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It is intended to apply these equations to obtain
the correction to the binding energy of the Thomas-
Fermi atom due to relativistic effects. At present,
the relativistic effect is known only on the basis of
rough numerical estimates,® although it represents a
significant correction to the binding energy of the
heavier elements. Rudkjgbing’s results can be used
also to obtain a relativistic analog of Hellmann’s
equation,® in which the angular momenta of the
electrons enter explicitly into the electron density.

8. M. C. Scott, Phil. Mag. 43, 859 (1952).
9 H. Hellmann, Acta Physicochim. (U.R.S.S.) 4, 225 (1936).
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The expression for the density of states corresponding
to (4), suitably modified to apply to nucleons, may
have application in the statistical theory® of the
nucleus. The analog of Hellmann’s equation noted
above, suitably modified to apply to nucleons, may
be of help in clarifying aspects of the spin-orbit coupling
in the shell model of the nucleus.

The author wishes to thank Dr. A. L. Latter and
Dr. R. Latter of the Rand Corporation for helpful
discussions.

0P, Gombas, Ann. Physik 10, 253 (1952); 12, 155 (1953);
W. G. McMillan, Phys. Rev. 92, 210 (1953).
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Perturbation effects of electron screening on wave functions and dipole matrix elements of K and L elec-
trons of ions or inner shells of atoms have been computed to order Z~1. Some screening effects of this order
have also been computed for the M shell. Some of the terms of order Z2 have also been evaluated and found
to be small compared with those neglected in this paper. The dipole matrix elements have been used to com-
pute x-ray mass absorption coefficients and the comparison with the experimental values is discussed.

INTRODUCTION

OR many problems, such as the determination of
the photoelectric absorption, ionization by elec-
tron impact, stopping power for fast particles, etc.,
one needs to know atomic wave functions and dipole
matrix elements for atoms and ions. In the case of
highly ionized atoms such as found in stellar interiors,
or for atoms of atomic number of 20 or greater, the
wave functions of K and L shells are sufficiently
“hydrogen-like” so that the effects of screening can be
roughly estimated.! These estimates serve to give the
order of magnitude of screening effects but in many
cases may be off by large factors. In some problems
such as that of determining the Rosseland mean opacity
of matter under conditions of high temperature and
pressure, one needs to be able to calculate the photo-
electric cross sections for a large variety of atoms in all
stages of ionization. The straightforward procedure of
obtaining, say, Hartree wave functions for a sample
of states of each atom for each stage of ionization, is a
prohibitively long program even for high-speed com-
puters. Since the quantities involved are nearly hydro-
gen-like, it is probable that such a program would be
greatly overdoing the problem and that the same
amount of information can be obtained with consider-
ably less work.
A possible analytical approach to this problem might

* Now with The Rand Corporation, 1700 Main Street, Santa

Monica, California.
1H. Hall, Revs. Modern Phys. 8, 358 (1936).

be to employ the set of approximate variational func-
tions of Morse, Young, and Hawrwitz? for the bound
states and Coulomb free functions using an atomic
number equal to that of the nucleus, minus the number
of screening electrons in the shell of the initial state
and those lying inside that shell.? This procedure suffers
from two difficulties: first, in not correctly representing
the actual potential in which the optical electron moves,
and second, in not obtaining the correct wave functions
for even the assumed potential. Since the dipole mo-
ment is the expansion coefficient of 7 times the bound
wave functions in terms of the wave functions of the
upper state, this moment may be very sensitive to small
changes in the form of the function assumed. The cor-
rection thus obtained to the hydrogen-like values may
merely represent the error in the assumed solution.

In order to eliminate part of the uncertainty in the
calculation, we have employed a method in which the
potential is assumed but the radial wave equation and
the dipole moment are solved for directly. This enables
one to investigate, without ambiguity, the dependence
of the dipole moment on the form of the potential
assumed. The results of these computations can also be
used as a basis for testing the validity of variational
wave functions since they are solutions of a definite
non-Coulombic problem.

The method of the present paper is to extend the

2 Morse, Young, and Hawrwitz, Phys. Rev. 48, 948 (1935); also,
L. Goldberg and A. M. Clogston, Phys. Rev. 56, 696 (1939).
3J. A. Wheeler, Phys. Rev. 43, 258 (1933).
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computations by developing the wave functions and
dipole matrix elements in power series in the number
of screening electrons divided by the atomic number.
The validity of this expansion is investigated and an
experimental verification is made using the observed
x-ray mass absorption coefficient.

THE CALCULATIONAL PROCEDURE
A. Bound Wave Functions

Hartree wave functions are solutions of the central
field problem. The radial wave functions R.; of type
nl are solutions of Schrodinger’s radial equation

@Ry 2 1 1(I+1)
+[€nl+__— Z, N:‘iViJ'_—'—_—:IRﬂl=O7 (1)
y Z i &
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where Z is the atomic number, e,; is the energy param-
eter in units Z%?/2a,, and 7 is in units ao/Z, where ao
is the Bohr radius. V;; is the number of screening elec-
trons of type 45 (the prime on the summation indicates
that the 7/ term whose wave function is being computed
is omitted from the summation). V;; is the screening
potential of a radial charge distribution of type R;;.

