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The effect of the electron core on the nuclear electric quadrupole coupling has been evaluated for several
atomic ground states and Grst excited states. The antishielding produced by the np —+p and nd —+d excitations
of the core is taken into account in all cases. For the ground states, the effect of the angular modes of excita-
tion predominates, and gives a net shielding of the same order as that predicted by the Thomas-Fermi model,
except for two cases of heavy atoms (Cs,W) where the antishielding predominates. For the 6rst excited (p)
states of the alkalis (except Li) there is a net antishielding which ranges from 10percent for Na to 24 percent
for Cs. Approximate values of the quadrupole correction factor are given for 9 atomic states.

I. INTRODUCTION
' 'T has been previously shown' ' that the effect of
~ ~ the atomic core on the nuclear quadrupole coupling
can be represented as the interaction of the valence
electron with the quadrupole moment induced in the
core by the nuclear quadrupole moment Q. The Thomas-
Fermi model was used to calculate this effect, '2 and
gives a shielding of Q of the order of 10 percent, i.e.,
the quadrupole coupling is decreased in absolute mag-
nitude by this amount. This effect corresponds to an
angular rearrangement of the electronic charge. For a
positive Q, the electrons tend to concentrate along the
axis of Q where the potential energy is a minimum.
This angular rearrangement is due to an excitation of s
electrons into higher d states, and of p electrons into
f states. It was also shown that, in addition, the per-
turbation by the nuclear Q gives rise to an excitation
of p electrons into higher p states, and a similar eRect
takes place for d electrons which are excited into higher
d states. This effect corresponds to a radial redistribu-
tion of the charge of the electron core. If Q)0, then
along the axis of Q, the electrons tend to be closer to
the nucleus than in the unperturbed state, while at
right angles to the axis of Q the electrons are on the
average farther from the nucleus than without the
perturbation. The radial redistribution tends to re-
inforce the eRect of the nuclear Q if the valence elec-
tron is suKciently far outside the core, and for this
reason has been referred to as an antishielding. This
effect depends sensitively on the principal and azi-
muthal quantum numbers of the external shells of the
core, and cannot be obtained from the Thomas-Fermi
model. The effect of the radial modes was shown to be
small for the case of Cl previously discussed. However,
in a recent investigation of the nuclear quadrupole
coupling in polar molecules, ' it was found that the total

*Work done under the auspices of the U. S. Atomic Energy
Commission.' R. M. Sternheimer, Phys. Rev. 80, 102 (1950).' R. M. Sternheimer, Phys. Rev. 84, 244 (1951);86, 316 (1952);
Foley, Sternheimer, and Tycko, Phys. Rev. 93, 734 (1954). These
papers will be referred to as I, II, and III respectively.

3R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460
(1953). In Eqs. (42) and (43) of this paper, I. should be replaced
by L.

induced quadrupole moment due to the antishielding
is very large for heavy atoms such as Rb and Cs.
Accordingly the effect of the core for the atomic ground
states has been calculated for some atoms heavier than
those previously investigated. It was found that for
Cs and W there is a net antishielding due to the effect
of the radial modes, although for light atoms the
shielding due to the angular modes generally pre-
dominates.

The radial rearrangement of the electron distribu-
tion affects most strongly the outer parts of the atomic
core, so that the antishielding effect increases rapidly
with increasing distance from the nucleus in this region.
Thus one may expect that for excited atomic states
there will be a net antishielding, even though the shield-
ing due to the angular modes predominates for the
ground state. This expectation was borne out by calcu-
lations for the first excited (p) states of the alkalis, for
which one finds a net antishielding varying from 10
percent for Na to 24 percent for Cs.

In order to check the accuracy of the Thomas-Fermi
model, wave function calculations of the shielding due
to the angular modes (rss~d, mp +f) have been—previ-
ously carried out' for Li, Al, and Cl. It was found that
the interaction of the valence electron with the induced
moment obtained from the wave-function calculations
is ~1.5 times smaller than the interaction with the
Thomas-Fermi induced moment. It seemed of interest
to check the Thomas-Fermi model for a heavy atom.
For this purpose, the perturbed wave functions for the
angular modes were calculated for the case of Cs.
Similarly to the result for light atoms, it was found
that the interaction of a 6p electron with the induced
moment based on the perturbed wave functions is 1.4
times smaller than the interaction with the Thomas-
Fermi induced moment. Thus the Thomas-Fermi values
divided by 1.5 should give the order of magnitude of the
shielding throughout the range of Z.

The present calculations of the effect of the dis-
tortion of the atomic core cannot be checked directly
by experimental values. In order to obtain some in-
formation on the expected accuracy of the calculations,
the same method as used here was applied to calculate
the electronic polarizability 0. of several ions. It was
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found that the calculated values of o. lie between 1 and
1.5 times the experimental values in most cases. It may
be expected that the accuracy of the calculation of the
quadrupole coupling will be of the same order as for 0,.
Thus the values of the quadrupole correction as ob-
tained from the Hartree-Fock wave functions should be
accurate, in general, within a factor of 1.5 and may tend
to be somewhat larger than the actual values. The
calculations of n will be reported in a forthcoming paper.

pao

where r is the distance from the nucleus, v' is the radial
part of the valence wave function times f, normalized
according to

and

~(r) = (1/Q)
0

v df= 1)

00

J,. 'Q;dr'+r' Q,r' 'dr',

(1a)

(2)

where Q, (r)dr is the induced quadrupole moment be-
tween r and r+dr. Q, consists of two terms, Q...„,and

Q, , „a which are, respectively, the induced moment
density due to the angular and radial excitations of the
core. The angular term will be discussed 6rst. For B,
Na, Cl, and Cs, this term was obtained from wave-
function calculations. The expression for Q;, ,„,is

8 72
Q (r) Q» Z (us u 102) + , Q (u0 u lls),

.5 n 25 n

8 144
+-P(uo», s s).~+ P(uou'i, s 4).d .

n 35 N

Here each sum over the principal quantum number n
extends over the occupied s, p, d shells, respectively;
the I'0 are the corresponding unperturbed radial func-
tions times r, normalized according to (1a); u'i i i is
r times the radial part of the excitation of nl to 1',
where l and 1' are the azimuthal quantum numbers of
the unperturbed function and the perturbation, re-
spectively. The numerical coefficients of Eq. (3) arise
from the summation over the magnetic substates of nl

II. QUADRUPOLE CORRECTIO1V FOR ATOMIC
GROUND STATES AND EXClTED STATES

This section is devoted to obtaining values of the
quadrupole correction R for several atomic ground
states and excited states. Here R is the ratio of minus
the interaction energy due to the induced moment to
the energy of interaction with the nuclear Q. R is
given by

yv"r 'dr

and integration over the angle 8 between the radius
vector of the electron and the axis of Q. The first two
coefficients pertaining to the s and p shells have been
given previously in I. The remaining ones, which per-
tain to the excitation of d shells, are derived below (see
Sec. IV). As shown in I, the u'i, i i are determined by
the equation

d' l'(l'+ 1) us'
+ +I 0 +0 u 1, l~l'

df f r3'

where Vo and Eo are the unperturbed potential and
energy, respectively. The details of the solution of
Eq. (4) are given in Sec. III. For the unperturbed
functions I'0 we used the Hartree or Hartree-Fock
functions for the elements considered. For B, the
Hartree wave functions of Brown, Bartlett, and Dunn4
were employed. For Na, the Hartree-Fock wave func-
tions of Fock and Petrashen' were used. The u'0 for
Cl and Cs+ were taken from Hartree's work. ' '

For the cases of Cu, Rb, and AV, Q;, ,„,was obtained
from the Thomas-Fermi model, which gives

Q...„s——0.2998Q (xx) & (x/r), (5)

where x and x are the Thomas-Fermi function and vari-
able, respectively; x= (Z&/0. 8853)r, where r is in units
aH (Bohr radius). For large r, the Thomas-Fermi model
gives a 1/r dependence for Q;, ,„s instead of an exponen-
tial decrease as required by the wave functions. For this
reason, Eq. (5) was modiffed at large r so as to agree
with the total induced moment Q;T, ,„, obtained from
the wave-function calculations. The values obtained for
Cl and Cs (see Sec. III) were interpolated to give
Q,r, , s(Cu)—2.0Q, Q;z;, s(Rb)—2.2Q, and Eq. (5) was
replaced by an exponential for large x (x&9) so ad-
justed that fs"Q...„,dr has the appropriate value. For
W, a value Q;r, ,„,——3.5Q was used. We note that the
treatment of Q;, ,„, at large r is not critical, because
most of the quadrupole coupling takes place near the
nucleus.

