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Expressions are obtained for all e®Ry contributions to the energy levels of the two-fermion system in
electrodynamics. These expressions are evaluated from a relativistic two-body equation which takes binding
into account in its interaction operator. They are specifically calculated for the =2 levels of the system.
Corrections arise from three sources: (1) improved treatment of pair effects of the Coulomb field and of the
exchange of transverse photons, (2) self-energy and vacuum polarization terms, and, in positronium, (3)
second-order annihilation processes. The energy shifts resulting from (1) and (2) do not depend on the
arbitrary masses through a single parameter like reduced mass. In the limit appropriate to hydrogen, the
previously calculated two-body corrections of item (1) are confirmed.

The principal new result is the determination of the #=2 levels of positronium. In contrast to hydrogen,
where the self-energy effect is dominant, here all three items yield roughly equal corrections. Together, they

amount to about 3 percent of the a?Ry level splitting.

1. INTRODUCTION

LECTRODYNAMIC corrections to the energy
levels of an atomic system consisting of one par-
ticle in an external field have been calculated by many
authors! and yield results in very close agreement with
the observed hydrogen spectrum. It was not until the
two-body equation was introduced,?? however, that one
could handle recoil effects relativistically, and hence
accurately calculate energy levels for a two-body
system. Several aspects of this problem have been
studied since then. Salpeter! has treated to order
o®Ry(m/M) the splitting in the fine structure of hydro-
gen due to non-self-energy processes; Karplus and
Klein® have calculated the singlet-triplet splitting in
the ground state of positronium; and Arnowitt® has
computed this splitting for a system in which the two
Dirac particles have arbitrary masses and one has an
additional phenomenological magnetic moment.
Recoil corrections? to the hydrogen Lamb shift have
the same order of magnitude as the discrepancy between
theory and experiment. The corrections® to hydrogen
hyperfine structure are considerably smaller than the

experimental error. The two-body effects in positro-,

nium are larger and more significant. They give a cor-
rection to the hyperfine structure of the ground state
of positronium which is confirmed by experiment.”
Consequently, it seemed desirable to calculate to order
o®Ry the energy levels of the 25 and 2P states of posi-
tronium. The splitting of these levels is affected by
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several processes contained in the relativistic two-body
equation which do not contribute to the hyperfine
splitting of the ground state. Measurement of these
shifts may therefore provide a more thorough check of
the two-body equation than a study of hyperfine
structure does. Also, the present problem requires a
more precise cut-off technique for low-energy photons.

Our calculation has been performed for a system of
two particles with arbitrary masses. This procedure
enabled us also to determine the recoil corrections to
self-energy terms in hydrogen, and to compare certain
parts of our solution with results previously derived
from the two-particle equation. Our findings agree,® in
the appropriate limits, with each of the three calcula-
tions mentioned above.*~® The general dependence on
the two masses does not indicate any method for re-
ducing the problem to one in which a single parameter
plays a role similar to the role of reduced mass in non-
relativistic theory.

The use of a two-body formalism, in which binding is
taken into account in intermediate states, is an essential
theoretical improvement upon previous treatments. One
of us® has previously derived, in collaboration with
Professor R. Karplus, an improved interaction kernel
which accomplishes this purpose by selectively resum-
ming certain classes of terms in the expansion of the
kernel in free-particle Green’s functions.’® An alternative
derivation, presented in the Appendix, yields this
effective interaction operator without expansion and
resummation. The introduction of binding removes
infrared divergences and yields additions to already
convergent results less ambiguously than did previous
treatments.

8 The purely Coulomb shift [our (3.11) and (35) of S] differs
from S by a factor of two. This difference amounts to 0.037 Mc/sec
in hydrogen and is not numerically significant for it. The reason
for this discrepancy appears to be the use in S of A_—(E—m)/4AE
instead of A_—(E—m)/2E.

9 T. Fulton and R. Karplus, Phys. Rev. 93,1109 (1954). Here-
after referred to as FK.

0 R. J. Eden, Proc. Roy. Soc. (London) 219, 516 (1953), has
independently suggested such a procedure.

811



812

2. WAVE EQUATION, INTERACTION, AND
PERTURBATION THEORY

In general, we employ the methods and notation of
Schwinger,? KK-III, and FK in this paper. A brief
recapitulation of the relevant formulas seems in order.

The fully renormalized wave equation for two fer-
mions with arbitrary masses is

[F,(11)Fy(22")—T(12,172") W (172") =0,

where _
F1o=p1, 071, 0Fm1, 0= (G, 2) 7Y,

(2.1)

and m; (or ms) is the experimental mass of particle one
(or two). I is the renormalized interaction operator.
We introduce center-of-mass and relative coordinates:

m=my(mitme)Y, na=ma(mit+mse)7,
M= (mﬁ- mz)_l,

X =n1%11 1220,

(2.2)
X=%x1—%s.

Every operator, 0(12,1’2"); which is of interest,
depends only on relative coordinates and the difference
of center-of-mass coordinates. Hence we define

Ox (w3') = f i EE-X0(12,12)d4X".  (2.3)

The renormalized wave function is
Y (x1%9) = 2m) 32 KX o (). (2.4)

We single out the Coulomb interaction as the part

of I mainly responsible for the binding and write
I(12,34)=1°(12,34)+1'(12,34), 25)
19X X') = —iad(X— X)5(x—a")s @)y v/r.

This separation serves two purposes. In the first place,
we can use perturbation theory" with the ‘‘unper-
turbed” equation,

[Fxe(wx’)—Ike(xx”) Joxe(a') =0, (2.6)

as a starting point. Fxe is the center-of-mass transform
of F1F,. To the accuracy of our calculation, the wave
function ¢x may be approximated by

ox@)= =i [Ax@e)s(a)onchaw, (1)
where
A(12,172) =GP 28 (22)+-6 (111G (22 )y, (2.8)

Energy corrections to order o®Ry to K are given by* %9
AE=K,—K°= zf ok (%) k (xx") o (') dhxd*s’

- f 10 (£,0)5 (20) K (22)5 (x0)
X pxo(r,0)dbudt!, (2.9)

1 Alternative approaches to perturbation theory are presented
in S and reference 6.
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where
KG = (O;KOC)’

%(12,172") = A (12,34)y10v27 (34,3'4)A (3'4/,1'2"), (2.10)

J(12,172")=1I"(12,12")+ I" (12,34)GC (34,3'4")
XI'(3'4/,12").