2 7 00
Vi e f [RiFdr+2 f [Ridr/r.  (2)
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The Hartree method consists of making an initial
guess of the radial wave functions R, using these to
compute the potential V%, and then solving the dif-
ferential equation (1) for the resulting set of functions,
say R.;'. These functions are then used in Eq. (2) to com-
pute a new potential V;;* which is again used in Eq. (1)
to determine a new set of solutions R,? etc., until
there is no change in the resulting wave functions.
Since we are dealing with high stages of ionization and
inner shells of atoms, we take hydrogenic functions as
our initial guess, i.e., R;?=R;.

Each solution of Eq. (1) will be a function of Z, the
number of screening electrons in the configuration, and
the particular stage of the iteration process. We express
this dependence in the following example. The 2s
radial wave function for Z=26, which is a solution of
the differential equation (1) in the configuration
(15)#(2s5)¥(2p)# in which hydrogen-like screening func-
tions were used in Eq. (2) for the potential, will be
written as Ry'[26; (15°)2(259)v1(2p°%]. In the next
iteration the screening functions would be (1s%)%(2st)v1
X (2pY)? so that the function would be written Ry?
X[26; (15)=(2s)*(2p1)*].

The method of the present paper is based on the
assumption that the effect of the screening potential
on any solution of Eq. (1) is given sufficiently well by a
first order perturbation of the corresponding hydrogen-
like wave function. Taking hydrogen-like zero-order
functions, the rth iterative solution of Eq. (1) can be

written as [ |
1 Vii™ ] pt, miRp®
Rnlr'—‘Ran‘!"— Z’ Nij Z, "“_]‘_p‘—{—’ (3)
Z ii » el —ep!

where as before the indices 4, 7 run over all the screen-
ing electrons, and [[V;""' ], »: is the matrix element of
Vi1 calculated with the hydrogen-like radial func-
tions R,; and R,#. The quantity

5 LV ot miRpi®
H

3 el —ep

=ARw (™), 4)

which we will call the change in the radial wave func-
tion of type 7l introduced by the radial wave functions
of type (ij™1), is independent of the atomic number Z
and of the number of screening electrons present when
hydrogen-like functions are used in Eq. (2). Equation
(3) can then be written

1
.RM’= R"ZH+E Z, N“ARM(UT_]‘) (5)
]

The 2s radial wave functions for an ion of nuclear
charge Z having a full K and L shell screened by
hydrogen-like screening functions would be written

Ro,'[Z5 (15°)2(25%) (24°)5]= Res#+ (2/ Z) AR, (15°)
+ (1/2)AR2, (25" + (6/Z) ARz, (29°).  (6)

Since the AR’s are orthogonal to R¥ to the approxi-
mation used here, the functions on the left-hand side
of the Egs. (5) and (6) are normalized as they stand
to terms of order (1/22) /o™ (ARs,)%dr.

In the second approximation when one inserts R,;!
from Eq. (5) into Eq. (2) for the potential, ¥,;! can be
written in a manner analogous to Eq. (5) as

1
Vijt= Vﬁ°+2 2 NuAV i(nld), )
nl

if we neglect the term involving the square of AR. If
we neglect the terms AR1;(2s°) and AR;,(2p°) as is the
usual practice in the Hartree method, the 2s and the 2p
radial solutions of Eq. (1) for a configuration (1s)=
X (25)¥(2p)? can be written

Ra2[Z; (1s1)=(257) 1 (2p1)] = (zs°>+§Azs<1s°>

2D a2 P 20
VA VA
~1 —1)(y—1
+x(yzz 15922 P 2]
(y—1sz

2
+ A2,[A23 (ZPO)]+ ;A2s (ZPO)

2% 2y
+ZA23[A2,,(1s°)]+-Z—2A2,[Azp(23°)]

z(z—1)
+

Z2

Azs[AZP (2?0)]) (8)
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s

XAz[ 22,27 ], (9)

where the expression As,[A1,(1s%)] etc., the change in a
2s due to the change in a 1s by a 1s etc., are merely
an extension of the notation Ay (1s%), etc. For sim-
plicity in the above and following equations, the R
will be suppressed whenever no confusion from this
results. It is at once apparent from the point of view of
perturbation theory, that the Hartree procedure is a
power series expansion of the radial wave functions in
essentially the number of screening electrons divided
by the atomic number Z. If this expansion parameter
is small, convergence is, of course, rapid. The rapid
increase in the number of terms in the expression with
each stage of the iteration process, as well as the fact
that we have neglected terms of order 1/22 in the first
iteration, make the extension of the present method
past R, unprofitable.

