~m/2 m/2

"0 0

)(cosy) cosl cos30.393dmdN,

and a=0.241EO~' when T,=300'K.
The expression I, can be calculated analytically

when s is an even number and must be calculated
numerically when s is an odd number. I, is only a
function of the electric field, Eo~. When P is equal to
18.3 and constant (s equal to one) the plot of p as a
function of T,o is shown in Fig. 6 as the dotted curve.
The experimental and the theoretical curves agree
up to a temperature of 4000'K. At low electron energies,
both the thermal and the heating field measurements
yield the same value for P . This indicates that the
higher values of p obtained in the thermal measure-
ments above 400'K are not the true values but are
probably due to impurities. For a more accurate
determination of the velocity dependence of P, the
experimental curve for p can be expressed in terms of a
series in I,. The coe%cients A, are determined from
the experimental curve in Fig. 6. The values of b,
can be obtained from the values of A„according to
Kq. (23), giving the following expression for I'

(I' =18.1+2.91X10 sv —2.1X10 rsv') (24)

where n is in cm per second.
A plot of the momentum transfer collision probability

as a function of electron velocity in square root of
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volts is shown as a solid curve, in Fig. 7. This plot is
compared with the total collision probability data of
Normand' using the dc method. Below a velocity of
1.5 volts'*, Normand's data have an oscillatory behavior.
Since the microwave method cannot distinguish such
a behavior, the curve shown in Fig. 7 is an average
of Nor mand's data. In addition, the momentum
transfer collision probability for the dc method is
derived by using Normand's data and the angular
distribution data of Ramsauer and Kollath. ' It is
seen that there is good agreement between the micro-
wave and the dc method.
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FIG. 7. Collision probability of electrons in helium as a function
of electron velocity. Solid line is the momentum transfer collision
probability as determined by the microwave method. Short-dash
line represents the collision as measured by Normand. Long-and-
short-dash line gives the momentum transfer collision probability
calculated from the measurements of Normand, and Ramsauer
and Kollath.