G¢ is the Green’s function of Eq. (2.6).

Secondly, the separation (2.5) enables us to express I’
in a way that takes the Coulomb binding into account.
Such a form for the interaction kernel is exhibited to
lowest order in the Appendix.!?

The complete kernel to order o?Ry including binding,
is prohibitively complicated. However, binding is not
important everywhere. It need be taken into account
only when an interaction term contains significant cor-
rections from intermediate states with low-frequency
quanta. Such interaction terms may be easily recog-
nized; when treated by Born approximation, they lead
to infrared divergent energy shifts for .S states. When
this happens, we find that the energy shifts of other
states may not be calculated from these Born-approxi-
mated kernels either. Though neglect of binding does
not produce divergences, it is not sufficiently accurate.
On the other hand, kernels which do not yield infrared
divergences for .S states when calculated by Born ap-
proximation describe processes of high-momentum
transfer. Low-energy quanta, for which binding is im-
portant, give a negligible correction to these kernels.
As an initial step of simplification, then, we use Born
approximation on those parts of J which, when ap-
proximated, yield convergent S-state shifts. Two terms
cannot be treated this crudely: one describes the
exchange of a single quantum; the other arises from
vertex parts. Binding is significant for these two, and
the correct kernel must be retained.

We have introduced binding by using, as a first
approximation to the two-body system, one in which
the instantaneous Coulomb potential is the total
interaction. Naturally, this potential is not covariant.
As a result, we find that, except in those terms of the
renormalized equation which are separately ultraviolet
divergent, the noncovariant radiation gauge is more
convenient than the Lorentz gauge. The divergent
terms, of course, can only be recognized and eliminated
unambiguously when expressed in covariant form. We
therefore use Lorentz gauge in self-energy, vacuum
polarization, and virtual annihilation terms.

With the above remarks in mind, we write down the
interaction kernel J correct to order o®Ry:!

J=Jc+Jp+T+JTv+J 4. (2.11)

2 The form is essentially equivalent to those proposed in
references 9 and 10.

By (£)="(£,ab)=vasd (xt—%4)3(xa—xs). The notation, ~v(£,ab)
of KK-IIT is forced upon us by the annihilation interaction. Where
the annihilation interaction is not considered, the shorter notation,
v(£), of reference 2 will be used. The latter employs the standard
matrix summation convention for the particle coordinates and
spins.
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J¢ is given by

J o= (4mia)>y:* (£)v2 (8)G°G v, (£) B
Xy22(§)Dc(£¢) Do (EE),

1 b (E—E)
[
(2m)t k2

J¢ involves corrections to the energy levels due to pair
production by the Coulomb field.** It is not included
in Eq. (2.6). Jp is defined by

(2.12)
where

De(£t) =

Je=Jp1+J Ba,
where
J pi=4wia[ 1T (£§)FsGCF rv.T (¥)
+F172T(E)GC'YIT(5,)F2
1T (Ev:"(&)IDr(8¢), (2.13)

J po= (4mia)’[ 17 (§)v27 (E)GL'Gv 1T (B)v2" ()

+71T<sw(s'>G1°G2°ET((s)~§2;<£(’2J) 0.14)

XDy (gt £), (2.14
W@ (¢)Dr(E) T
1 e E—E)

() ‘_‘*71‘(8)727(5)(5,,_._)(1%

J g1 and J g, may be said to represent the exchange by
the particles of one and two transverse photons respec-
tively. (The replacement of G¢ by G°Gy® reduces Jp;
to the more familiar form 4wiay,7(&)y.T(¢)Dr(££).)
The two parts of Jps are the so-called “crossed” and
“uncrossed” terms of the second-order interaction. The
kernel J, where

JL= —47!'7:(1{72 (E) I:F1 (GC— G10G20)F];
+4riaGy1T (E)y2T (F)G"Dr (§E') Ty (&)
+71(O[F(GC—GLGO)F
+4miaG 17 (£)y2 (§)GLDr (EE') Jv1(¥)

— (a/27) (Bt Ba)v1(§)v2(£)} D(£8),

includes the contribution of all vertex parts. (The first
square bracket in Eq. (2.15) represents self-energy con-
tributions of the second particle. It would become the
more usual 4wiaG:y1(E)y2(E)GLD (EE), if we made the
approximation G¢=G"GL+G°GLI°G°GS’, and noted
the equivalence

V1T (&)v2T (&) Dr(EE) —v:1(&) v (¢)) D (£E)
=v1(Ov2(§)D ().

The second square bracket would reduce in similar
fashion.) The last group of terms in Eq. (2.15) results
from wave-function renormalization corrections to
single quantum exchange. They originate in the re-
placement of ¥ (x1x2) by [1—a(B1+Bs)/4r W (x1x2) and
are included in Jp rather than elsewhere to facilitate
computation.

(2.15)

14 J¢ corresponds to Gee® of S. It is the “crossed Coulomb”
term. Note also that v1%(¢)v2*(¢')D¢(gt")=1C.
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The vacuum polarization correction to the exchange
of a single quantum is

Ty = (4mia)yr (§) vy (§){ (4mic) D(£E)
X[tr(yr (G (8)G)
+tr(y? (OGSl (8)G) 1D (E'E)
— (a/27) (414 45)5,D (68}

The term containing 4, and A4, arises from the already
performed charge renormalization and is handled in a
fashion analogous to the renormalization term in Jp.

Up to this point, all kernels have the same form,
whether m; is equal to ms or not. However, two modi-
fications must be made in treating positronium. The
first concerns Jy. Since there is only a single fermion
field in this case, the vacuum is polarized by the emis-
sion and absorption of virtual pairs of only one kind of
particle. Thus Jy becomes

]Vpou= (47"1‘&)71,,(5)72# (_El){47r7:_aD(££) -
Xty (H)Gy(§)GID(E'E)
- (a/27r)A6,,,,D (ESI)}

In addition, a new interaction, representing virtual
annihilation, arises from the particle-antiparticle rela-
tionship of the constituents of the system. The lowest-
order contribution of this interaction has been cal-
culated by several authors’®*” and higher-order
corrections have been obtained in KK-III. The
complete annihilation kernel is

Ja=T 41+ T 42,

I41(12,34) = (4mia)y (£11)C(1'2) D(£¢)
XC1(43")y(¢,3'3),
J a0=TI 49+ 1 4:G°GT 4x+1 41G1°G2"1 1
+I31G10G20[A]_— (0!/7!') (B+ %A)IAI,
T42(12,34) = (4mia)?y (£,11)G(1"1")y (£,172")
XC(2'2) D(¢¢)D(E)[C1(33")y (£'3'4")
XGWa)yy (¢, 474) ~ C ()Y (F,43)
XG(3'3")y(¢,3"3),

I51(12,34) = (4mic)y (£,13)v (¢,24) D (¢¢').