B. Free Wave Functions

The free radial wave functions result from a solution
of Eq. (1) for positive values of the energy parameter
ex1=1. In the one-electron problem, 7 is, of course, the
kinetic energy of the escaping electron. The expression
analogous to Eq. (5) for the free function is

1
Rnl‘=an°+2 2" N ARy (3f), (10)
Kzl

where we have replaced » by 7 as a subscript of R.
Since second-order effects are likely to be unimportant
for the free functions, no second-order terms are con-
sidered. We should point out that R,! in Eq. (10) is
the wave function for the same energy €., as R,°.

C. Matrix Elements

Consider the matrix element 7,;*'" defined as

Inl”"l,=f Rnﬂ’Rnl['dr, (11)
0

MEYEROTT

with R,; and R, defined as in Eq. (5):
1’ 1
Lo V= 3 NALY ), (1)
i

where we neglect terms in Z2/;*R,#AR . »dr. Matrix
elements involving R,,? and Ry,? can be obtained from
Egs. (8) and (9) on replacing Az (15%), As[As,(25%)],
etc., by Al5,"V(1s%) and Al"'V[Ag(25°)], etc., re-
spectively.

Care must be exercised in the use of Eq. (12) in
computing [7,,'¥ as (1/Z)AI is not necessarily small
compared to I, so that terms in (1/Z2)[AI]? must be
retained.

COMPUTATIONAL DETAILS
A. First-Order Terms

In order to evaluate the first-order terms in Egs.
(8) and (9) the following computations were made:

Ri[6; (17, Ra[65 (15°)], Rep'[6; (1s9)],
Rsi'[6; (1], Rs,p'[6; (159, Rsa[6; (1s9)],
Ry1[26; (159 (25%)],
Ry,'[26; (1592(25")], Rs:'[26; (159)2(25%)],
R;,'[26; (159)%(25%)],
R3a'[26; (1s72(25)], R2s'[26; (15%2(2p%)], _
Ry,'[26; (15°)%(2p%) ],
R3i'[26; (15°2(2p")], Rs,'[26; (15°2(2p%)],
R3a'[26; (15°2(2p% ],
R,[6; (157)], R.,'[6; (1], R,[6; (1597,
R,/[6; (1%,
R,'[26; (1s7)2(257)], R,,'[26; (159)2(2s9)],
R,a[26; (15°)2(25%)],
Ry[26; (15°2(28) ], R,,1[265 (1592(24%)],

R,26; (1592(2p%) ]. R,a[26; (159 (2p%) ],

The free functions were computed for n=0.00, 0.25,
0.50, 1.00. The International Business Machines Card
Programmed Calculator was used for this computation
using the Noumerov method. A description of this
method has already been given by Pratt.*

The free functions were computed numerically out
to distances required to evaluate the matrix elements.
At that point they were joined to a WKB-Jeffreys
solution for purposes of normalization.

Since the method involves taking of differences,
considerable accuracy was maintained throughout the

4G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952).
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calculation. In all the work 10 decimal places were
carried in the computation, and the wave functions are
expected to be good to five or six places. In this approxi-
mation, the radial functions for the same Z and screen-
ing are strictly orthogonal. Our numerical functions
turned to be orthogonal to about 1 part in 108.

In Table I are listed the energy parameters obtained
in the calculation of the bound functions. A plot of the
various AR’s can be found in ANL-5008.% The plotting
accuracy is sufficient so that if one desires first-order
wave functions, they are obtainable from these graphs
and a good table of hydrogen-like wave functions. In
Table IT are listed the intensity integrals, I, computed
with these functions, and the AI’s. For reference, a list
of hydrogen-like integrals are also given. The functions
R, [26; (1s°)2(24°)] were not computed because they
should be very similar to R,,[26; (15°2(2s%)]. The
latter function was used to compute the intensity in-
tegral 5,7 26; (15%)2(2p%)]. This should be permissible
since these transitions are not very important in most
applications. As a matter of fact, most of the free func-

tions might have been taken as Coulomb functions for '

Z=7—N, where N is the number of bound screening
electrons. A check of this was made in one case by
setting V;;=2 in Eq. (1) for Z=6 and /=1 and com-
puting the free wave function for n=%. The corre-
sponding intensity -integral I;,"? was 1.26017 as com-
pared with 1.24435 for the correct wave function, while
that of I5,7 was 1.65975 as compared with 1.65106 for
the correct wave functions.

Since the first-order functions R,;!, have all been
computed in the same potential, the sum rule,

> [Inz"ll']2=f R,*R . dr,
n 0

should hold exactly. For completeness, we have also
computed fo®R,7*R..dr for the bound states, and have
included this in Table II.

A check of the over-all numerical procedure, as well
as the method of normalization of the free functions,
was made by computing the hydrogen-like intensity
integral I,,7? for n=0.7949720. The numerical result
was 0.5120256 as compared with the result of 0.5120225
obtained on evaluating the usual formula.