The term Q,, „a due to the radial modes is obtained
from the corresponding excited wave functions. As
shown in I, these functions are determined by the
equation

d' l(l+1)
+ +I 0 +0 ui, / l

df
]1 1

'I —,—(-,) I (
ni

Here I'~, ~ ~ is r times the radial part of the perturba-
tion; (1/r')„i is the average of 1/r' for the unperturbed
function I'0 whose principal and azimuthal quantum

4 Brown, Bartlett, and Dunn, Phys. Rev. 44, 296 (1953).
~ V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368

(1934).
s D. R. Hartree, Proc. Roy. Soc. (London) 156, 45 (1936).' D. R. Hartree, Proc. Roy. Soc. (London) 143, 506 (1934).
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numbers are n and f, respectively. That solution of (6)
must be chosen which is orthogonal to I'p Q', rad

given by

The corresponding contributions to the quadrupole
coupling are proportional to

48
Q;...a(r) =Q»' —Z(~'pN'i, i i).,

25 n

h'~~s/t') =
J

'y»8'
0

(12)

16 224
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7 75
(y„a/r') = ~ p„ge"r 'dr. - (13)

I'(r) = [1(1+1)/r' j+—Vo Eo. —(8)

In view of the equation satis6ed by I'0, P can be ob-
tained directly from the tabulated Hartree wave func-
tions, as follows,

E(r„)=LN'p(r„+5) —2N'p(& )
+I'p (r„—5)g/PN'p (r.), (9)

where r„ is a selected point, and 5 is the interval of
integration. The solution is started near r=0 by means
of a power series, as shown in I. By subtracting a suit-
able multiple of I,'0 from the resulting function u'1

~ ~

one obtains a function orthogonal to I'0, which is the
desired perturbation. The zero-order core wave func-
tions used in these calculations are those mentioned
above in connection with Q;,„„aswell as the Hartree-
Fock functions for Cu+ and the Hartree functions
for" Rb+.

After Q;,,„, and Q;...a are determined, the function

p(r) of Eq. (2) can be obtained by numerical integra-
tion. In practice, in order to separate the effects of the
angular and radial modes, two functions were calcu-
lated, p,„,(r) and p„s(r), defined by

where the sums extend over the occupied p, d, and f
shells, respectively. The numerical coefficients of (7)
are obtained from the summation over the magnetic
substates and the integration over 0. The coe%cient
for np +p h—as been derived in I. The coeKcients for
nd +d and —nfl are obtained below.

Except for the case of W, the wave functions I'1, ~ ~

have been obtained previously, in connection with the
work oa the quadrupole coupling in polar molecules. '
The same procedure was employed for W, using the
Hartree wave functions obtained by Manning and
Millman. ' The method of calculation will be brie6y
described. The left-hand side of Eq. (6) involves the
function

The values of (y,„s/rs), (y„d/rs), together with their
sum (y/r') are given in Table I. The valence wave func-
tions v' used in the calculations were obtained from the
above-mentioned references, except for Rb 5p and Cs 6p.
These two functions were obtained by numerical in-
tegration of the Schroedinger equation using an appro-
priate potential Vo. Table I lists the values of the
average (1/r') for the valence wave funct. ions and of the
resulting ratio R, as well as 1/(1 —R). We note that the
4p state of Rb, and 5p of Cs are filled in the normal
state of the atom. The values of R were calculated for
these states only because they show the dependence of
R on the principal quantum number of v'. A check on
the accuracy of the valence wave functions can be ob-
tained by comparing the calculated values of (1/r')
with those obtained by Barnes and Smith" from the
observed fine structure of these levels. These values are
0.608, 0.244, 7.16, 0.845, 1.29arr ' for Il 2p, Na 3p,
Cl 3p', Rb 5p, and Cs 6p, respectively. Comparison
with the values of Table I shows that the agreement is
reasonably good, the calculated values being somewhat
smaller than the one-structure results, as would be
expected since the Hartree wave functions are probably
more external than the actual wave functions. It
should be stressed that both (y/r') and (1/r') are very
sensitive to the detailed behavior of the wave functions.
A part of this dependence on the wave function is
eliminated in the calculation of the ratio R, since (y/r')
and (1/r') generally vary with the wave function v' in
the same manner. Thus if n' is too external, both (1/r')
and (y/r') are generally decreased.

TasLE I. Values of quadrupole interaction (y/r') due to in-
duced moment, values of (1/r'), and of correction term R for
several atomic ground states and excited states. These values are
calculated from the Hartree-Fock wave functions, and disregard
the exchange terms. (y, /r~) sand (y,~/rs) are the contributions
of the angular and radial modes to (y/r') (y/r') and (1/r') are
in units aH '.

y, s(r) —= (1/Q) Q...„sdr'+r' Q;, ,„,r' 'dr', (10)
40

00

y„s(r)=—(1/Q) J Q, , „sdr'+r'~ Q;, „qr' sdr' . (11)
0 r

B
Na
C1
Cu
Rb
Rb
Cs
Cs
W

2p
3p
3p5
3d94s2
4p
sp
sp
6p
Sd4

Ele-
ment State

0,0757
0,0151
0.333
1.95
0.844
0.0341
0.58
0.0343
0.678

0—0.0291
0.104—0.699—0.229—0.190-0.974—0.304—3.10

0.0757—0.0140
0.437
1.25
0.615—0.156-0.394-0.270-2.43

0.535
0.145
5.73
7.52

19.6
0.647

22.3
1.11
4.76

(pang/r ) (farad/r ) (y/r') (1/r )

0.142—0.097
0.076
0.166
0.031—0.241—0.018—0.244—0,510

1/(1 —R)

1.165
0.912
1.081
1.20
1.031
0.806
0.984
0.804
0.663

' M. F. Manning and J. Millman, Phys. Rev. 49, 848 (1936).' D. R. Hartree, Proc. Roy. Soc. (London) 157, 490 (1936)."D. R. Hartree, Proc. Roy. Soc. (London) 151, 96 (1935). "R.G. Barnes and W. V. Smith, Phys. Rev. 93, 95 (1954).
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where I'~, ~ ~ is the perturbation which corresponds to
the excitation considered. In the following, the ratio of
the induced effects including exchange will be denoted
by E„so that

Table I shows that for all of the ground states con-
sidered, except for W, E is positive, meaning that the
shielding due to the angular modes predominates. The
preponderance of the antishielding for the case of W
is partly due to the fact that the Sp shell has a very
large total induced moment (~—27Q). As was pointed
out in III, the function p„d increases very rapidly
with increasing r (see Fig. 2 of III). Since the elec-
tronic distribution of Sd is rather external, the anti-
shielding is quite pronounced and predominates over
the eGect of the angular modes. It should be mentioned
that the detailed vector coupling for W was not calcu-
lated, but the contribution of the 5d electrons to the
radial modes was taken as —,'o of that which would be
produced by a complete Sd shell. This approximation
is probably adequate since the 5d~d term is small
compared to the contribution of the core.

For the first excited states of Na, Rb, and Cs, E is
in all three cases negative, because the antishielding
predominates on account of the external distribution
of the excited-state wave functions. The result for the
3p state of Na (E= —0.10) may be of interest, because
the hfs of this state has been recently measured. "

The values of E of Table I do not include the ex-
change terms due to the induced quadrupole moment.
The exchange terms have been derived in I for the
interaction of a p valence electron with a core of closed
s and p shells. This derivation is extended in Sec. IV
to d shells of the core. From these results one obtains
the following expression for the ratio of minus the
exchange energy to the main term in the quadrupole
coupling, for an external p electron:

E,=E+8R,. (17)

The exchange terms of Eq. (14) fall into two classes:
(a) the terms of type 4E(np——&p,Po)/(r ') whose
sum will be denoted by 8R,, o, (b) all other terms, whose
sum will be called bE', . Thus

="o~...o+8&''

The reason for this separation will now be shown. The
bE„O term arises not only in the quadrupole coupling,
but also in the hfs due to the nuclear magnetic moment
and in the hne structure. The origin of this term can
best be seen by considering the perturbation of the
core by the valence electron. As shown in II [see Eqs.
(39) and (40)j the exchange between the core and the
valence electron gives rise to an excitation of each p
shell of the core into higher p states having the 'same

magnetic quantum number m as the valence electron.
If u'i denotes the radial wave function (times r) for
excitation of the p shell, the quadrupole coupling is
given by

q'=c " [o"+42(N'ou'i)„„]r—'dr,
J, (19)

where u'0 and v' are r times t,he radial part of the wave
function of the core and the valence electron, respec-
tively; c= —oofor m=0, and +,' for m= +1-. Equation
(19) does not include other first-order induced effects
besides the np~p exchange terms. I', is determined by

( do 2
+ +lro —&o IN'i

dro ro )36
+ K(np ip,Po)+ —K(n~f,Po)—

25 25
p T OQ

r ' ' oi'ov'dr'+ ~ I'ov'r' 'dr' o'(r). (20)
0 T+P E(nd +s,Pi)+ —K(nd~—d,Pi)—

n 3 3
12 72

+ E(nod, Po)+—K(nag, Po) —. (14)
49 49

The appearance of 4+„(n'ou'i)„o along with n" in Eq.
(19) is a result of the fact that the induced density has
the same m as the valence electron. As shown previ-
ously" the contribution of 4n'ON'& to the quadrupole
coupling is equal to the 4E(np +p, Po) term obtained—
above. The fact that the induced density has the same
m as the valence electron is also responsible for the
appearance of this term in the magnetic hfs and in the
hne structure.