3. COULOMB CORRECTIONS

(2.16)

(2.17)

(2.18)

(2.19)

In order to calculate energy levels of Eq. (2.1)
correct to order o’Ry, we must first determine the ‘“un-
perturbed” energy K¢ to that order. For this purpose,
we write (2.6) in the form

[Ko—H:(p)— Hs(—p) Jexe(x0)

+ @) f ¢ A (k) A5 (—K)

—Ar (KA (k) 1(@/7) exe(r'0)=0, (3.1)

16 V. B. Berestetski and L. D. Landau, J. Exptl. Theoret. Phys.

(US.S.R.) 19, 673 (1949).
167, erenne, Arch. sci. phys. et nat. 29, 207 (1947).
17 R. H. Ferrel, Ph.D. thesis, Prmceton, 1951 (unpublished).
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where
H, 2(1’) = @y, op+ M1, 271, &,

Ay st (k) =[Ey :(k)==H,, 2 (k) ]/2E,, 2 (k),

p=— iv, and El. 2(]{) = (ml, 22+ k2) %.
Equation (3.1) is very similar to the Breit equation
without magnetic interaction,

[Ky'°—H:i(p)— H2(—p)+a/r]es(r)=0. (3.2)

The energy levels of (3.2) may be expressed as power
series in o? with their leading terms of order Ry;'® the
energy levels of (3.1) may be expanded in powers of a.
The corresponding energy levels are equal to order
a®Ry; to the order Ry, they are the reduced mass energy
levels of the Schroedinger equation. We compute by
perturbation theory the difference, to order o’Ry,
between K¢’ and K, the former having no o’Ry term
in its expansion. We rewrite (3.1) as

[Ky'¢— Hy(p)— Ha(—p)+ (@/7) Jpxe(10)

_ f Q(er') (a/r') oxe(r0)=0, (3.1a)

AEC’a=

FULTON AND P. C. MARTIN

where

Qrr')= 2m)3 | et —[A+(k)As (—k)

+ A (&)AsF (—k) 424 (KA (k) ].

Q(a/7') is a small correction to the Hamiltonian of (3.2).
By first-order perturbation theory we get

AEca=Koc—Ko'°=fqag*(r)ﬂ(rr’)(a/r’)gaB(r’). 3.3)
Let

e (1)=(2m)7 | o™ =AM (k) A (— k) o5 (r).
The “large component” [ ¢, *(r)] of ¢5*(r) is orthogo-
nal to Q(rr’). The small components, correct to the re-
quired order, are obtained by iteration. We write (3.2)
as an integral equation,

ep(r)= (27)3 | ¢ [ H,(k)+ Hy(—k)

— Ky e/r)es(r), (3.4)

replace ¢5(r’) by the Pauli wave function ¢p(r’) on
the right-hand side of (3.4), and apply the proper pro-
jection operators. Using these wave functions for ¢ 5*(r)
in (3.3) and also substituting ¢p(r") for ¢5(r') in this
equation, we get!

T 7

Since contributions to the integral come only from
large momenta k=m, ¢p may be replaced by the am-
plitude of the Pauli wave function at the origin. With
these approximations, the energy shift AE¢, becomes

fl_” 2(0)[? fs_k 1 [ (Ertmi) (Ey—ms)
2T K E1E2l. (By— Ep) — (ma+ms)

“Ca=

(El - ml) (E2+ m2)
(Ez_ El) - (m1+ mz)

2 (El—‘ 1%1) (Ez— mﬁ] )
Ey+Eot-mi+-mq

E, ,=E, (k). (3.6)

o’ 1 [A (KA (—k)+A K) A (—k)+ 24, k) A~ (—k)] 1
[
Hy(k)+Hy(—k)— K,/

7(01)(1"). (35)

This integral can be evaluated exactly and yields
1

2 2 2
Afice= =] (0) (—+ +—). 3.7)

m mme My

The kernel J¢ gives rise to an integral which is very
similar to Eq. (3.6). Because only large photon mo-
menta contribute, we may set

AB=—i f 1™ (10)5 (20) K (427)3 (')
X pxo(r0)diwdin'=—i| £ (0) |2 f Tx(xx')dixdis’.  (3.8)

Some simplification yields the integral

ia? &k Art (k) Ay~ (K)+ A (k) A+ (k)
AEqy=—|e)|* | — ,
,rz""( ) f ” < (ho—miK o+ Hl(k))(ko—nzKoC—l—Hz(k))>

o [ FE 1 [ B ()
=;|¢(O)| f

(Ey—my) (Eat-ms) ]

? E1E2l (El—ml)—{— (E2+ "1«2) I (E1+ml)+ (E2_m2)

18 T. Ishidzu, Progr. Theoret. Phys. 6, 154 (1951).

1

2
+—).

’WL22

2 2
| ¢(0) (—— (3.9)

m  mime
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The brackets, { ), denote expectation values between
Pauli wave functions. The energy shift of order o®Ry
arising purely from the Coulomb interaction® is

1 b
(AE¢)ss=—— for 25 states, (3.10a)
Om my+mo
(AE¢)p=0 for 2P states  (3.10b)

4. EFFECTS OF TRANSVERSE QUANTA

The kernel X p1, derived from Egs. (2.8), (2.10), and
(2.13) is given in matrix notation by

K p1={az” ()GCy 1"y’ (¢')
vy T ()G GOIG Ty, T (£) Gy
+ G107 (§)GLICGOy, T (¢ )y
+G2071072T(E)GQD[IC_*‘ICGCIC]

XG"(E)G "+ (1 =2)}Dr(88), (4.1)

where we have set a’=+%T and used the relations
GO=G'G '+ GOGLTCGE = GG+ GCICGOG
=G'G L+ GG T+ ICGCIC]GOG.
Our first step in calculating the energy change due to
X p1 is to use Born approximation on the terms of this

kernel which involve pair processes, and to neglect
processes which require three quanta. Thus we let

K- ()G "y (¢)

+G vy " (O T (E) G,

+ Gy T (§)GLICG T (E) Gy,

+G 1™ (§)GLICGv1 T (§)G oy

+GPy1%72T (§)GLICG ™71 T (&) Gy,

+ (1 2) 1D (2.