B. Second-Order Terms

Second-order terms have been computed for the L
shell only. The following computations were made:

Ra[65 (1s)], Rep’[65 (1), Ru’[65 (1s1)],
R2[26; (15)%], Re,’[26; (15)7], Ra’[26; (151)%(25Y) ],

R2,26; (15)2(2s) ], R»2[26; (1s)*(2pY) ],
Ro,'265 (151)*(2p") ],

5R. E. Meyerott, Argonne National Laboratory Report
ANL-5008, 1953 (unpublished).

IONS

TasLE I. Energy parameters.®
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s 65 (15°)] —0.7949720

€25 6; (15°) ] —0.1838118

€22 6; (15°) ] —0.1749160

€35 6; (15°)] —0.080076815
e[ 6; (1) —0.077584471
€3a 6; (1s°) —0.077171480
€2:[26; (150)2(25%)] —0.207294688
€25 26; (15°)2(2s%) ] —0.201800451
€35 26; (15°)%(25%) ] —0.090172552
€3 26; (159)2(2s0) —0.088502789
€a 26; (1s)2(250) —0.087328213
e25[ 26; (15°)2(2p°)] —0.206515011
25 26; (15°)2(2p°) ] —0.200498725
€35 26; (159)2(2%)] —0.089998252
€3p 26; (159)2(2p9) ] —0.088238438
e3a[ 26; (15°)2(24°)] ~0.087186374
e[ 6; (151)] —0.801402423
€2, 6; (151) ] —0.184327493
e, 6; (15)] —0.175211915
€2,[26; (1s1)2] —0.218559937
€2, 26; (1s1)2] —0.213908925
eg,,Eza; 1st2(2s1)] —0.207711391
€2, 26; (1s1)2(2s1) * —0.206912949
€, 26; (151)%(2s") J* —0.201314780
€2:[26; (1s1)2(2p1) T* —0.206124176

e[ 26; (1s1)2(2p1) 1"

—0.199982918

s See footnote to Table III.

where )
1st=1s"4(1/6)A1,(1s%) for Z=6,

15'= 154 (1/26)A1,(1s%) for Z=26.

For the R;, function the 2s' and 2p! screening functions
were taken to be, respectively,

2= 25" (2/26) Ass (159)+ (1/26) Mgy (259),
2p'=2p"+(2/26)Agp (15°) 4 (1/26) Az, (25°).

For the R»,? function the 2s' and 2p! screening functions
were taken to be, respectively,

25'=25"+(2/26)Azs (15°)+ (1/26) A5 (29°),
29" =24+ (2/26) A2, (15°)+ (1/26) A2, (28°).

The functions 1s', 2s!, and 2p' used in computing
the potential were normalized even though this is not
assumed according to our procedure. As stated before,
this is a small correction.

By mistake, the sign of the correcting terms in Egs.
(13), (14), and (15) was reversed in computing the
functions used for Ry 26; (1s)2(2sY)], Rq,2[26;
(1s2(2p) ], R2p’(26; (1s1)*(2s))], and Re426; (1s')?
X (2pY]. This should not cause any trouble but merely
change the sign of some of the differences. To check
the consistency of the result, R».2[26; (1s1)2(2s')] was
computed with the correct signs of the correcting terms.
Any differences between the two functions are due to
higher-order terms appearing in Eq. (3).

The functions computed are insufficient to evaluate
all the quantities needed in Eqs. (8) and (9). We can

(13)

(14)

(15)
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only evaluate

Age[ A1, (159 ],
Age[Azy (159)%(25%) ],

A‘MEAIB(ISO)]’ A23[A2a(150)2(250)]:
Al A (1592(28% ],
Azp[ Azy (159)2(29°) ].

Since these second-order terms are small, we have re-
sorted to an approximation in order to reduce the
amount of computing necessary.

Inspection of Figs. 2 and 3 in ANL-5008 shows that
Ags(15%), Azs(25°), and A, (2p°) are approximately pro-
portional, as are Az, (1s%), Az,(2s%), and Ay, (2p°). Also,
since the changes due to the 1s° are considerably larger,
not much error will be made if we assume those due to
the 2s° and 2p° are strictly proportional to that of 1s°
for the purpose of computing the second-order terms.
The proportionality constant has been chosen at the
first maxima for the 2p function and second maxima
for the 2s function. This is on the assumption that this
region is the most important for the L-shell functions.

