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This limited, theoretical study is phenomenological and nonrelativistic. Effects of interactions on wave
functions, magnetic dipole moments, and binding energies are obtained by first-order perturbation methods.
The interactions satisfy well-known requirements of invariance, contain no power of momentum higher
than the 6rst, involve no dependence on charge, and introduce only I' state in a 6rst-order calculation.
They contain spin-orbit interactions and may give rise to interaction moments. Each interaction contains
a scalar radial function of positions f The .unperturbed potential corresponds to pairwise Hooke's law
forces between nucleons. The 6rst-order energy perturbation is shown to vanish for all the interactions.
It is shown, without further specialization of the f, that no one of 6fty-eight of the seventy-five interactions
yields observed magnetic moments. No definite conclusion is obtained for eleven of the remaining seventeen
interactions, for calculations with plausible f appear difficult. Each of the remaining six interactions yields
observed magnetic moments with plausible f.

INTRODUCTION

EVERAL workers have recently discussed many-

' ~

body nuclear interactions in connection with the
binding energy of He4, nuclear saturation properties,
and the independent-particle model of the nucleus. '
Although it is not certain that many-body interactions
are required in the explanation of nuclear properties,
investigation of possible forms of such interactions and
of their eGects in nuclei is, nevertheless, of interest.
The number of possible forms is very great; and the
calculation of their eGects is likely to be diflicult,
especially since meson theory in its present state is not
well suited to quantitative calculation. The phenomeno-
logical and nonrelativistic treatment of the present
work is applied only to the comparatively simple nuclei
H' and He'.

If the possible existence of three-body forces is
ignored and the two-body forces are assumed to be
composed of central and tensor parts, the ground states
of H' and He' are mostly mixtures of 5 and D states. '
Such ground states combined with the theory of Sachs'
give the observed value of the sum of the magnetic

$ Work performed, in part, under U. S. Atomic Energy Com-
mission Predoctoral Fellowship. This report is from a thesis sub-
mitted in partial fulfillment of requirements for the Ph.D. degree
at Vanderbilt University. Phys. Rev. 92, 855 (1953).*Now at Los Alamos Scienti6c Laboratory, Los Alamos, New
Mexico.' For example, J. Irving, Proc. Phys. Soc. (London) A66, 17
(1953); S. D. Drell and K. Huang, Phys. Rev. 91, 1527 (1953);
L. I. Schiff, Phys. Rev. 84, 1 (1951);R. E. Peierls, Proc. Phys.
Soc. (London) A66, 313 (1953).' R. L. Pease and H. Feshbach, Phys. Rev. 88, 945 (1952),
present references and recent work.

3 R. G. Sachs, Phys. Rev. 72, 312 (1947). Sachs assumes that
the wave functions of the conjugate, or mirror, nuclei H3 and
He' are identical in the sense that "the wave function of the one
nucleus can be obtained from that of the conjugate nucleus by
identifying those variables in the one wave function which refer
to the neutrons as the variables referring to the protons in the
other wave function, and by treating the proton variables in a
similar manner. "R. Avery and E. N. Adams II, Phys. Rev. 75,
1106 (1949), conclude that the ditference between the He and Hee
wave functions resulting from Coulomb forces has completely
negligible effect on the calculated magnetic dipole moments of
these nuclei.

dipole moments of H' and He', but they do not give
the observed magnetic moments of the individual
nuclei. The work of Sachs indicates that a more com-
plicated ground state containing a considerable fraction
of P state in addition to the 5 and D states can yield
values for the individual moments which dier only
slightly from the observed moments. Avery and Sachs4

state that relativistic corrections may overcome the
difference; but they also conclude, from kinetic energy
considerations, that the calculation of the moments by
Sachs' requires an unreasonably large fraction of P
state and that it is more reasonable to invoke inter-
action moments' to obtain agreement. Ross6 has ex-
amined the evidence for nonadditivity of nucleon
moments in heavy nuclei. He concludes (a) that the
deviations of static moments of heavy nuclei from the
Schmidt lines are an unreliable and ambiguous source
of information and that they could be ascribed to a non-
additivity eBect only if that were a many-body effect
and (b) that the observation of certain "forbidden"
magnetic dipole transitions in heavy nuclei seems to
provide direct evidence for the existence of nonaddi-
tivity eBects. Although the existence of such eGects
is fairly well established, the existence of P state
attributed to spin-orbit interaction in other very light
nuclei is reason to suppose that similar interactions
cause P state to appear in the ground state of H' and
He';~ and the presence of this state can decrease the
interaction moment needed to bring agreement with
observation. Apparently no calculation of the fraction
of P state introduced by plausible nuclear interactions