By substituting G¢=G,'G:"+G° 201061°€2° in (4.1a)
and rearranging’ terms, one may obtain -the kernels
which give risegto the infrared divergent terms AEp

and AEcr of S. To avoid these"divergences, we treat
the first term of (4.1a) more carefully, writing

(4.1a)

AE=4ra f ox*8(%0) { LT (£)GCy1 v 01 T (£)
+ (1 2) 1D (£8)} kb (%0") ox©

— ia(2m) f ox7* (1,0)[as "G —t, ko (10;1'0)

Xayg ik (nrkmnr) o) iGE i, xy (10;170)
Xasietk: (nzﬂ-mr')] exp[i (KOC'.__ Kol) (Xo_ Xol)]
X e 1 Xo=Xo 1g=1(5;;— k ik ;/k?) e (1'0)

X Prdr' PrdXJdK. (4.2)
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For wave functions, we use the approximate form

orc(r0)= 14+ a1-p/2m) (1— e2- p/2ms) op(r). (4.3)

We divide the integration over % into two parts: a
region where % is less than and another where % is
greater than some given constant. This separation of
regions of high and low photon frequencies simul-
taneously divides G¢ into regions of high and low recoil
momentum. In the high-frequency, high-recoil-mo-
mentum region, G® can be expanded in terms of free
particle Green’s functions. In the region of low-fre-
quency quanta and low recoil momenta, large values of
K¢ (high-energy intermediate states) do not con-
tribute, and a nonrelativistic approximation to the
Green’s function may be made. This nonrelativistic
approximation involves setting

Ge(10,X; 1’0, X)) — (27r)3 f #BK"2,0K" ,(10)

X ¢*I_(H‘ n(r'())eiK"(X—X')’
=0,

where K¢'=K, is the energy of the nth state. The
¢K” . (r0) may be taken to satisfy

[H1(n K"+ p)+Ho (K" —p)—a/r]ox, »(x0)

=Kanek, o(10). (4.5)

In fact, the approximate solutions

ok, n(10)=[ 14- a1+ (1 K"+ p)/2m, ]
X[14 a2 (K"’ —p)/2ms]p (1),

where

K&En+K"2/2 (M1+M2), E,= m1+7ﬂ2“a2/.l./2’ﬂ2,
are sufficient.

The boundary between the relativistic and non-
relativistic regions is not critical. Thus the constant
separating the two regions can be as large as B=~aly,
or as small as 4 =colu. As indicated in S, the region 4
to B, in either approximation, yields the same shift.

We are now in a position to outline the details of the
calculation. We combine the lowest order, high energy
part of the first term in expression (4.1a), @1'G%G ay7,
with the second term, and the corresponding terms with
the particles interchanged. Employing techniques of
KK-ITI, we then derive to the required order of ac-
curacy a ‘high-energy, single transverse quantum”
contribution,

AE g™ = o (2m) f &*()3(p'— p'+ k) (28)

XR(p'p"E)S(0' 0" Ko (p"). (4.6)
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where

1 E I+ E II+
R(/p"R)= ) (B

4E/E,)" k+E/+E,)"—K°
1 m12—- E1IE1” 1
+ :
2E1’E1” k+E1,+E1” 4E1’E2”
(m1— Ey') (me— Ey"')
k+Ey/+ Ey"'+ K¢

+ (1e2),

S('p"k)s(p'—p"+k)

kikj (13 p' a2~p'
(e K50 (0-500)
k2 2m1 27712
o o p" o pII
Xaﬂaﬂ(l—}— )(1— )>6(p’-—p"+k),
2771/1 2’}’”2

1 Eik;
(-
4m1’i‘}¢2 k2

X{[2p'—i(e1Xk) 1L 2p" —i(02XK) ];).

The wave function ¢(p) is the Fourier transform of
¢p(r). The first approximation to (4.6), obtained by
letting R—2k™1, is the part of the Breit interaction
energy which arises from the momentum region 2> B:

and

S('p")=—

a ayay?
gBoo =
2

N dskf qu* (r)
2w Jy, >B k

kikj )
X(ﬁij—?)e’k'r(ag(l'). (47)

In this notation, the total Breit interaction energy is
Eoco.

At energies greater than B, the approximation pro-
cedures outlined in KK-IIT (in the paragraph below
Eq. (4.8)) are applicable. Corrections to &g, in this
relativistic region (k>B) arise only for p>p", or
$">p’. In these regions we let

(' —p"+k)—d(p'+ k),
3(p'— p"+k)—3(—p"+k),

respectively. Consequently, in terms correcting the
Breit energy, we can allow

Sé— (41%11%2)—1( (01 . 02)}32* ((71 . k) (0'2 . k) )6

and

(4.8)

Equation (4.6) can then be integrated to give for
AE g TH the result of Arnowitt.b

2
AE“BITH= gBee_ -

| £(0)|%01-02).

mims

my ma
X (2+‘nz In—-+m ln—). (4.9)
2B 2B
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Equation (4.6) may also be evaluated for photon
momenta lying between A and B. In this region, the
methods of KK-III are no longer sufficient; ¢, ", and
k are now all of comparable magnitude and k< u. Here,
we set

1 (m1+ El,) (’m2+E2") |

R(p'p"k) =
4E/Ey" k+E/+E)"—K°

(12)

1 Koc—*E1'—'E2’ KOC—E1”‘-‘E2"
z—(2% -

p A ) (4.10)

and obtain

AEp TH= 8,45+

(;)2 f : [ o1@)

1
Xo(p'— p”+k)§S (p'p"k)L(Ko®— Er' — E)

+ (Ko®—Ey"— Eo") Jo(p").  (4.11)