We then have

Azp (2?0) = 0369A2p (180),
Age (29" =0.325A4,(15°),

Agy (25%) =0.236A5, (15°), (16)
Agp (25 =0.223A5, (159).
The various A’s are given by
Agp[Asp(1s9)] = 0.422145,[A5,(15°)2(25%)],
Az,[A25(25%)] = 0.09424,,[ A2, (15°)2(2%) ],
Azy[A2p(29°)] = 0.1558A2,[ As(15)2(2£°)],
Agp[ A2 (15")] = 0.430145,[ Ass (1592(2%)],
A2p[A2:(25°)] = 0.1012A2,[ A2, (15°)2(2p"],
Agp[ Az, (29°)] = 0.1398A:,[ A2, (15°)2(2p%) ], an

As[As,(19)] = 0.4472A,,[ Ag, (1s)2(25%)],
A2,[A2,(259)] = 0.1055A2,[ A2, (15°)2(25%)],
As[ A2y (29%)] = 0.1455A0,[ Ao, (159)2(25%)],
An[Agp(15°)] = 0.4498A:,[ As,(15)2(25%)],
Azi[A25(25°)] = 0.1003As,[ A2y (15°)*(25%) ],
Asa[ A2y (28%)7] = 0.1650A5,[ Az, (1592(25%)].

For a full K and L shell, substitution in Egs. (8) and
(9) gives

7

TasLE III. Second-order integrals.2

Z =6(1s!) screening

n I;,"? 1,7 Iyp™ Izp"d
0.00 2.00996 6.22435 2.27097 7.84849
0.25 1.24534 1.65412 0.469878 1.23067
0.50 0.846387 0.776522 0.190117 0.448074
1.00 0.463290 0.298905 0.0596231 0.129059

Z =26(1s1)2(2s!) screening
n Iy Iyp™* Ipp %%
0.00 5.64154 1.86353 6.9001
0.25 1.64003 0.448450 1.29724
0.50 0.791521 0.191707 0.495553
1.00 0.310500 0.0633291 0.147244
Z =26(1s1)2(2p") screening
7 Io5"P% I 2p1lx* I 2pv;d*
0.00 5.65849 1.91256 6.90200
0.25 1.62687 0.455107 1.28726
0.50 0.778468 0.193193 0.490782
1.00 0.306751 0.0631279 0.145772

2 The I's in this table marked with *, and also the En: of Table I marked
with *, refer to those functions mentioned in part B of the section on
Computational Details, computed using the wrong sign of the second-order
potential correction.

2
Ry [ Z;5 (15)*(25) 2p)° )= (2S°)+2Azs(13°)

2 1
+—A23[Ala (130)]+ _A2s (280)
VA VA

8729 6
+ p Azs[A%(ls“)z(Zs")]-l-zAz,(21)0)
9.7782
P AAn (1P 0], (19
and

) 2
Ry} Z; (1s)%(251)*(2pY)%]= (2?°)+ZAzp(15°)
2 2
+—A2p[A1a (130) :H‘ —Aszp (230)
VA Z

+

04 0\2 0’ 5 0’
7 Agp[ Ags (159)2(2p ):H'EAW(Z?)

58
7 Agp[ A2p(15°)? @] (19

+

The second-order L-shell functions were used with
the corresponding first-order free functions to evaluate
the intensity integrals. These are listed in Table III.
As before in Z=26, we have insufficient functions to
evaluate all the Al’s needed. We can evaluate

AT, Agp(15°)2(29°)], Al2p™ [ Ags(15°)%(29%) ],
AT A2, (15°)2(25%) ], A2m[Ag,(15%)2(25%) ],
Al Azy(15°)2 (ZPO)]; AT 35" Ags(159)?2 (2% .
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TABLE IV. Second-order Al’s.

7 Aluﬂp[Au(ISo)] Al s "p[Au(ISO)] Alzp"B[:Au(ISo)] Alsp "d[Ax. (15“)]
0.00 —0.301896 —1.00654 —0.60932 +0.3978
0.25 -+0.035808 +0.110054 —0.09714 +0.3534
0.50 +0.121108 +0.141244 —0.06068 +0.2171
1.00 4-0.129326 +0.0951983 —0.02715 +0.09886

7 A2, Az, (15°)2(25%)] Al3p™[A2,(159)2(2p%)] AL, [ Az (159)2(2p°)]
0.00 —1.00976 —8.6206 +10.6743
0.25 +3.11999 —0.6028 +5.3768
0.50 +1.82818 +0.1281 +2.0019
1.00 -+0.68336 +0.1551 +0.3990
7 Al "™[Azp(15°)%(259)] Alp"[Agp(15°)2(2p)] A3, [Azp (157)2(24°)]
0.00 —3.27519 —10.9453 +11.711
0.25 —2.68340 —1.2717 +6.869
0.50 +1.93914 —0.2796 +2.938
1.00 --0.80006 +0.0695 +0.7803

The AI’s corresponding to the AR’s can be found
from Eq. (17). The corresponding A’s are given in
Table IV. For atoms or ions having full X and L shells,
the substitution of 7 for R in Egs. (18) and (19) lead
to expressions for I of the form

L =HI - an ) Z4bu/ 22 (20)

In Table V are listed the @’s and d’s for the case of
atoms or ions having initially full X and L shells.

