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The Sachs Exchange Moment*
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A derivation of the Sachs exchange moment is given which clearly shows how this exchange moment is
uniquely determined by the exchange potential. The relation between this and the treatments of Sachs and
of Osborne and I'oldy is discussed.

" 'T has long been recognized' ' that the presence of
~ - exchange forces between nucleons implies the pres-
ence of currents in the space about interacting nucleons,
currents which will generally contribute to the magnetic
properties of nuclei. In fact, a contribution of this origin
has long been recognized' in the magnetic moments of
H' and He'; these currents appear to play an important
role in the e-d capture process4 and their contribution
to the rt pcaptu-re process has recently been estab-
lished. ' Physically, these currents are due to the charged
mesons which are being exchanged between the nu-
cleons, giving rise to the exchange force between them,
and their contributions to the exchange moments have
frequently been calculated according to various meson
theories. ' However, as was pointed out, first by Sachs'
and more recently by Osborne and Foldy, ~' one term
of this exchange moment has a phenomenological
origin, independent of the particular meson theory, but
in neither of these discussions does it appear clearly
that this term is defined unambiguously. The purpose
of the present note is to derive this term again, showing
clearly its origin, and to discuss the relationship of these
previous treatments.

Consider first two nucleons with position vectors r~

and r2 (with respect to an origin 0) and denote the
current density at the point r by J(r). Then from the
equation of charge conservation,

1 Bp
div J= ———=—[jo,Hj,

cBt L

where p(r) is the charge density and H the Hamil-
tonian for the two nucleons. If, as is usual, the nucleons
are regarded as point charges, then

p(r) —se((1+r, )8(r r,)+ (1+rs )&3(r r2)) (2)
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Lack of commutativity of p and H arises first from the
kinetic energy terms and from any velocity dependent
potentials, and also from the ~-dependent exchange
potential. The currents arising from the first of these are
those due to the translation of the charge of the nucleon
and give the usual orbital contribu tion to the
magnetic moment. The second terms come from the
currents which are recognized when the replacement
p-+p —(e/c)A is made in the velocity-dependent po-
tentials. We will denote by J»(r) the total current ex-
cluding these two current contributions, so that if the
~-dependent potential is ~' ~2Vi2, then, r from (1)
and (2),

e
diV Jis=—(~'X ~') 2 Vis/ (r—ri) —

&3 (r—r2)j. (3)
kc

The magnetic moment of the two nucleons which arises
from J»(r) may then be broken up in the following way:

(ri+ r2) f
) rXJisdr= X) J»(r)dr

2

t ( ri+r21
+~ ~

r— ~X Ji2(r)ter. (4))
Now, since the current J»(P) can depend only on the
relative positions of .P and the two nucleons, the second
term of (4) does not depend on the origin 0, where as
the first term does depend on the choice of O. Using
Green's theorem and the physical fact that the currents
J» vanish exponentially at large distances from the
nucleons, the integral in the first term of (4) becomes

Jis(r)&r= — r div Jis(r)dr.

According to (3), this integral (5) is known uniquely
and its contribution to the magnetic moment: (4) is

unambiguously

(r,+r2) e
X —(ri —r2)—(~'X ~') 2 V»

2 kc

e
(e Xe )3(rlX r2) V12 (6)
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Therefore the magnetic moment terms which depend
on the origin 0 are uniquely determined, whereas (3)
imposes no restrictions on those last terms of (4) which
are independent of the origin chosen. The possible forms
for these latter terms, allowed after all invariance re-
quirements are met, have been discussed by Osborne
and Foldy, ' ' by Kynch, ' and by Austern and Sachs'

. and those which are velocity-independent are very
limited in number, and all spin-dependent. For a sys-
tem of nucleons the exchange-moment contributions
for each pair of nucleons are to be added, three-particle
interaction eGects being neglected, and the origin is

clearly to be chosen at the mass center of the nucleus.
The exchange-moment term (6) was obtained. by

Sachs' from the interaction

Uis ——exp (~s' —~ss) ~ A(r) dr
2hc

X Vis (1+~' ~'), (7)

which is a quite special gauge-invariant generalization
of the exchange interaction Vis(1+~'~'), the integra-
tion being taken along the straight line joining the
nucleons. The term of Uis linear in A(r), which is all
that is relevant in the present application, may be
written

—M
(gs' —~ss) (1+~'~') Vis A(r) dr

2a.

t
e

= —,—(~'X~')sV» ' ds5(r sri (1——s)rs—)
~ Ac 0

X(ri—rs) A(r)dr,

so that the expression (7') given by Sachs involves the
assumption that the current Qow between the nucleons
occurs only along the straight line joining them, the
current density being

e
J»(r) = ——(~'X~')s(ri —rs) Vis

kc

X ' de(r —sri —(1—s)rs). (8)

' G. J. Kynch, Phys. Rev. 81, 1060 (1951).

Although this is clearly not the physical situation, this
treatment gives the origin-dependent term (6) of the
exchange moment correctly since all that is necessary
for this is that the space integral of the current density
should equal that implied by the Eqs. (5) and (3), and
this is so for the current distribution (8). Sachs treat-
ment gives only the exchange moment (6) since the
second term of (4) vanishes, this current Qow having
zero moment about the midpoint between the nucleons.

In the treatment of Osborne and Foldy, " it is pro-
posed to split the current J» into an irrotational part
which is to be determined from (3) and an undeter-
mined solenoidal part. The exchange moment (6) is
considered to arise from this irrotational current Row,
a paradoxical conclusion since it is well known that
any irrotational current Qow of finite extent has zero
magnetic moment. In fact the integral (4) for this
irrotational Qow is quite indeterminate since, for large
distances, the solenoidal current Row decreases only as

(r» —3rr ri /rs')/r' Lcompare Eqs. (23) and (25)
of Oxborne and Foldy'$. Since the physical cur-
rents are restricted to a distance of order k/pc about
the nucleons, it is artificial (and, as we have seen, quite
unnecessary) to split this current into irrotational and
solenoidal parts each of which decreases only slowly at
large distances, though their sum decreases exponen-
tially.

To exemplify explicitly a typical meson-current dis-
tribution, ' we consider finally the adiabatic limit of
symmetric scalar meson theory. The exchange-current
density due to the meson field. is given by

—se
J (r)= P eLP (1)V&e(2)—yp(2)V& (1)j,

Ac

where p, (i)=gr ' exp( —«~r —r, l)/~ r—r;~, «=pc/h,
and e~ p is the alternating tensor. It may be verified
readily that this current distribution satisfies Eq. (3),
V'i2 being —gse """/r», and that a direct calculation
of the magnetic-moment integral (4) gives the result

(6). In the adiabatic limit, the scalar meson field and
currents do not depend on the nucleon spins, so that
there can be no origin-independent exchange-moment
term.