It was shown in I that when (1/r') is obtained from
the magnetic hfs interval u and the nuclear magnetic
moment p, the correction factor C by which a/ki is
multiplied is given by

Here the sums extend over all occupied s, p, and d
shells of the core. E is de6ned by

K(nl~l', Pi) =~' n' g'frdr, (15)
0

where I'0 is the appropriate unperturbed radial func-
tion (nl), and fI (r) is given by.
fr, (r) =r Nii, i i o r dr

Jo

4
bR, = — p K(ns—&d,P,) — +p 4E(np +p,Po)—

(r o) n 3

+r~ t I'i i i.o'r' ~'dr', (16)—
r

"I. I. Rabi (private communication}.

C= (1—5E )/(1 —R,). (21)

Here bE is dehned as minus the interaction energy due
to the core for the magnetic hfs divided by the inter-
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action energy for the valence electron. Thus 8R corre-
sponds to —R as defined in I and II. bR is given by

bR =SR,, p+bR', (22)

8R'
1—

1—bR, , p

R+bR',
1—

1—8E,, p

(23)

As will be shown, bE' and bE', are generally small
compared to 8R,, p. If these terms could be entirely
neglected, C would be given by

C=1
1—8R,, p

(23a)

Since bR,, p(0, R is effectively decreased. 8E,, p has been
calculated in I for Al 3p and Cl 3p', the values are
—0.174 and —0.472, respectively. In the present work
the calculation of the exchange terms has been extended
to B 2p, Na 3p, and Cs 6p. Since B has no filled p shells,
6R, p is zero. For Na and Cs 8R, p is —0.180and —0.152,
respectively. Thus the factor 1—bR, , s in (23a) is of
order 1.15—1.5.

The term 8E,' in the quadrupole coupling will now
be considered. 5R,' has been evaluated in I for I.i 2p,
Al 3p, and Cl 3p', and was found to be —0.061, —0.033,
and —0.037, respectively, for these states. In the present
work, calculations carried out for B 2p, Na 3p, and
Cs 6p gave the values —0.086, —0.015, and —0.009,
respectively.

Equation (23) shows that C involves bR' besides
bR, , p and 6R', . An experimental indication about the
values of 8E' is provided by the ratio of the magnetic
hfs intervals a for the 'P; and 'P; states. This ratio is
given by

~(' ) F(/)L —5 -(' 1)]

g('Pa) 5F(1/2) [1 bR~('P:)]
(24)

where F(j) is a relativistic correction obtained by
Casimir. 's Equation (24) will be applied to the case of
boron-11 for which measurements of a have been carried
out recently by Wessel. "From the experimental values
e('P;) =73.347 Mc/sec and a('P;) =366.2 Mc/sec, to-

'3 H. B.G. Casimir, On the Interaction between Atomic Ngclei and
Electrorss (Teyler's Tweede Genootschap, Haarlern, 1936).

'4 G. Wessel, Phys. Rev. 92, 1581 (1953).

where bE' is a term of the same type as 8R', . As shown
in II [see Eqs. (56) and (56a)], bR' is a sum of terms
containing the integrals E(ssl—+l', Pz) (L)0) but with
coeKcients which differ from those of (14). Moreover,
these coeKcients are diGerent for the 'Pg and 'P; states
of the atom.

In view of (21) and (22) the quadrupole correction
factor C is given by

1-SR, p-SR'„

1—R—8R,, p
—5E',

gether with" F(3/2) = 1.0006 and F(1/2) = 1.0025, one
obtains [1—bR ('P )]/[1—bR ( P,;)]= 1.0034. The cal-
culated values" of the bR are bR ('P,*)=—0.0485
and bR~('Pl) = 0—02.90, so that [1—bR~('P~)]/
[1—bR ('P;)]=1.0190. Thus the calculated deviation
from 1 is too large by a factor 6. A similar discrep-
ancy" was found in II for the 'P, and -'P.; states of Cl.
Since the same integrals E(nl +P)—are involved in the
quadrupole term 5R', as in 5R', the calculated values
of 8R',, cannot be considered as completely reliable.
However, there seems to be no reason to believe that
the actual value of 5R', will be of a larger order of
magnitude than is given by the calculations, and it
may well be smaller, as is indicated by the magnetic hfs.

Values of C will be given in Sec. V. In obtaining C
we will use Eq. (23) except that bR' will be taken as
zero, since bR' appears to be small ( 0.01) from the
experimental values of the intervals a. This procedure
is probably adequate, except perhaps for the heavy
atoms Rb, Cs, and W, where the eAect of the core on
the magnetic hfs is pronounced. "Thus C is obtained
from

R+bR',
1—

1—bR, , p

(25)

The uncertainty of the values of 8R', will be taken into
account.

Besides the exchange terms, it should be noted that
three e6'ects contribute uncertainties of the order 0.01—
0.02 in R,. (1) The second-order quadrupole effect,
previously described in III, is evaluated in the Appendix
for the ground state of Cl, and adds a term +0.005 to
E, This eGect arises from the perturbation of the core
wave functions by the external valence electron (or
hole) taken in second order. In first order the per-
turbation gives rise to an added term in the electric
field gradient at the nucleus which corresponds to the
first-order induced eRect described above (angular,
radial, and exchange terms). ' In second order, the
perturbation of the core wave functions gives rise to
additional terms in the quadrupole coupling. These
terms arise both from the square of the first-order per-
turbed wave functions, and from the overlap of the
unperturbed functions with the second-order perturbed

"As shown in II, besides the excited nl —+l' waves which con-
tribute to the quadrupole coupling, bR involves also the excita-
tion of s states of the core into higher s states by virtue of exchange
with the valence electron. These ns~s terms were calculated for
8 2P, and are included in the values of bR given here.

The reason for the discrepancy of the magnetic hfs correction
factor is dificult to determine. As pointed out in II, a relatively
small inaccuracy of the radial wave functions used in the calcula-
tions could be responsible for the disagreement. Another possible
reason is that the electrostatic correlation of the valence electron
with the core electrons of antiparallel spin is not taken into ac-
count, whereas the correlation of the core electrons of parallel
spin is represented to some extent by the exchange terms which
give rise to bR . It is possible that inclusion of the correlation for
antiparallel spin would being the values of L1—bR ('Pi))/
L1—bR ('Pi)j closer to 1.

'r G. F. Koster, Phys. Rev. 86, 148 (1952).
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wave functions obtained by applying twice the per-
turbation due to the external valence electron.

(2) The Hartree-Fock functions which have been
used in the calculations do not give as much binding as
the actual wave functions which would be obtained
from an exact solution of the Schroedinger equation
for the core. As a result, the actual induced quadrupole
moment is probably smaller than the Hartree-Fock
value because an increase of the binding is expected to
lead to a decrease of the polarizability. Such an effect
was found in calculating the electronic polarizabilities
o. of various ions using the Hartree-Fock wave func-
tions. As an example, for K+, the calculated value of n
is 1.26A' as compared to experimental values ranging
from 0.87A' to 1.20A'. For Cl, the calculated 0.=5.6A'
is a factor 1.7 larger than the experimental value
(~3.3A'). From these results it is expected that the
calculated values of E tend to be somewhat larger
than the actual values, possibly by as much as a factor
of 1.5. The quadrupole correction E is probably less
sensitive to the exact amount of binding than the
polarizability n, since E depends on the behavior of
the core wave functions near the nucleus, whereas o.

is determined mainly by the behavior of the wave
functions in the outer parts of the core which is more
sensitive to small changes of the binding.