4 R. Avery and R. G. Sachs, Phys. Rev. 74, 1320 (1948).' F. Villars, Helv. Phys. Acta 20, 476 (1947) and Phys. Rev. 86,
476 (1952); R. G. Sachs, Phys. Rev. 74, 433 (1948) and Phys.
Rev. 75, 1605,, (1949); Blanchard, Avery, and Sachs, Phys. Rev.
78, 292 (1950); R. K. Osborne and L. L. Foldy, Phys. Rev. 79,
795 (1950); N. Austern and R. G. Sachs, Phys. Rev. Sl, 710
(1951); A. Russek and L. Spruch, Phys. Rev. 87, 1111 (1952);
N. Austern, Phys. Rev. 92, 670 (1953).' M. Ross, Phys. Rev. 88, 935 (1952).'I . Rosenfeld, Xgcleor Forces (Interscience Publishers, Inc.,
New York, 1948), Sec. A2.251, and Physica 17, 461 (1951);
D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).
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which yield observed magnetic moments of H' and He'
has been published. ' Adams' has made a study of
certain hyperfine-structure eGects in tritium according
to several theories of the origin of the triton moment
anomaly. He concludes that the eGects do not serve
as a possible means of distinguishing among the several
theoretical accounts of the triton moment anomaly.

The purposes of the present work are (a) to con-
struct certain types of three-body interactions which
give rise to interaction moments and which introduce
only P state 'in a first-order calculation and (b) to
study, in a very limited and circumscribed manner,
the e6ects of these interactions on the wave functions,
magnetic dipole moments, and binding energies of H'
and He'. This work may be of use in further investi-
gations in which these interactions are combined with
other interactions to describe nuclear properties in a
more comprehensive fashion. We assume throughout
that the wave functions of the two nuclei are identical. '
Our interactions turn out to involve spin-orbit inter-
actions, and development of the independent-particle
model has focused attention on this sort of interaction. "
Spin-orbit interactions are also useful in describing
high-energy nucleon-nucleon scattering. "

INTERACTIONS AND OPERATORS

To limit the possible forms of interaction, we use the
eight general invariance requirements listed by Eisen-
bud and Wigner. " In the present study we consider
only those three-body interactions which (a) contain
no power of momentum higher than the first, (b) intro-
duce only P state in a first-order calculation, (c) in-
volve no dependence on charge, and (d) contain real
scalar radial factors of the sort f(ris, r23,rsi), where
r, ,=g(r;,"r;,) and r;; gives the position of particle i
relative to particle j. Restriction (b) implies that the
interaction must transform in ordinary space" like an
axial vector. Since the interaction must be invariant
under rotations in combined spin-ordinary space, any
interaction of the sort considered here may be written
as a sum of terms of the form EI'= f(ris, r23,rsi)(axial
vector operator in spin space) . (axial vector operator in

ordinary space).

It is not difFicult to show that, for a three-nucleon system,
there are just twenty linearly independent isotopic operators
which satisfy the general conditions of invariance. In spite of the
general conditions that the interaction be symmetric under time

reversal and under interchange of any pair of particles, the
number of products (axial vector operator in spin space) (axial
vector operator in ordinary space)(isotopic operator) is large. In
order to reduce the number of such products available, we have
ignored the isotopic formalism by taking the isotopic operator
to be 1.An interaction with this isotopic factor must be symmetric
under interchange of any pair of nteeticu/ particles. Two other
important simpli6cations are obtained by omission of the isotopic
formalism: (a) We wish to follow Sachs' and assume that the
wave functions of the nuclei H' and He' are identical. Some
isotopic factors other than 1 lead to perturbed wave functions for
the two nuclei which are essentially not identical. (b) The form
of interaction includes no space exchange operator; hence only
nonexchange interaction moments appear.