The remaining interaction terms of Eq. (4.1a) are
relevant only at high energies. Combined with the
second part of the expansion of the first term,
a1’'G’GLI°G°G as?, these comprise the so-called Cou-
lomb-transverse interaction. This kernel gives rise to
an energy shift

AEp CTH=—4 f oxc*8 (20) { Ay 'y

X[v2T (§)GLICG v, (¢)
+ (1 =2)1D7(££)A} k5 (%0") ox©

=— g:;l ¢(0) lz<£>3d4k(5ii—%?)
1 1

[

X o’
k2k“2|. H} (k) - m1+ ko

Xm&1’+ ¢ <—>2)]> (4.12)

This shift contains only a spin-spin correction,

o?
AEp,®TH = (01°02)| 0(0) |
AR
2B my h’l‘ﬂf“"h 11'1112
X12—In (4.13)

M mi—me

In the region A to B, the energy shift arises entirely
from

a1 iGIOGZOI CG10G200£2 i+ (1 (—)2) )
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that is, the part of Jp; treated in Eq. (4.2). This part
yields approximately

y f o [ o)
SEYR+SEPE)
B~k

Thus the high-energy result, the sum of (4.9) and
(4.13), is

AEB11I= 8Bw -

AEBICTII_

o(p”). (4.14)

M(ﬂ'] -a3) In—.  (4.15)

3 (1%12 - 7}1«22) ma

The Fourier transforms of Egs. (4.11) and (4.14)
combine to give, after some manipulation,
kik;
)

MMy (21r) j; 1 f (
(4.16)

X WP* (7) ek p i[gc;Pi] ep (l‘) ’

for the intermediate region. JC is the Schroedinger
Hamiltonian. Equation (4.16) contains an orbit-orbit
interaction only; the spin-orbit and spin-spin parts
vanish. The equation agrees with (48) of S.

The nonrelativistic contribution of (4.1) may be re-
written, in view of (4.2) and (4.4), in a form which also
arises naturally out of three-dimensional perturbation
theory:

AEgM= 84 B+

AE=

(2m)? f exe*(10)[ar’e™ Moy ,(x0)

X @i, n*('0)anfe™ 12 gy T ik

X ¢, n(10) p_icn™ (1'0)axs ‘e - mx” ]

1 1 Eik;
kZ

T

kon k+K n“‘K oc
We first isolate the part of the Breit energy, &, in
(4.17), arising from nonrelativistic momenta. The re-
mainder is treated by two approximations. In the region
0< k<4, we may set k=0 in the exponents and ¢_y, »,

)gch'(r’O). 4.17)

o that =A@k (0lay’|m) (n]asi]0)
2 =4 3 0lait|n)(n|as?|0
AEBIL_—_&)A-* * f —'—Z o *
@r)32d g B k+K,—
kik;
X(Kn—KOL)(aij— )
k?
= 8ot —— (ber()* In

3wmyms J—K,°

X(SC—KOC)(Pq:p(r))>. 4.18)
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Again, Eq. (4.18) has no spin-orbit or spin-spin con-

tributions. Because K,=FE, when k is small, the
a*Ry correction [see S, Eq. (46)] is®
abu? A Ry,
(AEBIL)23= In[ —], (4.198,)
31r(m1—|-m2) ko(Z,O) Ry“
and

(AE 1Y) op= (a%u?/3m (m1+m2)) In(Ryw/ko(2,1)). (4.19b)

In 2P states, the contribution is independent of A4,
provided A is large compared to the binding energy.
The 4 we have chosen fulfills this requirement.

Only certain states in the summation over # [in
Eq. (4.18)] contribute significantly in the intermediate
region to the correction to the Breit energy. In these
states, and for this region, K,— K¢ is much smaller
than k. We therefore let

1 K,—K K.—K€
- N . (4.20)
BE+K,—K B

Use of the approximation (4.20) yields the expression
o? fk=3 &k kikj)
_ 61.‘
@r2d s BT R

X{(0]arie® mt|n, —k)(n, —k|azie’ nr|0)

AEp M= 845+

+ (0] asie=*-mr |, — )

X (n, —k|ayie=* mr|0)}(K,— K. (4.21)
Evaluation of Eq. (4.21) shows that spin-spin and
spin-orbit terms vanish, while the orbit-orbit part
agrees with that in Eq. (4.16). This again confirms?
the equivalence of the two methods for the intermediate
region. The o®Ry contribution of Eq. (4.16) is like that
given in S in Eqs. (48a) and (49a):

a®u? 25 ap
(AEBIM)2S=_“‘—°“['_'+IH"":|, (4.22a)
3r(mi+mo)l12 A4
and
202 1 @
(AEg")ap=— <—> S L
Swmyme \r3 / op 36m (m1+ms)

(4.22b)

The energy shift due to Jps is simpler to calculate
than that due to Jp:. The extremely low energy region
does not contribute, and the effects of both the inter-
mediate and relativistic regions can be gotten from the
free particle expansions of these interaction terms in-

9 %0(2,0) and ko(2,1) are given by Bethe, Brown, and Stehn,

Phys. Rev. 77, 370 (1950). They are calculated using the electron
mass. The factor Ry, /Ry, serves as the reduced mass correction.
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volving two transverse photons. In the relativistic
region k> B it is sufficient to set

AEpA=—i| p(0)]? f (J 3o) e (') dixdis’ . (4.23)

AEpyH=

T. FULTON AND P.

C. MARTIN

This approximation neglects the relative time de-
pendence of the wave function. It also disregards p’ and
2"’y the momenta of the initial and final states, relative
to & and %/, the photon momenta. Substituting the
explicit form of J; in Eq. (4.23), we obtain

f dk 5 k,-k,-) (6 kzkm) <71i[m1+710(m1_k0)]711
k>B ku2)2 N k2 "

% ’Yz"‘[”’h""‘/zo (mz“‘ ko) ]72’; Y1 i[m1+71° (ml— ko) ]71172i[m2+720 (m2~[— ko) ]’Yz’"

LE?— (m1—ko)?]