(3) The numerical integrations introduce some error
in the results. The possible errors are due to the in-
terpolation necessary to find a suitably well-behaved
function, and the 6nite size of the intervals used. The
corresponding uncertainties were generally found to be
small. A detailed check was made for the case of Cl.
As shown previously, ' the contribution of a given mode
of excitation to (y,„,/r') or (y„/r4') can be found in
two independent ways: (a) by calculating the inter-
action of the valence electron with the quadrupole
moment induced by the nuclear Q which corresponds
to the mode of excitation considered (e.g. , 1s~d);
(b) by finding first the excitation of the same type
(Is~d) produced by the asymmetric potential of the
valence electron, and then obtaining the contribution
to the quadrupole coupling at the nucleus due to this
mode of excitation, In general the contributions calcu-
lated by both methods agreed within ~10 percent.
Thus for 3s~d the contribution to (y, ,/r')//(I/r') was
obtained as 0.00684 from method (a) and 0.00693 from
(b). The only exception is the 3p—+p term of (p„„.z/r')
where the value calculated from (b) was found to be

1.5 times larger than that given by (a). It is believed
that this discrepancy is associated with the external
charge distribution of 3p, and could be resolved by
taking a larger number of steps in the numerical in-
tegration than was used (~50 intervals 8). However,
in view of the other uncertainties it did not seem worth-
while to carry out this refinement of the calculation.

III. V/AVE-FUNCTION CALCULATIONS OF SHIELDING

Calculations of the perturbed wave functions for the
angular modes were previously carried out' for Li, Al,
and Cl, in order to check the prediction of the Thomas-
Fermi model. It was found that the perturbed wave
functions lead to values of (y,„,/r') which are 1.5
times smaller than those obtained from the Thomas-
Fermi density of the induced moment. This result
shows that the statistical model tends to overestimate
the shielding for light atoms. In order to check the
accuracy of the Thomas-Fermi model for a heavy atom,
the excited waves due to the perturbation by the nu-
clear Q were calculated for the case of Cs+, using the
Hartree functions' for the unperturbed functions I'p.

The angular part of the induced moment Q;, „„,is
given by Eq. (3). The radial parts u'i, i i of the excited
wave functions are determined by Eq. (4). The func-
tion in the square bracket of (4), which will be called
I", was calculated as follows,

l'(l'+1) l'(l'+1) —l(l+1)
+Vo

—P.p ——P+, (26)
r2r2

where P is obtained from u'p (see Eq. (9)j.The integra-
tions of Eq. (4) were performed somewhat diIIerently
for the diferent angular modes. For ns—+d, the integra-
tion was started near r=0, using the power series t see
Eq. (10) of Ij,
u i, p o=ao+air+apr +apr +a4r + '

+bpr' logr+b4r' logr+, (27)

where a3 is arbitrary and the remaining coeScients a'
and b; are determined by Eq. (4), as was shown in I.
The integrations were carried out for various a3, until
a value of u3 was found for which the resulting I'& p 2

is well-behaved for large r. In practice, the numerical
solutions obtained for two neighboring values of a3
which enclose the correct value diverge slowly, the one
to positive, the other to negative values, for r~~.
However, they agree closely (in general, within 10 per-
cent) in the region near the nucleus which is of import-
ance for the quadrupole coupling. For ed~s, the in-
tegration was started at r=0 by means of a power
series air+a&r . In this case, a, is arbitrary, and its
value is varied until the resulting I y, 2 p is well-behaved
at in6nity.

For the rip +f waves, a meth—od of inward integra-
tion was used, starting at a large radius r~, as follows.
Equation (4) can be written

where
—d u i, i 4/dr +Nu j i p=0

N= P' u'p/(r'u'i, i~4), —
(2g)

(29)

and P' is defined by Eq. (26). Note that for suKciently
large r, S approaches the constant value —Ep. For the
numerical integration it is assumed that X is constant
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for r&r, .For an assumed value of u'r, r~3(rr), E is
calculated from Eq. (29), and n'r r~a(rr+8) is obtained
from

(30)+ 1, 1 3(»l+~) + 1, 1 8(rr) exp( —A '*&)
~
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FIG. j.. Distribution of the quadrupole moment induced by the
nuclear Q for the Cs+ ion. Only the angular modes of excitation
of the core are included. The curve marked WF is obtained from
wave function calculations using the Hartree wave functions for
Cs+. The curve marked Th-F is calculated from the Thomas-
Fermi model Lace Kq. (5)g.

The numerical integration is then carried out starting
with the two values u', r 3(rr) and I'r r 3(rr+8). This
procedure is repeated for several choices of I'r r 3(r~)
until a value is found for which the corresponding
u'» 3 goes to zero at r=0. This requirement is appro-
priate since the actual solution is proportional to r
near r=0. For the md —+g waves the same method of
inward integration as for np +f w—as employed.

After the functions u'~, ~ ~ were determined, the dis-
tribution of the induced moment Q...„, was obtained
from Eq. (3). This distribution can be compared with
the prediction of the Thomas-Fermi model LEq. (5)j.
Both functions Q, ,„,/Q are shown in Fig. 1. It is seen
that the agreement between the wave-function calcula-
tions and the Thomas-Fermi model is reasonably good.
Of course the Thomas-Fermi model smoothes over the
maxima of Q,;,„,as obtained from the wave functions,
which correspond to the electronic shells of the ion.

When y, , is calculated from Q..., as obtained from
the wave-function calculations, one finds for the 6p
state, (y,„,/r') =0.0343aH ' (see Table I). The Thomas-
Fermi values of Q;, ,„, lead to (y,„,/r')=0. 0492arr —'
which is a factor 1.4 larger than the va]ue obtained
from the wave functions. The result that the Thomas-
Fermi model gives an overestimate of (y, ,/r') can be
attributed in part to the fact that the Thomas-Fermi
density Q, ,„,is too large at small r. As shown in Fig. 1,
inside r=0.7aH Q;, ,„, as obtained from the Thomas-
Fermi model is appreciably larger than the wave func-

tion values, except for a small region near r=0.3a.H,

which corresponds to the maximum of the 3f shell.

These results for Cs together with those for light atoms
indicate that the Thomas-Fermi value of (y,„,/r')

divided by 1.5 should give the correct order of magni-
tude of the shielding throughout the range of Z.

From the excited core wave functions for Cs it is of
interest to calculate the total induced moment due to
the various perturbed waves, as obtained by integrating
the terms of Eq. (3) over r T.he total induced moment
due to the angular modes is Q,r,„,=2.95Q. The largest
contributions are made by the Ss~d and Sp~f waves,
which give Q,z;,„,(Ss~d)=0.93Q, and Q,r, (,SP~f)
=0.76Q, corresponding to the large values of (r') for
these shells. The remaining induced moment of 1.26Q
is made up of contributions 0.012, 0.064, 0.27, and
0.91Q from the n=1, 2, 3, and 4 shells, respectively.
By comparing Q,»,„,/Q for Cs with the values for
light atoms (0.62 for Na, 1.06 for Al, 1.41 for Cl) it is
seen that Q,z, ,„,/Q increases slowly with Z.

The present values of Q;, ,~ for Cs obtained from the
perturbed wave functions have been used in the calcu-
lation of the values of (y, ,/r') for the Sp and 6p states,
which are given in Table I. The values of (y„~/r') for
these states were obtained by means of the function

Q, , „q for the radial modes obtained in III. The Sp state
is, of course, occupied so that the corresponding quad-
rupole correction is only of theoretical interest. The
calculations for this state indicate a weak net anti-
shielding. This result is in contrast to the results for the
ground states of the light atoms for which the shielding
predominates, although for 3p of Al, as shown in I, the
eBect of the angular modes is only slightly larger than
the antishielding due to 2p~p. It has also been shown

above that for the somewhat external 5d electron of %,
the antishielding predominates strongly. Nevertheless,
the correction (y„d/r')/(1/r') for the radial modes,
which is —3.10/4. 76= —0.65 (see Table I) is small

compared to the total induced moment in units of Q
which is —50. The reason is that the induced moment
due to the radial modes is localized considerably outside
the region where most of the quadrupole coupling of
the Sd electron takes place ((r ')„.q:——0.60aH).