In the wave function of H'(He') we designate the
proton (neutron) variables by a subscript I, and we
define 8,; as (1+Jr; Jr;)/2. In spin space there are axial
vector operators ol, c2, o3, and scalar operators 1,
o~ e2, o2 e3, e3.0i, but there are no polar vector or
pseudoscalar operators. The axial vector operator in
spin space must then be a linear combination containing
one or more of the nine linearly independent operators
listed in Table I. Any product among these operators is
reducible by the commutation relations to a linear
combination of the operators listed, and each of the
operators is Hermitian. In ordinary space there are
useful polar vector, axial vector, scalar, and pseudo-
scalar operators. Examples are, respectively, r~2, y~2,

.
r3JXri2 ri2X pi2,' I 1 J2' psi' , and rsi rJ2Xp3J= (f3ilisp3J).
The axial vector operator in ordinary space must then
be a linear combination containing one or more of
twenty-one linearly independent operators. The condi-
tion that the operator be Hermitian reduces from
twenty-one to thirteen the number of linearly inde-
pendent operators available. The axial vector operator
in ordinary space must then be a linear combination
containing one or more of the thirteen linearly inde-
pendent Hermitian axial vector operators in ordinary
space listed in Table II.

The general interaction available under restrictions
imposed up to this point is a sum of terms of the sort
f;;S;.K,, where S; is one of the nine spin operators of
Table I and K; is one of the thirteen ordinary operators
of Table II. No loss of generality is implied by the re-
striction that each of the axial vector operators contain
only one of the tabulated operators, for linear com-

TABLE I. Axial vector operators in spin space.

8 Blanchard, Avery, and Sachs, reference 5, discuss calculations
of interaction moments performed with two-body interactions
that can introduce I' state; but they neglect eGects of this I'
state on calculated magnetic moments.' K. N. Adams II, Phys. Rev. 81, 1 (1951)."I.Bloch has suggested in a private communication (1952)
that the special spin-orbit interactions of the shell model may be
the result of many-body spin-orbit interactions.

"For example, K. M. Case and A. Pais, Phys. Rev. 80, 203
(&950).

'2L. Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. 27,
281 (1941)."By "ordinary space" we mean "ordinary three-space in which
transformations are independent of spin space. "

Symbol and operator

S,=a2+03
S3=02—e3
S4=e2Xe3
S5=+1X&2—+3X+1
S6=&1X&2+0'3X&1
S7=&23&1
SS=~123+~312
S9 ~123 ~31+2

Symmetry
Interchange

Time of particles
reversal 2 and 3
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binations may be obtained by suitable choice of the f,t
in the sum. Since the interaction must be symmetric
under time reversal, only (3X1)+(6X12)=75 per-
missible products S; K, can be formed. Each of these
products has a definite symmetry under interchange of
identical particles. It follows that the scalar radial
functions f;; associated with each product must have a
definite symmetry under interchange of identical par-
ticles, for the interaction itself must be symmetric
under this interchange. In order to simplify further the
following discussion, we consider hereinafter only those
three-body interactions which are not a sum of terms,
but a single term of the sort H, =f,;S; K;.

The interaction moment operators M,, arising from
the interactions considered may be written by use of
the results of Sachs and Austern. "These operators are
listed below in units of the nuclear magneton, eh/2ntc.
The F is mf;;/lt, and R„ is the coordinate of particle n
with respect to the center of mass of the system. The
superscript on H' and He' is omitted for convenience.

M, ,(H) =M, ,(He) =0,
M,2(H) =FR,X [(r81 r12) X S,],

M, 2 (He) =F[R2X (r12X S') —R,X (r„XS,)],
M '3 (H) =FRI X (r23X S;),

M;8(He) =F[R2X (r12X S')+R8X (r81X S;)],
M;4(H) =FR,X[(r„—r31) XS,],

M;4(He) =F[R2X (r»X S;)—R3X (r12X S,)],
M,8(H) =FR1X (r23X S,),

M,s(He) =F[R2X (f81X S )+R8X (r12X S ')]
M, p(H) =F[(r81Xr12)XR1][(r31 r12)' S'],

M;8(He) =F(r81Xr12)X[R2(r12 S,) —R3(r31 S;)],
M'1 (H) =F[(r81Xr12) X R1](r28 S,), '

M,r(He)=F(r31Xr12)X[R2(r12 S;)+Rs(r81 S;)],
M;3(H) =F[(r81Xr12) X R1][(r12 r81) S;],

M,s(He) =F(r81Xr12)X[R,(r81 S;)—R, (r12 S,)],
M;8(H)=F[(r31Xr12)XR1](r23 St),

M;2(He) =F(r81X r12) X [R2(r31 S;)+R8(r12. S;)],
M, tp(H) =M;rp(He) =0,
M 11(H) M 'll(He) F(rslr12S ') (f28 X R1),

M;„(H)=M;12 (He) =0,

M;„(H)= -';M,„(He)=M;,1(H).

