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way of their formation. Their effects then superpose on
the semiconductor properties which would otherwise
be observed.

* Milwaukee Gas Specialty Company fellow.' See, for instance, ¹ Mostovetch and B. Vodar in Semicon-
ductirig Materials (Butterworths Scientific Publications, Ltd. ,
London, 1951).' C. J. Gorter, Physica 17, 777 (1951);N. Mostovetch, Compt.
rend. 233, 360 (1951).' E. H. Sondheimer, Advances in Physics 1, 1 (1952).' F. W. Reynolds and G. R. Stilwell, Phys. Rev. 88, 418 (1952).
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Hall Effect in Ferromagnetics*
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HE Hall effect in ferromagnetics is given by'

Es=RpH+RiM,
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TABLE I. Extraordinary Hall constant R& as a function
of resistivity p.

P
p,O cm

R1
volt cm

amp gauss
Percent

Si
Temp.

oK

where E~ is the Hall electric field, H is the applied
magnetic field, M is the magnetization, and Ro and R»
are the ordinary and extraordinary Hall constants,
respectively. This letter reports measurements of R»
as a function of resistivity for iron-silicon alloys of 0
percent to 5 percent silicon.

Karplus and Luttinger, ' in their theory of the
extraordinary Hall eGect, have found that in a certain
approximation R» should depend on the square of the
resistivity. Their mechanism uses the spin-orbit
interaction of the d electrons. R» has been measured as
a function of resistivity" for pure iron and nickel
where the resistivity was changed by changing the
temperature. Since p~ T, this does not tell whether p
or T is the significant quantity. Our measurements were
done on iron-silicon, whose resistivity was changed by
changing the silicon content.

Our samples were cut from commercial rolled iron-
silicon sheet with no heat treatment and no attempt
to cut them at any particular angle with respect to
the direction of rolling. A primary current density of
about 30 amperes/cm' at 600 cps was used and the
Hall voltage measured with a narrow band amplifier
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FIG. 1. Extraordinary Hall constant as a function of resistivity.

and a lock-in detector. The resistivities were measured
by measuring the current and the voltage drop in a
sample. The resistivities do not all agree with previous
measurements of resistivity versls silicon content. 5

This could be due to special rolling and heat treatment
at the rolling mill.

The results are shown in Table I and in Fig. 1. The
measurements of Jan' and of Jan and Gijsman' for iron
are also shown in Fig. 1. The equation of the straight
line is

R»= 0.89p

where p is in ohm-cm and Ri is in volt-cm/ampere
gauss. This is in good agreement with the theory of
Karplus and Luttinger which predicts
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with a constant of proportionality of the order of unity.
The departure from a straight line at low resistivities
is due to the fact that R» includes the e6ect of the
magnetization as well as the spin-orbit interaction.
Equation (3) was derived for spin-orbit interaction
only. At low resistivity the spin-orbit part is of the
same order of magnitude as the magnetization part.
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' E. M. Pugh and N. Rostoker, Revs. Modern Phys. 25, 151
(1953).' R. Karplus and J. M. Luttinger (to be published).' J.-P. Jan, Helv. Phys. Acta 25, 677 (1952).

4 J.-P. Jan and J. M. Gijsman, Physica 18, 339 (1952).
e Richard M. Bozorth, Ferromagnetism (D. Van Nostrand

Company, Inc. , New York, 1951), p. 76.
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Hyperfine Splitting in Spin Resonance
of Group V Donors in Silicon
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DDITIONAI observations of the electron spin
resonance absorption in e-type silicon' at 4.2'K

have (1) confirmed the interpretation of hyperfine
splitting by the donor nucleus, (2) shown that the
hyperfine lines are replaced by a single line at high
donor concentrations, (3) indicated that the line

breadth of the hyperfine lines is of the inhomogeneous

type, suggesting residual hyperfine broadening, and

(4) revealed the existence of weak satellite lines attribut-
able to forbidden transitions. These observations were

made by the same method as described previously'
on undeformed single crystal bars of silicon.

Fourteen clearly resolved resonance lines (Fig. 1)
have been found in antimony-doped silicon (4X10'"
atoms/cc). These lines naturally fall into two groups,
each with lines of about equal intensity and separation.
The six lines of the first group have an intensity 1.70
~0.05 times and an overall separation 1.32~0.01
times the eight lines of the second group. The number
of lines, their relative intensities, and their relative
separations appear to be conclusive evidence that the
six lines are attributable to interaction with the Sb"'
nucleus (I=5/2, @=3.360,' abundance=56 percent)
and the eight lines to the Sb'" nucleus (I= 7/2,
ii =2.547,' abundance =44 percent) .

A variety of samples with different concentrations of
three donor materials, phosphorus, arsenic, and
antimony, have been measured (Fig. 1). With all three

it is found that if the concentration exceeds a certain
amount (ca. 1X10") the multiplicity of lines disappears,
being replaced by a single narrow line ((3 oersteds).

Frc. 1. A schematic representation of the absorption lines
observed in silicon doped with various amounts of phosphorus,
arsenic, and antimony.
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Fio. 2. A reproduction of the observed derivative of the res-
onance absorption lines oi arsenic-doped silicon (4X10" cm ')
showing three satellite lines between the four principal hyperfine
lines.

This line has the same g factor and apparently is the
same line which Portis et a/. ' have attributed to
conduction electrons.

In our experiments there is an as yet unexplained
shift (=25 oersteds) in the resonance lines with
respect to the calibration line (diphenyl picryl hydrazyl)
when the magnetic field is rotated around the cavity
containing the sample. This effect accounts for the
difference between the g factor of the arsenic-doped
silicon of Fig. 1 and the previously quoted value. ' All

the samples of Fig. 1 were taken in the same orientation
with the dc magnetic field parallel to the transverse
rf magnetic field and along the (100) crystal direction.
In this orientation all the lines have the same center of
gravity at g= 2.0004&0.0005.

An investigation of the saturation behavior with rf
field of the hyperfine lines of an arsenic-doped sample
reveals it to be of the inhomogeneous type described by
Portis. ' This suggests that the remaining line breadth
of the hyperfine lines is still caused by hyperfine
interactions, presumably with the nuclei of Si" (5