On the basis of the two examples of Cs Sp and W Sd',
it is not possible to conclude that the antishielding
generally predominates for heavy atoms. To ascertain
this point would require more extensive calculations.
However, the fact that the antishielding appears to be
relatively more important for heavy atoms than for
light atoms can be attributed in part to the somewhat
diferent Z dependence of the eBect of the angular
and the radial modes. As shown in III, the induced
moment due to the radial modes Q,z, „z increases very

rapidly with Z, namely from —2.7Q for Na+ to —90Q
for Cs+. In comparison, Q,», ,„, increases less ra, pidly,
i.e. from 0.61Q for Na+ to 2.95Q for Cs+. The tendency
for E&0 (shielding) for low Z, and R(0 for high Z
can be correlated with the different Z dependence of
the angular and the radial modes.

Besides the calculations for Cs, wave function calcu-
lations of the shielding were also carried out for 8, Na,
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and Cl. The resulting values of (y.,„p/r ) are given in One thus obtains the following expression for the d
Table I. wave part of N~('" which will be called N(P'~

& 2,

IV. EXCITATION OF d SHELLS OF THE CORE

In previous work' the calculations of induced eGects
have been restricted to atoms with closed s and p shells.
In the present section these results will be extended to
d states of the core.

We consider the excitation of d states by the 6eld of
the nuclear Q. The perturbation of d states to excited
d states will be treated first. For the state m=o, we
have for the unperturbed wave function (times r),

Mpl i, 9 p —I p(r (r—)„e).

Here and in the following, iV& is defined by

d' l(l+1)~i—= ——+ + ~p —&p-
dr' r'

(38)

re "i,p~p ——(2/7)(5/g)IQu'&, 2 2(3 cos'8 —1), (37)

where the radial function I'&, 2 2 is determined by
Lsee Eq. (6)j

(31)Np&'& = (5/8) Ig'p(3 cos'8 —1)= I'p8p',

(31a) Q;~& & =4 up&'&I&'& i, p~p(3 cos'8 —1)r'dr sin8d8
~p ~o

p
32 f=—Q ~ I'pN', , ,„,r'dr, (40)
49 "p

The angular functions 8~'" are normalized according to

By means of Eqs. (31) and (37), one obtains for the
where pc p is r times the radial function normalized induced moment Q, rip& due to the m=0 electrons,
according to

" (e;~ sm8d8=1. (31b)

In Eq. (31) and in the following a superscript (e.g. ,
for Np&p&) indicates the value of the magnetic quantum
number m. The equation for the perturbed wave N~(p) is

(H E)N ™=HN—t'&+2 I t'—& (32)

where H~ is the perturbation of the Hamiltonian, and
is given by

P = —QP%', (33)

goo
Ei Hit upgo&)'dr ——sin8d8= —(2/7)Q(r ')„e. (34)

~p &p

where PI, is the I egendre polynomial. Ej is the first-
order perturbation of the energy, and has the following
value, in view of (31) and (33),

where the factor 4 arises from the fact that the 6rst-
order density is 2up("I")&, 2 2 for each m=o electron.

In the same manner as in the derivation of (37) one
finds for the d wave perturbation of the m= &1 states,

Ql~l, 2mpe2 15'
QN'i, p p sin8 cos8. (41)

14

The ~ sign in the last expression corresponds to the
choice of phases of Condon and Shortley, " and, of
course, does not a6'ect the final result. The induced
moment due to the four electrons with m=~1 is
given by

tI
CO

Q;r i+'&
=
Sj' j ee'pep+'u'+'&i, p~p(3cos'8 —1)rPdr sin8d8

p p

16 I o'+ i, r 2rdr. (42)
49

Upon substituting (31) (33) and (34) in Fq (32) one In a similar manner, one obtains for the d wave Per-

(5y * I pi"'=
I

—
I Q(3 cos'8 —1)'—

rs

—(2/7)Q(r
—')„ere'pep'. (35)

The factor (5/32) i(3 cos'8 —1)' in the first term on the
right-hand side must now be writ. ten as a sum of s, d,
and g functions. From these functions arise the ed—+s,
ed—+4, and ed—+g excited waves, respectively. The d
wave part is given by c282, where

cp= (5/32)&j~ (3 cos'8-1)'ceo sin8d8=2/7. (36)
0

2 15&I i, p 2 QN i, 2 282 Q'le i, 2 p sin'8. (43)
7 14

The resulting induced moment due to the m=~2
electrons is

~00 )w
Qrr'+" =8 j pc'pep"'I'+"i, p~p(3 cos'8 —1)r'dr

oo

Xsin8d8=Q ~ I'pl'i, p pr'dr. (44)
49 ~p

E. U. Condon and G. H. Shortley, The Theory of Atomic
SPec&ro (Macmi11sn Company, New York, 1935), p. 32.
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From Eqs. (40), (42), and (44) one obtains for the 3 (15) *

2 i16)total induced moment due to «-+d for the complete u '2~4=
d shell, X (sin'8 cos'8 —(1/7) sin'8) (54)

Q,T(nd +d) =—(16/7)Q 24 pu 1 2 2r'dr.
4p

For the total induced moment, one finds

The induced moment due to the nd —+s waves can be
found in the same manner. Only the m=0 electrons
contribute. In Eq. (35) the s wave part of (5/32)&
X (3 cos'8 —1)' can be written cpOpP where

cp= (5/32) 2 (3 cos'8 —1)'Op' singdg= 5 &. (46)
Jo

u"'1, 2~2=1o Qu'1, 2 p,

where the radial function u'12 p is determined by Lsee
Eq (4)1

Mpu'1 2 p
——u p/r'.

Note that the Ei term of (32) does not contribute,
since it gives only a d function. The resulting term in
the induced moment is

Therefore one obtains for the s wave part of the
perturbation,

(47)

O'T(«g)=4 Z
m=—2d 0

up' 'ui, 2 4' & (3 cos28 —1)r'dr

144
Xsingdg= Q u'pu'1 2 4r dr. (55)

"0

The exchange terms involving the excitation of the d
shell will now be obtained. For this purpose, it will be
assumed that the valence electron is in a p state with
m, =0. Here m, is the magnetic quantum number of
the valence electron while m will denote the magnetic
quantum number of the md state. Of course, the choice
of m, is immaterial, since the final result is independent
of m, . The nd —+d waves will be treated presently. We
consider first the electron with m„=0. As was shown in
I, the exchange energy can be regarded as due to the
interaction of an exchange potential V, with the overlap
density No~ )v of the unperturbed wave functions of
the core and the valence electron. Here v is the wave
function (times r) of the valence electron, and is given by

Q T(Ides) =4 u pO2 u 1, 2 p(3 cos'8 —1)r'dr
"0 ~0 v= (3/2)lv' cosg, (56)

~ CK)

Xsingdg = Qu —pu 12prpdr, (49).
J0

where v' is the radial function, normalized according to
(1a). V, is the potential produced by the overlap of
ui "& with 2t. Since u11'& and v are a d wave and a p wave,
respectively, V, has both a I'& and a I'3 part. The I'j
part will be considered erst. It arises from the term
2(r&/T~')p' = 181 (81)P1 (82) of 2/r», where r12 ls
the distance between the two electrons, r& and r& are
the smaller and the larger, respectively, of the dis-
tances r j and r2 of the electrons from the nucleus; 8~, 2

is the angle between the radius vector and the axis
of Q. For 222„=0 we have

The derivation of the nag wave with m=0 will
now be briefly outlined. If one subtracts from (5/32)2
X (3 cos'8 —1)' its s and d wave parts, one is left with
the g wave part, which in view of Eqs. (36) and (46)
is given by

(5yl e,o 2e,o

p
——

I

—
I (3 r.os'8 —1)'—

i32) 54 7

0 &0

( 5 q &( 54 27'
9 cos'g ——cos'8+—I. (50) ' 1 =

~
u 1 2 2'p s82("&/"& )d"2

i32) ( 7 35)

where the radial function I'&, 2 4 is determined by

M4u 1, 2 4=u p/rp. (52)

The md—+g wave functions for m=~1, and &2 are
given by

3(15' &

u~+'~i, u 4=~—
I

—
I Qu'i;2 42i4)

X (sing cos'8 —(3/7) sing cosg), (53)

Hence- the g wave perturbation I('&» 4 is given by

9(5q'* ( 6 3 q
u P'1, 2 4=

I I
Qu'12 41 cos'8 ——cos'8+ I~ (51)

2 iS) ' i 7 35)
'

Xslngpd82 cosgi) (57)

where the factor —4 arises from the Rydberg units and
from a factor of 2 in the overlap density. Upon inserting
Eqs. (37) and (56) in (57), one obtains

+4,P1 = —
I 16/7(15)&)Qfi(ri) cos81, (58)

where fL(ri) is defined by

~1

fL(T1) T1 u 1, WP& T2 ~T2
J0

+Ti 24 111VT2 ,dr 2, (59)'
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AEe, s g(o) =
~o o

V,piieiu3i 'vdri sin8id8i. (60)

Upon inserting (31), (56), and (58) in (60), one obtains

and I'j « is taken as I'&, 2 &. The exchange energy is
given by

where the fl, which appears in Eq. (62) for E is given
by f3 of (59) with 34'i, i i taken as 34',, 3,.