THE UNPERTURBED SYSTEM

We consider the nucleus H' (or He') as a system of
three particles each of mass m" with position vectors

"R. G. Sachs and N. Austern, Phys. Rev. 81, 705 (1951),
Sec. II. It is not difficult to demonstrate that our three-body
interactions satisfy the general consequences of gauge invariance
given in Sec. III of this reference.

"We assume m=lt„, for !m m„!/(m +mn—)(0 1percent. .

TABLE II. Axial vector operators in ordinary space.

Symbol and operator

K1=«31X«12
K2 «12Xp12+ «31Xp31
K3 «12 Xp12—«31Xp31
K4= «31Xp.12+«12Xp31
K5 «31 Xp12 «12Xp31
Kt= 213$(rtlX fit)+f12(ftlfl2PI-)

+f31(ftlf12P31)
KI —f12(ltlfl2PI ) r31(rtlf12P31)
K3= )tt (f31X rl2 )+f31 (f311 12PI 2)+rl2 (f 3 If 12P31)
K2= 131(f31112P12) f12(f31112P31)

KIO= (r"IXrlt)( %2+&12 PI2+r31'Ptl}
Ill= (fIIX f12)(112'Pl ftl'Ptl)
KI2= (f31Xr12)(4rt3+rtI'P12+f12'Ptl)
KI3= (rtIX f12)(rtl'PI2 rl 'Ptl)

Symmetry
Interchange

Time of particles
reversal 2 and 3

(t1)= (n1)+ (p1)+ (q1), (t2) = (n2)+ (p2)+ (tl2),

N(xs, y3,83) = C exp(iP3' p3/trt),

N„t(x,) =X„1H„1(xr/a) exp( —2:1'/2a'),

(nl) =0, 1, 2,

2V.I= [(n1)!2n'aqrl] l a= (52/3km)',

H„& is an Hermite polynomial, and the remaining I s
are similar to N„t(xr). If we assume that the momentum
of the center of mass of the nucleus Ps is zero and that
C=1, then the space-dependent factor is normalized
and the energy eigenvalues are

Etr, 32= [(t1)+( 2)+t3](P/ tn)t+aD.

The spin-dependent factor of the wave function must
be a. linear combination containing one or more of the
eight linearly independent spin functions for three

"Although this Hamiltonian is unrealistic, it leads to a fairly
reasonable ground-state wave function. Hamiltonians of this
type have the advantage of allowing calculation of a set of energy
eigenfunctions for any nucleus.

r&, r2, rs, where particles 2 and 3 are identical. We take
the unperturbed Hamiltonian of the system to be"
H = [(p12+p,'+p82)/2m]+ [l8(r122+ r282+ r312)/2]+Dl
where k is a real positive constant and D is a real con-
stant. In order to separate and solve the unperturbed
Schrodinger equation, we transform to normal coordi-
nates in which y; has components x;, y;, and s; by the
relations

xr ———X2/+2+ X8/g2,
x2 ——2X1/Q6 —X2/Q6 —X8/Q6,
xs ——Xr/+3+ X2/+3+ Xs/+3,

and by similar relations for y and s components. The
space-dependent factor of the wave function is

qttl, t2 24n1(a1) 24nl Q 1)2421(sl) 24n2 (~2)84@2 (y2)84q2 (22)

X 84 (asly31s3) 24n1, nl, ql, n2n2, q224(a3, 1y33s8) I

where
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TABLE III. Spin functions for three particles.

Symbol and spin function
L»'igen values of

S2/I22 5./I7

Symmetry
under inter-

change of
particles
2 and 3

$1=CNXO!