LE— (ma—ko)*]

The integral may be evaluated exactly; it has the value

B2 —

2(121 §0(0) |2[ 2B m12 11’11)1""’}%22 1117’)2
In—-+
mine |. M mﬁ—-mf

1 minie

2(0'1-0'2) lnfl—l]. (4.25)

3 m2—mq M,

The expression In (2B/yu) arises from two pair terms only.
These same terms are the only ones which are sig-
nificant in the region -4 <k<B. In this region, we still
neglect retardation corrections, but no longer omit p’
and p"’ relative to k& and %’. This means that we let

er* (v
X(JBz(xx,)two pair QP (r').

AEp, ~—~¢f
(4.26)

The contribution of (4.26) in the region 0<k<A4 is
negligible, and so the integral may be extended from
0 to B. This expression may be simplified to (see S,
Sec. VIB)

Oé2 B ©
AEgM= —— f f &k f PF or* (1)
(27!')47’}117%2 0 0

(14 (k-K//2E)7]
EE (h+E')

3 @il -1 op(r). (4.27)

Because of the o? coefficient, o®Ry parts of (4.27) will
appear only when the initial and final relative momenta
are small. Hence % and &’ must be roughly equal. In 25
states we utilize this fact to make the replacement

B w 2B 2B—%
f dskf &3k - %f d3kf &k -,
(] 0 0 0

In 2P states, we merely note that values of % larger than
B do not contribute to our order, so that

B 0 0 ©
f d%f @k - - %’f d3kf k- - -.
1] 0 0 0

With these changes in the regions of integration, the
integrals may be evaluated exactly, although consider-

>. (4.24)

LE?— (mi— ke JLE2— (mao+tko)¥]

able computation is required. The final result is

5

a2 1 o 7 4
(AEBZM)g,g: E[ln(—)+~+—(1—ln2)],
my+ms 4 2B 4 3
(4.28a)
and
(AEpM)sp= —— < > =
27(‘ minie 7’3 487['(1’”1—{—1%2)
(4.28b)

The evaluation of AEB. can be briefly outlined as follows. One
need only calculate the integral (4.27) for a 1S state in order to
find the energy shifts for all .S states. [This is also true for the
S state corrections which arise from Jp; and are displayed in Eq.
(4.21).] The integral for the #.S state may then be determined by
parametric differentiations of the result for the 15 state. To evalu-
ate AEp,™ for the ground state, we first perform the integral
over r followed by the integration over the remaining angle
variables. After making the transformations x= (k+#%’)/v2 and
wu=(k—k')/V2, we perform several partial integrations with
respect to # and rearrange terms. The integral over x and then
the integral over # may be simply evaluated. Confirmation of our
method and that of S is provided by the agreement of our result,
(4/3) (1—In2)=0.409, with the answer of S, 0.411, obtained by
numerical integration.

To conclude this section, we summarize the total
energy correction from Jp:

ab

(AEB)as= (8ow)2s+

u? 25 2Ry,
S
’WL1+ Vi 2} 87!' 3 12 (Xk() (2,0)

7 4 2
—{—2[lna+—+*(1 "‘1[12)]—{—————[’}%12 lnm
4 3 117/12*7%22

m
—ms? Inne— (o1 o2)mims In——lJ }, (4.29a)
msa
and

(AEB)2p= (Eo)2rt

5

afu? 1 [81 ( Ry, ) 7 ]
—|-1In ——1
m1+m2 871' 3 ko(z,l) 18

(4.29b)

5. RADIATIVE CORRECTIONS

Radiative corrections arise from self-energy (vertex)
and vacuum polarization effects. The change in self-
energy of the second particle in the Coulomb field
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[first term of Eq. (2.15)] can be approximated by
AEchE—‘lWO!f401{0*5(900)’)’20‘)’2"

X{[G*—G1°GX]D} ky2v1% (xd') pxe.  (5.1)
In the above expression we have replaced A in Eq.
(2.8) by G:"y1%., thereby neglecting the intrinsically
higher-order pair terms. After some integrations this
becomes

AELC= —ia (277)'3f ex* (10)yty2’[ GO i, ko (10,1°0)

— (G°G9Y)_x, ko' (r0,1°0) Jg—imk- (t—1 )y yry 0

X ¢i(Eo—Ko') (Xo=Xo") g~ ik Xo~X0' | -1 0 (10).  (5.2)
Once more, the separation of the high- and low-quantum
regions is tantamount to a separation of G¢ into high-
and low-energy parts. In the high-energy region all the
terms of (2.15) recombine to yield

AEpH= ——41raf ox*(r0)e— K X=Xy 0
X { A7iary 2 G2 (02 )y 1Py # G (02 204)y 76 (%1 — %3)

ekt a
f dk——d*xy' ——Byy 'y
E>A

A T

X D(lexi)

™

X 8(%1— %3)0 (X2 — x4) D (162) }

Xylexe(r'0)d*xdx'dX’. (5.3)
In the foregoing expression, X’ and «” are the center-of-
mass and relative coordinates associated with x3 and x4
in the same way as X and « are related to «; and x,. We
have ignored the retardation corrections to the wave
function in obtaining (5.3) since, to our accuracy,

(GO x (%2") (x0) pxo(r'0)= o (x0).

After integration over configuration space, we get

(54

AEp"= —2a(27r)“5f<ch*(r0)eip' 25 (K 0%+ po’)

X 82K+ po")o(p"— 0"+ 9) (¢ v2"vy’

XLy (p'p")yle 2" " oxe(r'0), (5.5)

where
L2v (P/P”) — 2’1:6! f d4k
@27)% Ji>a

ve{ma—v2(p'+ k) 2 [ma—v:(p"+E) Jv# @
._72sz‘
k2Lma2+ (p'+ k) [ma+ (p"+ k)] 2w
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The computation follows standard techniques®* from
Eq. (5.5) on. We have merely to note that to our order
of accuracy, 7.K¢"Zms, and so we can calculate
Ly (p'p"”) as if we were dealing with free particles. In
other words, we set

(vap""+mo)v1 ke (r'0)8 (12K oS+ po”’)