The exchange of the valence electron with the nd —+s
excitation is obtained as follows. Only the electron with
m„=0 (and parallel spin) contributes. In view of Eq.
(47) for the perturbation 34&'&i, 3 3, we have

QEe, pi i'& = —(32/105)QE (nd +d, P—i),

where K(nl el', Pi) is defined by

(61)
V = 4

J ) 44iv(r&/r)') cos83dr3 sin83d83 cos8i
0 0

p 00

I ov fr.dr,E(nl~l', PI.) =
~o

(62)
Qfi cos8i, (70)

15&

where fi is obtained from Eq. (59), with I'i, i i taken
with f~, given by (59). For the m =&1 stat ' V'z' as I'i 3 3. The resulting energy term is
for the P& interaction is given by

(sin83) r&
(+4) ——4 ~ 34i+iii 3 3'3~

~
dr3J. .. '

&V~ &r;

In view of (41) one Ands

sln0y
Xsin83d83 . (63)

W2

+Ee,p '""=2 ' Ve, p '+"I '+"vdri sin8, d8,

8
~K(nd +d,P,). (65)—
35

As is easily seen, the m„= &2 electrons do not con-
tribute to the Pi exchange interaction. Thus Eqs. (61)
and (65) give for the total Pi interaction with nd &d, —

P gEe, p, i~&= (8/1 5) QE( nd~—d, P). (66)

The direct interaction of Q with the valence electron is

Jo 4o
P33v3r 3sin8d8dr= —(2/5)Q(r 3)„, (67)

where (r ')„ is the average of r ' over the valence wave
function. Thus one obtains the following contribution
to R„

8R, ( d d,P)= —(4/3)E( d d,P)/( ')., (68)

where the —sign indicates that for E&0 the eGect is
a negative shielding.

The P3 exchange with nd —+d can be obtained in a
similar manner, and gives the result

8R,(nod, p,)= —(12/49)E(nd —+d,P3)/(r ')„, (69)

Ve, aii+'& = & (4/35) (5/2)'*Qfi(ri) sin8i. (64)

One obtains for the exchange energy for the two elec-
trons with m„=&1 and spin parallel to the valence
electron spin,

In view of (67) the contribution to R, is given by

8R,(nd~s, Pi) = —(4/3)E(nd —+s,P,)/(r —')„. (72)

The exchange of the valence electron with the nd —+g
waves can be treated in the same manner. Since the
overlap of the valence function with the excited g
wave produces angular terms which vary as P3 and P5,
while the overlap of P with d produces Pi and P3
terms, the interaction involves only the P3 term of
2/r». By summing over the contributions of the m„
states of the d shell, one obtains

&R (nag, P3) = —(72/49)K(nd-+g, P )/(r 3)„, (73)

where E is given by (6'2) with fr, =f3 as obtained from
Eq. (59) in which 44'i, l i' ls taken as I'i, 4.

Upon combining the preceding results for the d
shells (Eqs. (68), (69), (72), and (73)] with those
found in I for the exchange with the closed s and p
shells, one obtains Eq. (14) for the contribution of ex-
change to R. for the case of an external p electron.

The effect of the nf +f radial mode—s induced by the
nuclear Q has been given in Eq. (7). The derivation
follows the same lines as for the nd —+d terms. Here only
the expressions for the perturbed wave functions
I' '~, 3 3 will be given:

i, 3m3= (4/15) (7/8)&Q(5 cos'8 —3 cos8)34'i 3 3. (74)

34'+"i, 3~3——W (1/5) (21/32) &

XQ(5 cos'8 sin8 —sin8) u', 3,, (75)

I'+' i, 3 3= + (1/3) (35/32) &Q sin3834', , 3~„ (76)

and I(+')~, 3 3=0. We use the same convention of signs
for 83+' and 83+' as in Condon and Shortley. " The
radial function I'i, 3 3 is determined by Eq. (6). The

5E,= V,No&')vdrg sin8gd8g
v, J,

8
QE(nd ——es—,Pi). (71)

15
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resulting induced moment is

p
7P

Q,T(nf +f)—= P ' no& &I& &i, 3 3(3cos'0—1)r'dr=3J, J,
224

xsingde= —Q, u'On'i 3 ar'dr,
75 Jp

(3) The exchange terms are discussed in Secs. II
and IV. In the present work values have been obtained
for 8 2p, Na 3p, and Cs 6p, besides previous calcula-
tions' for Li 2p, Al 3p, and Cl 3p'.

For light atoms where the eRect of the core on the
magnetic hfs is small the correction factor C is given by

where uo& & is t.he unperturbed f function (times r) for
magnetic quantum number m.

E+8R',

1—8R,, p

(25)

V. CONCLUSIONS

The atomic core introduces three types of terms into
the quadrupole coupling: (1) shielding terms due to
angular modes of excitation of the core; (2) terms due
to radial modes which are generally antishielding;
(3) exchange terms.

(1) The shielding terms have been considered as
due to the interaction of the angular part of the in-

duced quadrupole moment with the valence electron.
The eRect of the angular modes is generally overesti-
mated by a factor 1.5 by the Thomas-Fermi model.
This conclusion can be dragon from the previous wave-
function calculations"- for I,i, Al, and Cl, as well as from
the present calculations for Cs. Although the total
induced moment due to the angular niodes is appreci-
able (e.g., 1.41Q for Cl), the contribution to the quad-
rupole coupling is only of order 10 percent of the direct
interaction of Q with the valence electron, because only
the induced moment near the nucleus contributes
appreciably on account of the penetration of the valence
electron.

(2) The effect of the radial modes generally produces
an antishielding i.e., it reinforces the eRect of the
nuclear Q, and increases the magnitude of the quadru-
pole coupling. As was shown in III, the total induced
moment due to the radial modes, Q, z „d, is very large,
with values ranging from —2.7Q for Na+ to —90Q
for Cs+. However, the induced moment distribution is

quite external, and for this reason, the antishielding
due to the radial modes is, in general, unimportant for
the atomic ground states (except for heavy atoms) but
becomes rapidly more eRective as more external dis-

tributions of the valence electron are being considered.
Thus for the first excited (p) states of the alkalis the
antishielding predominates and gives eRects ranging
from 10 percent for Na to 24 percent for Cs.

The radial modes vanish for s states, and depend
sensitively on the azimuthal quantum number. Q, z, „z
increases very rapidly with increasing principal quan-
tum number n, and is generally larger for the ep—+p

wave than for the md—+d wave of the same shell. By
far the largest term of Q;~ „q is due to the outermost
shell. The Thomas-Fermi model appears not to include
the eGect of the radial modes. This result is not sur-

prising in view of the sensitive dependence on /, and
the fact that the eRect concerns mostly the outermost
shell of the core.

The values of R are listed in Table I. The exchange
terms 8R, p and 8R', are given in Sec. II. For the cases
of Cu, Rb, and W, these terms were obtained by in-
terpolation of the values calculated for the other ele-
ments. The resulting values of C are: 1.12&0.08 for
Li 2p, 1.06&0.11 for 3 2p, 0.92&0.02 for Na 3p, 0.97
&0.03 for Al 3P, 1.0340.05 for Cl 3P', 1.10+0.10 for
Cu 3d'4s', 0.82&0.02 for Rb 4p, 0.83+0.02 for Cs 6p,
0.68&0.10 for % Sd4. The upper and lower limits
correspond to the uncertainty of 6E.', The upper limit
of C is obtained by assuming that 5R', is actually zero,
while the lower limit corresponds to a value of 6E',
which is twice that calculated from the perturbed wave
functions. For Cu and W, the uncertainty ~0.10 is
somewhat larger than that obtained from 8R', alone.
It is seen from Table I that for all cases the values
C=-1/(1 —R) which would be obtained without ex-
change are inside the range of C given above, so that
the inclusion of exchange does not materially affect. the
results. The contribution of exchange for excited states
(Na, Rb, Cs) is very small, so that the values of C
are most probably less than 1 for these states (net
antishielding), even allowing for a considerable uncer-
tainty of the exchange terms.