s&=PPB
s» ——(unp+npu+ pun)/g3
s» = (ppn+pnp+npp)t Q3
s6 ——(nnP+nPn 2Pn—n)/g6
s = (PPn+PnP —2nPP)/V'6
s7 ——(nnP nP—n)/Q2
s = (PP--P-P)/V'2

i5/4
i5/4
i5/4
i5/4
3/4
3/4
3/4
3/4

3/2—3/2
i/2—i/2
i/2—i/2
i/2—i/2

particles: nnn, nnP, nPn, Pnn, PPn, PnP, nPP, PPP." It is
convenient to group these functions into combinations
that are simultaneous eigenfunctions of »(»rt+»78+op)'
—= S'/hs and —,'(o.l,+as,+trs, )—=5,/)7. These combinations

may be generated with the aid of a spin raising oper-
ator (o +its+so;„)+.8(o +to+ss. tr)sIn T. able III are
shown a set of such linearly independent orthonormal
spin functions. Now the magnetic moment is conven-
tionally described as the expectation value of the s com-

ponent of a magnetic moment operator over a state in
which the s component of total angular momentum has
its maximum value J,=J. Since the total angular
momentum of each of the nuclei H' and He' is I'5/2 and
since the common wave function of the nuclei must be
antisymmetric under interchange of particles 2 and 3,
we write the normalized unperturbed ground-state wave
function of the nuclei as fp= $77»000, 000.

For the sake of simplicity the unperturbed ground-state wave
function written just above is used in all calculations in this
report, although it is possible to carry out the calculations using
a slightly more general unperturbed Hamiltonian. ' Let us take
k„1, k»1, k.,„~I, and k„„3 to be force constants between two neu-
trons in a relative singlet spin state, two protons in a singlet
state, a neutron and a proton in a singlet state, and a neutron and
a proton in a triplet state, respectively. If k~~l=k»1=kI and

k7»y] k75273 k&~k1, then the normal coordinates are just those
de6ned above; but the eigenfunctions of the altered Hamil-
tonian contain two distinct a' s: a&

——{ks/[(2k&+k7)m]}& and
a» ——(ks/3ksm) &. This choice of force constants seems unacceptable,
for it is believed" that, although the singlet forces are nearly
equal in strength, the triplet force is about 60 percent stronger
than the singlet forces. If we attempt to simulate spin-dependent
forces by using k»1=k»1=k»=k»/i. 6, then the Hamiltonian
is not symmetric under interchange of identical particles and the
eigenfunctions of the Hamiltonian are not antisymmetric under
interchange of identical particles. From these eigenfunctions we

may, however, construct antisymmetric functions which are in a
sense approximate eigenfunctions of the Hamiltonian. The spin
dependence of the forces is properly taken into account by use
of a Hamiltonian which contains spin operators and which is
symmetric under interchange of identical particles.

' Notation for spin functions and operators is that of L. I.
Schiff, Quantum 3IIeckan»cs (McGraw-Hill Book Company, Inc. ,
New York, 1949), Sec. 33, with (+) here replaced by n and
(—) byP' For example, W. V. Houston, Phys. Rev. 47, 942 (1935),
treats the case of three different force constants and three diferent
masses.

'~ See L. Rosenfeld, NNclecr Forces, reference 7, Sec. 3.3 and
Tables 6.432, 7.i3, and 8.i.

THE PERTURBED SYSTEM

The Ground-State Wave Function and
Binding Energies

The perturbed ground-state wave function may be
written f=fp+f, ,', where the perturbing wave func-
tion lf, t' is obtained by the standard first-order method.
It is easy to show that p&,No=Sic 'r&,no,"a result which
is helpful in writing the products I;uo of No by the
ordinary operators of Table II. These products reveal
that only thirty-two of our seventy-five permissible
interactions may yield a nonvanishing perturbing wave
function. These interactions contain either a product of
any one of the spin operators Sl, Ss, S7, Ss, Sp by any
one of the ordinary operators Ks, Kp, Ks, Klo, Kit, Kts
or one of the products S» Kl or Sp Kl. For brevity we
list. tllese products as Sl, 8, 7, 8, 9' K5, 6, 8, 10, 11, 12 S», 6 Kl.

The unperturbed potential leads to an infinite binding
energy. The first order-energy perturbation vanishes
because $0 is spherically symmetric while H;,' trans-
forms like a I' state. The perturbed potential is un-
suited to energy calculations because it yields an
infinite binding energy in a erst-order calculation. "
In view of this fact we shall not consider the second-
order energy perturbation.

Magnetic Dipole Moments

In the following calculations we take the observed
magnetic dipole moments in nuclear magnetons to
be tt„——2.7928, tt„= —1.9129, tt(H8)—=ttn=2. 9789, and
tt(Hes)=—t»H,

———2.1276.88 It is not likely that any of
these values is in error by much more than &0.0002.