= pr*(r0)8 (1K oC+ po’) v (vop'+m2) =0. (5.6)
Computation yields

a @ /11 2 my
sz(p’;b”)=—[w (—-l——ln—)
T m?\36 3 24
1

——q"[w‘m"]}- (5.7)
4WL2

Using the approximate ¢ of Eq. (4.3), we obtain

2

ABpr=t | (0)|2(5+1 m2)+<T> 5.9)
= — — n—— s .
S YPLL 6 24

ma

where

afoxLfa 1 a 2
]
41 7 Lrme? 2w myme
afoiras 3(oi-1)(o2r) 87
- ~—lorosi)]
2rL 7 75 3

and L=rXp. The operator T represents the effects of
the anomalous magnetic moment of the particles. The
correction to the interaction between spin and orbit
of the same particle appears as an a/7 instead of an
o/2m, because this interaction consists of the purely
kinetic Thomas term and a magnetic term. The latter,
which is twice as large as the total self spin-orbit
effect, is corrected by a factor of a/27.7

The low energy part is treated by methods analogous
to those in Sec. 4. Since renormalization terms have
been eliminated, it is convenient to return to a non-
covariant form. Low-frequency contributions of the
required order cannot arise from vertices in which the
self-energy part is due to the Coulomb interaction, since
this interaction requires the existence of pairs. Such a
process is, therefore, inevitably a high-energy one.
Furthermore, non-negligible contributions only arise
from Coulomb interactions befween the particles. This
leaves only one term, which by procedures used in

20 R, Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950), Eq.
27

o, J. Dyson, “Notes on Advanced Quantum Mechanics,”
Cornell University lecture notes, 1952 (unpublished).
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Sec. 4, reduces to

a  [Ad%
=l

K,— K¢
n b+ K,— K¢

AE b= —

)

ox* (r0)azle % 1T p_y ,(10)
X o* i n(t'0)azie’™ 27 o (r0). (5.9)

Equation (5.9) yields

1 o m 4 Ry,
(AEL2Y)ss=— —111[ —“‘], (5.10a)
(s m1+m2 Vi 2) ko(z,O) Ry,,
and
1 o my Ry,
(AEL2L)2P=_‘ — i
kU( ) )

or M1+’WL2 me
The constant A can be eliminated between Egs. (5.8)
and (5.10a). The first particle can be treated in the
same way, to give finally for the contribution of all
vertex terms,

(5.10b)

S ake(2,0)
(AEL)zs—_-— (——ln )
6r(mitm)l mms \6 Ry,
my me 1
——lnnl——lnm—}-—(m-cg)], (5118.)

m2 my 2

and
a5p.2 m12+m22 ko (2,1)
(AEL) Pp= In
o (m1+m2) mimg Ryw

o? 1/me  my L S-L
() 1

2rmime N2 \my M 7

0r0s 3017 (02:7)
SCE)

S = %(01+0'2).

(5.11b)

The other radiative correction is that arising from
the effect of vacuum polarization on the exchange of a
single photon between the particles. This term is not
altered by the two-body formalism since the correction
arises from a change in the photon Green’s function and
has no direct connection with the two particles. The
interaction kernel may be shown to be®:?

%

JV¢(12,34) =——71”72’6(x1—x3)6(x2— x4)
(2m)*

1
de“kei’“(”‘l_”)f dv29?(1—39?)
0

X A[4m2+ B (1— ) T4 [Am2+ 2 (1—2) T}, (5.12)
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This kernel will yield no contributions larger than o*Ry
and so it is sufficient to set

AEy.=—i|¢(0) ]2f'yl°'yg2(JV#)K(xx’)d“xd“x’

4 2 2
=~ ¢(0)] w+—). (5.13)

m1 1%2

For positronium, the result is

4 1
AE,0s=——0a?| 0(0) |>— 5.13a,
el @l G13)

6. THE ANNIHILATION INTERACTION

The energy contribution of this interaction J4 is
calculated in KK-II1.2 We agree with its result, which
is

5,

a'm
(AEA)23=—{ - 4(1—1112)
64
+(SHL2(1—In2)—4-8/9]),

(AEA)2P=0.

(6.1a)
and
(6.16)

7. SUMMARY AND DISCUSSION

The total o®Ry energy shift for the 25 and 2P states
of positronium is determined by adding the a*Ry parts
of (3.10), (4.29), (5.11), (5.13a), and (6.1). In 2S states
the result is

<AEB>23=°“5—”“[

4 8[25 2 ]
647

+1In
3732 Ml .016a
7 4
+2[lna+—+—(1—ln2)]
4 3

+ (1—2 In2)— (252—3) }
adm

=a4;(8.784—2(32)), (SH=S(S+1)) (7.1)

for the recoil and retardation corrections;

afmf8/75 1 16.646a2
(AEL.V)23=—[—(———“— n )+ (28— 3)]
64rL3\6 10

asm(zo 546-!—4 $9) (7.2
Cear\ 3< >) 72

for the radiative contributions; and

5,

(AE4)2s= —Oin(l.ZZS-l— 4.275(S2)) (7.3)
647

2 There are several typographical errors in Sec. V of KK-III.
We agree with the final answer, however.
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for the annihilation terms. The total energy shift is

(AE)ZS=%(28.101—4.942(32)). (7.4)

The contribution in 2P states is

amf7 8 adm
(AEg)sp=——\ —+- ln0.9704) = -—;5?(0.309)
T

647 \18 3
(7.5)
for the recoil and retardation corrections, and
adm 8 1
(AE;, V)2P=—( —-1n0.9704+4—(S- L))
64w 3 3
@ 1 forar 3(n)(0:7) ) 06
m? 4w\ 7 7%

for the radiative corrections. There are no contributions
from the annihilation interaction. Numerically, we find
for the total 2P energy shift:

0 1p,
om 0.300] 3p,
(AE)sp=— | —0.220+ for (1
64 —01 7J 3p,

—1.000 3P,

Our energy unit (64r)la’m is equal to 12.72 Mc/sec.

In positronium, unlike hydrogen, there is no o®Ry
degeneracy. Hence the o®Ry shifts must be added to the
much larger o®Ry fine and hyperfine structures in order
to obtain the level spacing. Table I gives the corrections
ascertained by Ferrell,® together with the o*Ry con-
tributions which we calculated.