The present values of C for B, Al, Cl, and Cu may be
compared with those given in Table III of II. The
values of II (e.g. , C=1.068 for Cl) are close to the
upper limit of the range of C given above, corresponding
to the fact that 8R', was assumed very small in the
calculations of II. The calculations for the first excited

(p) states of Na, Rb, and Cs have not been previously
carried out. The present values for Li 2p and Al 3p are
based on I. We note that since there are no filled p
shells for Li, there is no antishielding, and hence C
exceeds 1 for all excited states of the valence electron.
Calculations for W have not been carried out previ-
ously. However, in Table III of II, Thomas-Fermi
values of C were given for the neighboring elements I.u
and Ta, for which the valence electron is also in the 5d
state. The present calculations for Sd of W show that
these values are probably incorrect because of the
neglect of antishielding. In general, the values of C
given in II cannot be considered as reliable, except for
the four cases B, Al, Cl, and Cu which are supported
by the present calculations, if one 'assumes that the
exchange term 8R', is, in fact, very small. In order to
obtain accurate values of C for the other atomic states
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of Table III of II, it would be necessary to carry out a
calculation of the antishielding and exchange for each
element. However, it may be expected from the present
work that the shielding predominates for light atoms,
and that the actual correction factors are in many cases
close to those given in II.For the ground states of heavy
atoms (Z&55) there as an indication that the anti-
shielding predominates. For all cases, the correction
factors listed in II give a rough upper limit, since both
the radial and the exchange terms tend to decrease C.

I would like to thank Profe'ssor H. M. Foley for
several stimulating and helpful discussions.

(+0 +0)+a [(—2/ras)+&a]+o, (1A)

where %o——tP„, (1)ass~, a(2) is the zero-order wave func-

tion, Bp and Ep are the unperturbed Hamiltonian and

energy, respectively, E& is the first-order perturbation
energy, and vanishes for s states. 0'~ can be written,

+a= Z ~- I4, -(1)A~,- (2), (2A)

APPENDIX. SECOND-ORDER QUADRUPOLE EFFECT

It has been pointed out in III, in connection with the
quadrupole coupling in polar molecules, that the quad-
rupole distortion induced in the core by an external
charge gives rise in second order to a further contribu-
tion to the quadrupole coupling. In the present case,
the external charge corresponds to the valence electron.
As has been shown previously, ' the distortion of the
core by the valence electron taken in first order is
equivalent to the interaction of the valence electron
with the quadrupole moment induced in the core by
the nuclear Q. The second-order quadrupole effect
involves the perturbation of the core by the external
valence electron taken in second order. In as much as
the first-order quadrupole correction is small for atoms,
(of the order of 10 percent), it was expected that the
second-order quadrupole effect would be even smaller,
of the order of 1 percent of the main term in the quad-
rupole coupling. This expectation was borne out by a
calculation of the second-order quadrupole eGect for
the 3p' state of Cl.

In the following we will first give a derivation of the
second-order quadrupole eGect for s states of the core.
The valence electron (or hole) is assumed in a p state
with magnetic quantum number ras=1; the p state will

be taken as 3p (Cl). The various perturbations which
arise in first and second order have been given in Fig. 3
of III. In first order, one obtains a d wave, d„,. In
second order, d„, is excited into an s wave, a d wave
d'„„and a g wave. The first-order perturbation +& is
determined by

Since we are interested in the I'2 perturbation, the term
of —2/ras which will be used is

—2(r'(/r'&) Q Ps (8a)Ps (8s).

The values of u are obtained in the same manner as
shown in II for the magnetic hfs. These values depend
on the normalization of aPq which will be chosen as
follows. aPqwil, l be written

A, =[~a'(d-)/r]Bs", (4A)

where Bs is the normalized angular function [Eq.
(31b)],and the radial function as a'(d„,,) is determined by

Msma'(d .) =fl'o, (SA)

where I p is r times the radial ns function, M~ is de-
fined by Eq. (39), and f(r) is given by

(6A)

with w =r times the radial 3p function, normalized
according to (1a). Equation (SA) and the values of
a ~ are obtained by multiplying both sides of (3A)
by Bs *(1)at*», (2) and integrating over sin8ad8a and
dr2, where 8~ is the polar angle of electron j., and dr2
denotes the volume element of electron 2. Throughout
this discussion we use wave functions normalized to a
volume element sin8, d8,dr, . The resulting equation for
~mm' is

&& sin8sd8s Ps' 'Bs Bs * sin8, d8a. (7A)
"o

From (2A) and (7A) one obtains

'Fa= (2/SI)[aA, o(1)its&, a(2) 3'Pqa(1—)gsy, o,(2)
+6'A, s(1)An, -a(2)]. (gA)

It will now be verified that the overlap of 4p and 0 ~

gives the previous result' for the first-order induced
effect [Eq. (3)]. The quadrupole coupling q' will be
defined by

IJpon inserting (2A) in (1A) one obtains

(&o—&o) 2 ~= |4.-(1)|Is., - (2)
mm'

= [(—2/ras)+Ra]4'a. (1)Ps', a(2). (3A)

min' q'= —
~

[p(3 cos'8 —1)/(2r')]d V, (9A)

where a ~ is a coefficien, Pq is the perturbed d wave,
is a 3p function, srs and sas' are the magnetic

quantum numbers of the d wave and of 3p, respectively.
where p is the electronic probability density and dV
is the volume element. The main term of q' which is
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due to the valence electron density is given by

q'0 ———~ v'2» 'dr t ~Bi'~2P20 sin8d8
aJ 0. 0

= (1/5)(r ')' (1oA)

The term of q' due to the overlap of 4'0 and +1 is

Aq'= 4~I —40%'iP2'(1)ri 'd V,d V2

t'" id owi (d~s)
Bp B2 P2 sin8id8i dr, (11A)

5)J p

where d V; is the volume element of electron i, and the
factor 4 in the first equation arises from the presence
of two terms in the overlap for each s electron. Upon
evaluating (11A) one finds in view of (10A)

where I'(a, b) is de6ned by

~'(a b) =—I(a b)/(» ')' (18A)

The other second-order term is contributed by the
overlap of 0 p with the second-order perturbation of the
wave function, which will be called 42. C2 is deter-
mined by

(II0 Eo)%2 ( 2/ti2)%'2+Epko+Ei+i, (19A)

where E& and E2 are the first- and second-order perturba-
tions of the energy, respectively. 0'2 consists of s, d, and

g waves, but only the d wave, which will be called d'„„
is of interest since the overlap of es with excited s or
g waves does not contribute to the quadrupole coupling.
The term E240 enters only into the equation for the s
wave, so that it will not be considered here. Moreover,
E1=0 for s states. 0 2 will be written

+2= Z b Xd, -(1)A,, (2), (20A)

0

Equation (12A) gives the same result as the induced
moment density (8/5)Qu'pu', p 2r' since the radial in-

tegral over I'pu'i, p 2 and v" is equal to Jo"f+'ow'i/»'7d»
of (12A), as shown in reference 3.

The second-order terms arise from two sources. The
square of the first-order perturbation 0 1' contributes a
term. We have

@22= (4/125) fpd 0(1)it '2„,(2)+3pd, ,(1)p,„,p(2)

+6&'d, 2(1)&'pn. -i(2)+

where cross terms have not been written down since
they do not contribute to q'. The contribution to q' is

hq', = —2 +i'P2'(1)ri 'd Vid V2

8
fI20+3I2'+6I227J (d d„,) (14A)

f25

where b ~ is a coefFicient, g~, is the d'„, wave, m and
m' are the magnetic quantum numbers of d'„, and 3p,
respectively. Upon inserting (8A) and (20A) into
(19A), one obtains

(&0—Eo) P b„Xd,„(1)A,, (2)

4.

fpd, o(igp, , i(2)—3&pd, i(1)$2, 0(2)
5 ~12

+6%;2(1)&».-i(2)7 (21A)

A given b ~ will contain, in general, contributions from
more than one term of %1 on the right-hand side of
(21A). The terms of b will be labeled. by mi and m2,
which are the magnetic quantum numbers of the first-
order d wave fd, mi and of f»,m2, respectively. The con-
tribution of m1 and m2 to b ~ will be written bmm (mim2).