For ions having electrons in K and L shells only, the
I.;,"" are those which correspond to electrons leaving
the system with kinetic energy #. It is shown in Ap-
pendix I for atoms or ions which have electrons in M
or higher shells, that the intensity integral is the one
for an electron leaving the system with kinetic energy
n-+e, where ¢ is the change in the ionization energy
due to external screening.

ACCURACY OF THE PERTURBATION APPROXIMATION

The difference between first- and second-order radial
functions for the same Z and screening is due to the
change in the potential. This has been computed and

TasBLE V. Values of @ and b for Eq. (20) for atoms
and ions with full K and L shells.

” HJ, 1" HJ, P @25 Bos P
0.00 1.5311 2.923 4.6888 62.37 —35.93
0.25 1.0137 1.384 1.5463 6.769 —20.18
0.50 0.7201 0.7374 0.77891 1.145 +22.67
1.00 0.4162 0.2611 0.31669 —0.04312 9.29

n HI211’73 ‘14219”s b2pﬂs
0.00 1.3535 28.82 —1314
0.25 0.39925 4.198 —13.884
0.50 0.18359 1.0022 —2.193
1.00 0.08268 —1.932 +1.1336

7 H Igp”d as p'ld bzpﬂd
0.00 5.4142 99.50 145.0
0.25 1.2629 9.902 82.3
0.50 0.51928 1.459 34.3
1.00 0.16354 —0.2427 8.70

found to be small, as is indicated by the small change
in the intensity integrals. Since this change is so small,
we can compare Ay (1s)) or As,(1s') computed for
Z=06, with the same quantities computed for Z=26
as a measure of error introduced due to neglect of
further terms in Eq. (5). In Fig. 1, Ay, (1s') and A,,(1s?)
are plotted for Z=6 and Z=26. To the accuracy of
this graph, As;(1s%) and A;,(1s%) computed for Z=6
would be coincident with A,,(1s') and Ag,(1s!) re-
spectively computed for Z=6. It can be seen that the
A’s computed for Z=6 and Z=26 agree to about 10
percent, so that, since the A’s themselves do not con-
tribute more than about 10 percent to the total wave
function, the use of either A would give errors of the
order of 1 percent. The difference between the A’s for
Z=6 and Z=26 which is due to neglect of further
terms in Eq. (5) is several times larger than the change
in the A’s because of the change in the screening po-
tential from its hydrogen-like value.® Repeating the -
calculation for one more Z value would enable one to
evaluate terms of order Z72. In that event, the Z—2
terms computed here due to the change in screening
from its hydrogen-like value can be used and need not
be recomputed.

THE ENERGY PARAMETER

Some problem exists regarding the interpolation of
the energy parameter, e,;. In the first-order solutions,
R,;! contains terms of order 1/Z, and hence the corre-
sponding energy parameter e, 7 can, in principle, be
determined to terms of order 1/Z2. To do this, we can

8 The quantities 4, B, C, D, (1/26)Ass[A1:(1s2)], and (1/26)
XAz[A1s(1s?)] shown in ANL-5008, were computed using
Ass(1s) and Az,(1s!) from Z=26, and Azs(1s°) and Az,(1s°) from
Z=06. It is evident that the functions plotted there are essentially
due to the higher terms in Eq. (5) and not to the change in the
potential.

7 According to this notation, e® is the hydrogen-like energy
parameter. e! is the first-order energy parameter computed with
hydrogen-like functions and then e, would be that computed
with the function R,
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make use of Fo(nl,n'l") ® integrals computed analytically
with hydrogen-like wave functions. The first-order
energy parameter for say the 2s function in the con-
figuration (1s)(2s)¥(2p)* would be

€2s' = e+ (x/ Z) Fo(15,25)+[ (y— 1)/ Z]F(2s,25)

+(5/2)Fa(2p,25). (21)

The energy parameters e, given in Table I found
in the first-order computation can then be used to
determine the terms of order 1/Z% However, when we
use R,7, this contains terms of order 1/22 so that the
energy parameter should contain terms of order 1/Z%
We have no method for using the computed parameters
ear® to determine the coefficients of these terms.

Fortunately, we can make use of screening constants,
as was suggested by Slater. In Eq. (21), e=—1%, if
we write Eq. (21) as

1[1 %4Fo(15,25) (y—1)4F(2s,2s)

eggl=——
4 2Z 2Z

F 2s)
_24 O(ZP’ S)]’ (22)

we have an expression which is identical with Eq. (21)
to first-order terms but includes terms of higher order.
The energy parameter given by Eq. (22) compares
favorably with that obtained in the second-order com-
putations so that we have used this approximation to
obtain our energy parameters. The quantities

On'l’, nl™= %W2F0 (n’l',nl) (23)

are screening constants and turn out to be practically
the same as those derived by Slater.® For reference,
Table VI is a list of these constants taken from Harris
Mayer.?