A word about the accuracy of this calculation seems
in order. We have included all o®Ry corrections. There
are, of course, a*Ry terms with large coefficients; some
of these may contain Ina. Such corrections may well
amount to several Mc/sec. For example, in the expan-
sion of G° in (5.1) we have omitted the term,
a1'GPGLI G GLTCGG s ' D, which is known to con-
tribute 7 Mc/sec (an 'Ry term with a coefficient of
eight) to hydrogen.?? The factor  converts the lowest-
order Lamb shift correction from hydrogen to posi-
tronium. (This number comes from multiplying 2 by 3.
The multiplicand 2, comes from the equal contributions
of electron and positron self-energies; the multiplier
%= (upos/um)?, represents the reduction of the density of
the wave function at the origin.) If the same factor

B R. A. Ferrell, Phys. Rev. 84, 858 (1951). We have recomputed
the numerical results of Dr. Ferrell from his formula for the energy
to sll(xit the greater numerical accuracy demanded by the present
work.

2 Karplus, Klein, and Schwinger, Phys. Rev. 86, 288 (1952).

% Baranger, Bethe, and Feynman, Phys. Rev. 92, 482 (1953).
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TasiE I. Additions to the nonrelativistic n=2 level of
positronium, Mc/sec.

Order 1S9 35 1P 3P 3Py 3Py

o?Ry —18135 7413 —3536 —981 —5360 —10835
o*Ry 357 232 -3 1 - —16
Total —17778 7645 —3539 —980 —5365 —10851

applies to the 7-Mc/sec correction to the Lamb shift,
then this term alone would amount to about 2 Mc/sec.

This calculation also determines corrections to the
hydrogen Lamb shift. In the terminology of reference 1,
and incorporating the change discussed in footnote 8,
the theoretical shifts become

Su=[1057.07—22¢,+ S5, B+ S®
+ €,:=0.137] Mc/sec,

Sp=[1058.43—22¢,+.5,®+SE&
+0.137] Mc/sec,

Sp—Sr=[1.371—¢,,40.035] Mc/sec.

(7.8)

The theoretical value of the difference Sp—Sy is
no longer in such close agreement with experiment,
being just at the limit of the experimental error.

We would like to thank Professor R. Karplus for
suggesting that the corrections to the fine structure of
positronium be calculated, Professor J. Schwinger for
valuable advice concerning the material of the Appendix,
and Dr. A. Klein and Dr. R. Glauber for helpful con-
versations. We would also like to thank Harvard Uni-
versity and the National Science Foundation for
financial assistance.

APPENDIX

One of us (P.C.M.), with Professor J. Schwinger, has
previously derived a method for treating binding which
does not involve “selective resummation’ of the free-
particle expansion of the interacting Green’s function.
This independent derivation seems sufficiently short and
illuminating to merit its inclusion despite articles by FK
and by Eden.'® We employ the variational derivative
techniques used by Schwinger? in deriving the rela-
tivistic two-body equation. To avoid the problems of
symmetrization, we use two distinguishable fermion
fields. If the particles have masses m; and s, and
charges e; and es, the Green’s function equation is

)
(77r+m+wv(£)a5 1

5
37 (&)

The form of the two-body equation, obtained also by
Salpeter and Bethe,? is derived by writing Eq. (A.1) as

LOyr+M)1(yr+M)2—T115]Gre=1, (A.2)

X ('y‘:r—i—m—{—ie'y(é') ) Gi=1. (A1)
2



822

and using an expansion of 715 in powers of ¢ and free-
particle Green’s functions. A perturbation theory based
upon the solution of an equation containing some
interaction, is then employed to determine energies,
wave functions, and so forth. A more satisfactory and
symmetrical approach than this one is to use, in the
approximation of Iqs, the Green’s function satisfying
the same unperturbed equation (more accurate than
the free particle equation) as is subsequently employed
for finding the energies and wave functions. Such a
procedure is sketched below. It amounts to using a
different first approximation in the equation derived
by Schwinger for the interaction operator.

Suppose that we employ as a first approximation to
G2, the solution to

[(yr+m)1(yr+m)e— 012 ]G10=1, (A.3)

where Oy, is an arbitrary operator which may depend
on the external current, J. If we use the relation

6

oG o1
G12=“i61‘)/1($)612——1“012, (A4)
87 (971 8J ()

(iev(f)

and approximate the right-hand side of (A.4) by
"*1:61’)/1(E)G120[5(G120)_1/5J(f)]G12, we obtain

(_ )6612 e (G SGa™ 8A (&)
@) SO e e
0
%—581’71(5)6'120{ [ (vor+m):
84 (¥)

X (ym+m)2—012] ] G(££)Gra. (ALS)

As long as Os3 is an operator independent on J, inser-
tion of (A.5) into (A.1) yields the “improved” equation
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for G[z,

LOymtm)i(yrtm),
+ier? (ym+m) 1y2 (£)Gre (yr+m) v (§)G(§,¢)
+ie(yr+m)ay1(§)Gro® (yr+m) 2y1 (£)) G (£€))
Fierea(yr+m) 2 (§)Gre (ym+m) 2y ()G (£8)
F-ieses (yr+m)2y1(£) G (ym+m) ry2(£) G (EE)
—ieiexy1(E)v2(¢) G(EE)+ (iev (£)6/6T O
X (e (£)8/6J (£))2]Grot=1.

The procedure of this paper has been to take O;=1¢.
To the order to which (A.6) is then valid,

(iey (£)8/07 (£)1(iey (£)8/87 (£))2

does not contribute, and hence has not been evaluated
in (A.6). Replacement of Gi° by G1°G+® would convert
(A.6) into the usual lowest-order two-body equation,

[(’Yﬂ"‘l‘Ml)1(’)’7T+M1)2—Il:]G121=0. (A.7)

To derive a still better equation, we merely repeat the
procedure of Egs. (A.3)-(A.5), but with an operator
given by (A.6). (012 will now depend on J through both
ym and G1.) Needless to say, this iteration gives rise
to many terms. However, to the degree of accuracy
required by our calculation, Gi® may be replaced in
some of these terms by its Born approximation. This
results, for example, in the combination of seven dif-
ferent terms with plus signs and six with minus signs
into the one “crossed transverse” term of the usual
treatment.

We note in passing that if we knew the solution to
(A.3) with O12=—1esery1(£)v2(£)G(££), we would only
need to proceed as far as (A.6) to include all processes
relevant to o®Ry electrodynamic corrections. In order
to have solutions in which the relative time dependence
is known, we had to restrict ourselves to an instan-
taneous interaction. Hence a second approximation
to the Green’s function equation is necessary to intro-
duce two transverse photons.

(A.6)