By multiplying both sides of (21A) by B2 *(1)f*» (2)
and integrating over sin81d81 and dr~, one obtains

where I& is defined by bmm'(m1m2) =—4Cm1m2 P
gp

Ii = t Bi ~2P20 sin8d8, —
aJ 0

(15A)
Xsin82d82~t B2 ~B2 *P2 '~' sin8id8i, (22A)

0

I(a,b) w';(—=a)w';(b)r 'dr,

where w', (a) and w';(b) are the radial parts of the per-
turbed wave functions whose subscript (i, j) indicates
the order of the perturbation. One finds I2' ——2i'7,
I2' ——1/7 I22= —2/7. Thus Eq. (14A) gives

Xd, =Lwo'(d' .)/r7B, ", (23A)

where the radial function w'2(d'„, ) is determined by

(16A) where cmim2 is the coeKcient of tpd, mi(1)lpoi, m2(2) in the
square bracket of (21A). In obtaining (22A) it was
assumed that yd, , is normalized as follows

Aq'i/q'0 ——(8/25)I'(d „d,), (17A) Mow'2(d', ) =w'i(d„, )f. (24A)
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Upon summing (22A) over mim&, and inserting the are determined by the following equations
result in (20A) one obtains

+ = —(4/5'")Lx;o(1)&., (2)—3'x, (1)0 .o(2) ~ow'i(f-. )= u'o, -.f
+6'*xs, o(1)goy i(2)j. (25A)

~iw'o(p':) =w'i(p-. )Lf—&f)-.l

(31A)

(32A)

Only the overlap of the first term xz, p(1)P» i(2) with

00 contributes to q'. One 6nds fw'i(p. ,)u'o .,«' u'o .,(r), (33A)
0

Aq', = —4 I%,% P,'(1) 'dV d-V Mow'o(f '„„)=w'i(p„, )f, (34A)

= (16/125)J(es,d„,), (26A)

where J(ls, b) is given by fw'i(f„„)u'p, „~dr u p~(r, ), (35A)
0

J(es,b) = u'o, „,wo'(b)r 'dr,
0

(27A) ~ow'o(f". ,) =w'i(f, )f,
where

(36A)

and I'0 „, is the unperturbed ns radial function. In
analogy with (18A) J'(ris, b) will be defined as J(us, b)/
(r ')„. Thus the total second-order contribution of an
s shell is

~q'-/q'o= (8/25) J'(d- d-)
+ (16/25) J(es,d'„,). (28A)

The excitation of Np states can be treated in the same
manner as the excitation of ns. As shown in Fig. 3 of
III, Np is excited in first order to a p wave p„„and an

f wave f „.In second order, p„~ is excited to a p wave
p'„i, and an f wave f'„„.Similarly, f„„is excited to a

p wave p" ~ and an f wave f"„,. The second-order
quadrupole effect arises from terms containing the
square of p„„and f„„,and from the overlap of u'p with
the second-order perturbations. We will give only the
6nal result. One obtains for the second-order quadrupole
efFect of a complete p shell,

~q'„„168 336
J'(p-. p-.)+ —J'(up, p'-.)—

q'0 625 625

288 144
+ J'(f-.f")+—J'(Np, p"-.)

625 625

(f)-~-=fu"o.-.dr
0

(37A)

e'(r&/r~') P Pi (1)Pi (2)

In Eqs. (33A) and (35A) that function w'o(p'„~) or
w'o(p"„„) must be chosen which is orthogonal to u'p, „~.
It may be noted that the numerical coefFicients of
Eqs. (28A) and (29A) are proportional to those which
appear in the expressions for Aq'„, and hq'„~ for the
case of an external point charge, as given by Eqs. (61)
and (64) of III; the proportionality factor is 7/10. The
contribution of the second-order terms to E, is

P„(A—q'„,+Aq'„~)/q'o since R, is defined in terms of
minus the interaction energy due to the induced eGects.

The radial functions and integrals obtained above
were calculated for Cl. Only the 3s and 3p shells had
to be considered since the contribution of the inner
shells is negligible. It was found that —(d q'o, +Aq'»)/q'p
is +0.005 and is thus smaller than the uncertainties
in the first-order terms of R,.

It should be noted that the preceding results do not
represent the complete second-order correction. There
are additional terms' which arise from the simul-
taneous excitation of a core electron and the valence
electron by the perturbation e'/r». As an example, let
us consider the term

144 576 of e'/r o. Let+ J'(&p f'-.)+ J'(&p f"-.) (29A)
625 625 +o——so (1)pp(2) (38A)

where the J' are determined by Eqs. (16A), (18A) and
denote the zero-order wave function for a system con-
sisting of a core electron in an s state and a p valence
electron. In first order, -one obtains the perturbation

J'(ep, b)= u'o, o„w'o(b)r 'dr /(r ')„(30A) ~ =p (1) (2)+p '(1)d (2), (3.9A)

in:which u p, „~ is the unperturbed'radial Np 'function
of. the core. The radial functions appearing in the J'

where pi and p'i are p: functions which describe the

"The existence of these terms was pointed out to the author by
Professor H. M. Foley.
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excitation of electron 1 into higher p states, while sr
and d& are s and d functions, respectively, which de-
scribe the excitation of electron 2. The first-order over-
lap +a%'t does not contribute to q' because so(1) is
orthogonal to pt(1) and p't(1), and similarly po(2) is
orthogonal to st(2) and dt(2). However, %sr contributes
three second-order terms to q' which arise from t pt(1)j',
LP't(1)1', and Ldt(2) j'. Second-order terms of the type
C j~ are also obtained from the simultaneous I'~ ex-
citation of a core electron in a p state and the valence
electron. A similar class of terms is obtained using the

I's part of e'/r&s T. hese terms were not evaluated
because of the di%culty of determining the functions of
type Pt, st, P't, and dt. Thus pt and st satisfy a set of
two simultaneous differential equations. The same
applies for p't and dt. The numerical solution of these
sets would be much more complicated than the solution
of Eqs. (5A) and (24A) which involve a single unknown
function. However, there seems to be no reason to
believe that the two-electron terms would be appreci-
ably larger than the one-electron excitation terms
which were shown to be very small for the case of Cl.
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Cross Sections for the Reactions Ti"(d,2n)V4s; Cr" (d,2n)Mn"; and Fe"(d,2n)Cosst
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Measurements have been made oi the (d, 2n) cross sections of the nuclear species Ti", Cr", and Fe".
Results are given for incident deuterons in the energy region 1—20 Mev.

HE cross sections for the reactions Ti"(d, 2rt)V4s,
Cr" (d, 2n)Mn", and Fe"(d, 2n)Coss have been

measured as functions of energy of the bombarding
deuterons, using the conventional stacked foil method,
for energies of 1 to 20 Mev. A beam of deuterons was
provided by the 60-inch cyclotron of the Crocker
Laboratory of the University of California.
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Fro. 1. Cross sections for the reactions Fe~'(dt, 2n)Co",
Cr's(d, 2n)Mns' and Ti4'(d, 2n)V4'

t This work was performed under the auspices of the U. S.
atomic Energy Commission.
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The range distribution of deuterons in the beam,
which was collected in a Faraday cup, was measured
before each run by placing absorber foils of known thick-
ness of aluminum in the beam and measuring the charge
If collected on the foils, and the charge I, passing
through the foils and collected by the Faraday cup.
These charges were measured by two electrometers
and recorded The ra. tio I,/(I.+It) was determined as a
function of thickness of aluminum absorber, giving the
range distribution of deuterons. The target foils of
Ti metal, Fe metal, and stainless steel were then placed
in the beam and bombarded. The beam current was
monitored by reading both I, and I~. The equivalent
Al thickness of the target foils was determined by
placing Al foils of varying thickness behind the target
foil in the beam and again measuring I,/(I, +It).
Comparison of this measurement with that for the Al
absorber foils determined the equivalent aluminum
thickness of the stack of target foils and thereby the
energies of the deuterons that struck each foil in the
target stack.

Absolute cross-section measurements were made by
chemical separation of the end products, with sub-
sequent absolute P counting. The absolute counting
was done using a thin-window methane-Row propor-
tional counter and correcting for scattering and absorp-
tion. The resUlts for V4' and Mn" were checked by 4&
counting of very thin samples, and good agreement
was obtained,

The absolute cross-section values depend on the fact
that the end products of the bombardment decay