THE MASS ABSORPTION COEFFICIENT

If the linear absorption coefficient is denoted by u,
for matter of density p, then the contribution to the
mass absorption coefficient u/p, by transitions nl—nl/

TaBLE VI. Screening constants.

a(nl’ nl)

is 2s 2p
1s 0.6250 0.8395 0.9712
2s 0.6016 0.6484
2p 0.7266

8See E. V. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1950), p. 177.

9 J. C. Slater, Phys. Rev. 36, 57 (1930).

10 H. Mayer, Los Alamos Report LADC-464 (unpublished).
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F1c. 1. Az(1s!) and Agp(1s!) plotted as a function of 7. The
solid curves computed from Z=6, while the points indicate the
same quantities for Z=26.

is given by
4r%0ai’A 1 Max(L,l')

”’/P=an' nl_ V[Inlql,jz

MZ? 3 (2+1)

(29)

4.8596X 108 1 Max (V)

= “WNVar- LR,
MZ? 3 (2+1)

where N,;=number of electrons per atom in the state
specified by #nl, ago=radius of the first Bohr orbit,
a=fine structure const., 4=Avogadro’s Number, M
=molecular weight of the substance, and »=frequency
of radiation absorbed expressed in Rydberg units.

Equation (24) assumes product-type wave functions
and neglects exchange effects as well as lack of or-
thogonality of the initial and final state wave functions
of electrons not making the transition.

The methods discussed in the previous sections can
be used with Tables II to IV to calculate the I's in
Eq. (24). However, since the mass absorption coeffi-
cient varies approximately as »=3, it is important to
know the value of » with some precision. Strictly
speaking, when we use the first-order wave functions
and compute the I’s to order 1/Z, the energy parameter,
which is taken to be the same as the ionization energy,
should be taken to order 1/Z2. Second-order corrections
in the I’s are not as important as the effect of change
in the frequency, ».

For purposes of experimental comparison, the mass
absorption coefficients have been computed for alumi-
num and copper for frequencies beyond the K absorp-
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Fic. 3. »3(u/p) for the K shell of aluminum. The points below
K edge are taken from Hill. The points above K edge are taken
from Victoreen.

tion edge, and for aluminum, copper, and silver for
frequencies between the L absorption edge and the K
absorption edge. Since the mass absorption coefficients
for the photoelectric effect vary approximately as
v=3, 1*(u/p) was plotted instead of u/p. The results are
shown in Figs. 2 to 6. For comparison the experimental
values of the same quantities are shown. These data
were taken from Landolt-Bornstein (data by Schulz,
Jonsson, Andrews), Victoreen, Hill, Biermann, and
Tomboulian and Pell,"* as indicated in the figures, and
have been corrected for scattering by the tables given
by White.?

Unfortunately only the total absorption is measured
and not the contribution due to the various electron
shells. It is only at the absorption edges that one

1 H. H. Landolt and R. Bérnstein, Zalenwerte und Funktionen
aus Physik, Chemie. Astronomie (Springer Verlag, Berlin, 1950),
sixth edition, Vol. I, pp. 314-316; J. A. Victoreen, J. Appl. Phys.
20, 1141 (1949); R. D. Hill, Proc, Roy. Soc. (London) A161 284
(1937) H. H. Blermann, "Ann. Physik 26, 740 (1936); D. H.
Tomboulian and E. M. Pell, Phys. Rev. 83, "1196 (1951).

2 Gladys R. White, National Bureau of Standards Report
NBSR-1003 (unpubhshed)

knows that the increase in absorption is due to a new
shell. Here also, there is uncertainty since the effects
of the lattice structure gives the experimental points
considerable scatter.

The results of the present calculation and the magni-
tude of the absorption from the M and higher-lying
shells can be somewhat better understood by making
a comparison with the Coulomb result for some effective
Z. Since v*(u/p) varies like Z* for the Coulomb problem,
it seems likely that the maximum value for this quantity
should be that computed for the effective Z*=Z, the
nuclear charge of the atom in question. For the K
shell, where screening is relatively unimportant, we
have shown for comparison, the Coulomb result for

=7—0.625 the screening constant result. It can be
seen that our theoretical curve lies somewhat above
this curve. The difference between the theoretical curve
and the experimental curve in copper is a reasonable
extrapolation of the L-shell absorption below the K
edge. In the case of aluminum, the experimental data
has considerable scatter so that we have used Victoreen’s
curve for the K absorption and Hill’s experimental
points for the L absorption. In this case, the difference
is small but is in reasonable agreement with experi-
ment, considering the experimental difficulties in the
longer-wavelength regions.

In the region of the L shell the Coulomb result for
the L shell is shown for Z*=Z—2 and Z*=Z2—-6.522,
the latter being the energy screening constant result.
It can be seen that in the frequency range considered,
our theoretical curve starts in the neighborhood of the
Z—6.522 curve and becomes asymptotic to the Z—2
curve, indicating the more or less complete screening
of the two K electrons on the L shell.