Our perturbed wave function contains only 'S, 'P, 'P,
and 4P states, where ~ or —indicates" that the spin-
dependent factor is antisymmetric or symmetric, re-
spectively, under interchapge of particles 2 and 3. The
spin and orbital contribution to the magnetic dipole
moment may be written by use of the results of Sachs. '
If the interaction is one which yields a vanishing per-
turbing wave function, then from spin and orbital con-
tribution alone t»H(calc) =tt„(t»H, ttn, (calc) =tt &ttn„
andttn(calc)+pn. (calc) =tt„+tt„)t»n+ttn, . If the inter-
action is one of the thirty-two which may yield a non-
vanishing perturbing wave function, we can reach

2'This result implies at once that all two-body interactions
which satisfy the general requirements of invariance and are of
6rst degree in mornenta yield no perturbing wave function on
application to our ground state. The same conclusion holds for
any ground state with space dependence a function of r&P+r&P
+r,P=3(pP+pss); but it does not hold (a) if the function con-
tains (x&xs+y&yp+s&s&)/(p&p&), which is the g of Avery and Sachs,
reference 4, or (b) if, as discussed above, the unperturbed Hamil-
tonian contains two or more distinct force constants.

8»H. Margenau and D. T Warren, Ph. ys. Rev. 52, 790 (1937)
and D. T. Warren and H. Margenau, Phys. Rev. 52, 1027 (1937),
consider a two-body central perturbing potential designed to
remove this difhculty.

~ N. F. Ramsey, Experi merItal ÃNclear Physics, E. Segre,
Editor (John Wiley and Sons, Inc. , New York, 1953), Vol. 1,
Part III. The sign of pH, is from Fred, Tomkins, Brody, and
Hammermesh, Phys. Rev. 82, 406 (1951).

2' Rosenfeld, NNclefJr Forces, reference 7.
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useful conclusions about spin and orbital contributions
by considering the general properties of the space
dependence and the details of only the spin dependence
of the perturbed wave function. It may be shown24 that
any one of the interactions yields by spin and orbital
contribution alone pH(calc) (&p~(pH and pH, (calc)
&~p,„&pH„although some interactions may possibly
give pH(calc)+pH, (calc) =pH+pH, .

Since any one of our interactions yields by spin
and orbital contribution alone I4H(calc) (pH and
pH, (calc))pH„ it is necessary for agreement, with
experiment that the interaction contributions (M.(H))
and (M, (He)) be different from zero and of opposite
sign. In terms of a normalized perturbed wave func-
tion P, the interaction contribution is (M,)= (f,M,P)
= (Po,

Mdtro)+

(P',Md/)+ (P',M Po)+ (Po,M,Q'), where
the subscripts ij have been omitted from M;,, and lit;

for brevity. The (P',M,P') is hereinafter ignored, for it.

is essentially a third-order term comparable with terms
like Q",M,fo) arising from a second-order perturbed
wave function. Fairly straightforward manipulations
reveaP4 (a) that an interaction not containing one of
the tWenty-fOur prOduCtS Si, ?, s Kg, g, 4, 6, 7 9 ii ig giVeS

(leap M leap)
=0 and (b) that an interaction not containing

one of the twelve products S1, 7, 8, 9' K6, 6, 8 gives (p', M,pp)
+ (leap, M lp) =0. Clearly, then, only thirty-three inter-
actions may yield a nonvanishing interaction con-
tribution. Closer examination of these thirty-three
interactions, with extensive use of symmetry and trans-
formation properties but without specialization of the
radial factor f in the interactions, shows" that sixteen
of them do not yield the observed moments. The
seventeen interactions remaining for detailed calcu-
lations are those containing one of the products
S1,?, 8' Kg, 4, 6, 8, 11 or S9' K6, 8

In order further to test the remaining interactions,
it appears necessary to make some assumption about
the radial function. If this function contains factors
resembling conventional square, Gaussian, exponential,
or Yukawa wells, and if the interaction contains one
of the products Si, ?, 8 K6, 8, 11 or Sg Kp 8, then the per-
turbing wave function contains, in general, an infinite
number of excited functions, I ~, ~i, q], +2, y2lq2 If the
plausible value of a'=2.8)(10 "cm' is selected, " then
Eli, lg Ep= L(11)+(t2)j (14.8 Mev); so there may be
appreciable fractions of excited states with (t1)+ (12))6
associated with a not unreasonable kinetic energy of
the system. The calculations involving a perturbing
wave function expressed as an infinite series in the
excited functions appear difficult; and it is not evident
how to estimate the error committed in performing a
calculation with a truncated series. If the radial func-
tion f is a polynomial in the coordinates of the particles,
then the perturbed wave function contains only a finite
number of excited functions. AVe carried out detailed

calculations" with the radial function

( pi pg' t V w (rig +rgi
f=

I
1+w—+~ I= 1+—

I

Jag E ag ag ) Ilag 3 ( ag

f w 'v'l rgg"

~2 6) ag

f=
I

1+w—+s—I(lit tgg)
ba4 ( a' a')

ka4

w (rig'+r»'~ (w p~r»' ~r, &' rgi—
1+—

I I+ I

——
I3( a' ) &2 6) a' l 2&3 )

for interactions containing one of the products Si, ?, 8

' Ko, 8. For. all real values of the parameters V, a', w,
and v the calculated moments dier from the observed
moments by many times the experimental error in the
observed moments. Omission of the term unity in the
second factor of the f does not alter this result. Since
the calculations were carried out with a very specialized
form of radial function, and since this form is not very
reasonable physically, we have no definite conclusion
about agreement between observed moments and mo-
ments calculated from interactions containing one of
the eleven products Si, ?, s Kp. 8, ii or Sg Kp, s.

Interactions containing one of the products S1, 7, 8 Kg, 4

lead to no perturbing wave function. A radial function
which is fairly reasonable physically is

t'PP —Pgo ) ( Pig+ Pgg )f= 1+wl —
lI expl-

a' ) E gg )
V w (2rgg' —rig' —rgi' ~=—1+—

I

a 3( a' )
riP+rgg'+rgP )

Xexp l

3g2

If we require that calculated and observed moments be
equal, easy calculations show that for an interaction
containing one of the products S1, 7, 8' Kg,

pH —
44 = 2( 776aV'/5')

I g'/(g +9a')]4

(44He Pn) (PH P?P) =wg'/(g'+a')
+He Pn

and for an interaction containing one of the products
Si, ?s K4,

(4 H.—t -)—(4 H —
4 ) = 2(?74Va'/@') I:g'/(g'+ a'))'

for interactions containing one of the products Si 7, 8 Kii
or Sg. Ko, s and with the radial function

64 A. W. Solbrig, Jr., thesis, Vanderbilt University, 1953 (unpub-
lished). Available on microfilm from University Microfilms, Inc. ,
Ann Arbor, Michigan.

PHe I)f n =wg'/(g'+a').
(PHe Pe) (PH Pp)
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TABLE IV. Some values of parameters in interactions which yield
observed moments of H' and He'. (a'= 2.8X10 "cm' )

3g2

30u2
9@2
6u2

g2

fSi,v, s.K2
V (Mev)

1.59
2o33—5,03—8.05—25.5

1.87
2.05
2.49
2.80
3.73

fSi,v, s K4
V (Mev)

—2.97—4.35—9.39—15.0—47.5

0.54
0.59
0.71
0.80
1.07

Since no interaction which alters the ground-state
wave function accounts for the observed magnetic
moments in the above calculations, we are not able to
calculate the nonvanishing fraction of I' state intro-
duced by an interaction which yields observed magnetic
moments.

Several suggestions for further work arise from the
present study: (a) The effects of linear combinations
of the three-body interactions on the magnetic moments
are worth consideration, for these eRects are not

Values of V and zv required by a few diRerent values of
the range parameter 3g' are presented in Table IV for
a'= 2.8)&10 ' cm'."

necessarily additive. Preliminary calculations indicate
tkat the nonadditive eRects may lead to better agree-
ment between calculated and observed moments.
(b) Study of the properties of interactions containing
one or more of the other nineteen permissible three-
body isotopic operators remains to be undertaken.
(c) Combination of the three-body interactions with
well-known two-body interactions may account. for
nuclear properties in a more comprehensive way. In
particular, combination of the three-body interactions
with the conventional tensor force can lead to an orbital
'I"D cross term which may reduce the diRerence be-
tween calculated and observed moments. (d) Use of an
unperturbed ground-state wave function which depends
on p& g& or which is not symmetric under interchange
of normal coordinates 1 and 2 would cause signi6cant
changes in the calculation. " It therefore appears de-
sirable to seek other acceptable forms of the unper-
turbed Hamiltonian and to examine the altered eRects
of the three-body interactions.
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