It is not possible to use the mass absorption coeffi-
cient for the M shell for neutral atoms computed from
Table II since the M-shell screening has not been taken
into account. However, we have plotted in Figs. 7 and
8, »I? averaged over the M shell for Z=6 and Z=26
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F16. 4. »3(u/p) for the L shell of silver- - - and the data repre-
sented by the solid curve below the L edge are from Biermann.
A data are from Andrews. X X data are from Schulz.
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from the values given in Table II. Since in Z=06, there
was screening by a 1s° charge distribution, and in Z=26
screening by a (1s°)?(2s%) charge distribution, the Cou-
lomb values of »4I? for Z*=6 and Z*=35, and Z*=24
and Z*=23, respectively, for Z=6 and Z=26, are also
shown. In the case of Z=6, it can be seen that the
Z*=3 fits the calculations reasonably well. In Z=26,
however, the calculation behaves at high frequency,
more like Z—2 than Z—3. The L-shell screening in
this limit has little effect on the M shell.

For Z=47 and 29 the Coulomb result of »3(u/p) for
the M shell computed with Z*=Z—2 is also shown in
Figs. 4 and 5. In Z=47 the difference between the
experimental curve and the theoretical curve extrapo-
late reasonably well from the experimental points
below the L edge. This difference cruve lies somewhat
below the M shell Z—2 curve and the remainder of
the absorption is of the correct order of magnitude for
the remaining 19 electrons in the & and higher shells.
In the case of copper, the difference curve lies some-
what below the M shell Z—2 curve, indicating that the
M shell Z—2 limit may not apply for that low a nuclear
charge.

The first point on the difference curve seems to be
too high for silver and perhaps for copper depending
on how one wishes to draw the curve. This “bump”
does not appear in the curves for tin as published in
ANL-5008, but an error was found in the Landolt-
Bornstein Tables®® from which the data was obtained,
and when one uses the original data of Biermann this
“bump” also appears in tin. While there is no other
data for the M shell below the L edge for elements in
the neighborhood of Z=25, the difference curve shows
the same behavior for nickel in the region of the L
absorption as it does for copper.
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F16. 5. »*(u/p) for the L shell of copper. @ @ data by Jonsson.
[J[J data by Andrews. Solid curve below L edge represents 3
points taken from Hill.

13 Apparently the measurements given by Landolt-Bérnstein,
page 316, from 22.0988—29.8678 for Sn and Ta should be for
Ag and Sn, respectively.
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Table II.

The origin of this apparent irregularity is, of course,
not known. It may be due to effects not considered in
this paper, such as the neglect of the penetration of the
M-shell charge distribution into the L shell, exchange
effects or two-electron transitions. An estimate of the
latter effect appears to amount to a correction at the
edge of less than one percent. It is very likely that
fault lies with the present scaling procedures and that
the terms of order 1/Z% in Eq. (5) contribute errors at
this point where first-order corrections themselves are
large.

In the case of the absorption due to the L shell of
aluminum, there are very few data in this long-wave-
length region, and the effects of screening are large.
The ratio of the number of bound electrons to Z is
10/13 which is not a small quantity. Nevertheless, the
qualitative agreement between the theoretical curve
and the data is surprisingly good. The fact that the one
experimental point due to Tomboulian and Pell falls
on the theoretical curve is not to be taken too seriously,
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since this point was obtained from a small logarithmic
plot in the published paper.

CONCLUSIONS

The scaling procedures used in this paper which
properly take into account the first-order corrections
to Coulomb wave functions and dipole moments, give
corrections to the theoretical mass absorption by
factors of two over the screening constant approxima-
tion. The comparison with experiments, while it is
apparently better than the screening approximation, is
not conclusive. Further experiments designed to meas-
ure the absorption due to each shell separately are
highly desirable. Such information might be obtained
by a study of the velocity distribution of the ejected
photoelectrons.

The separation of the absorption by each shell might
be handled theoretically by computing the dipole
moments for a complete atom in the neighborhood of
atomic number 30. A comparison of the K- and L-shell
absorption with our scaled values would provide a
further check on these numbers. The M -shell computa-
tion could be used to check the difference curve be-
tween the theory and experiment. One could then see
whether the Hartree functions are good enough to
explain the observed absorption or whether other
effects must be taken into consideration.
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APPENDIX I

If there are screening electrons whose charge dis-
tribution is external to that of the optical electron,
then in carrying out the integration of Eq. (1) for the
charge distribution of the optical electron, > ex:.V; for
these external electrons according to Eq. (2) will be just

© [Ri;

0 4

dr= — ¢, a constant.

Ve=2 V=42
i

ext.

Thus the energy parameter for these cases e, plus this
interaction term, — e, will have to be the same as the
energy parameter without external screening, e,;. Hence,

Enl= enl1 — €o,
or (1A)

€nll = €n1t €0.

The energy differences are the same as before, except
that the free function having energy parameter 7 that
corresponded to an electron leaving the system with
kinetic energy 5, now corresponds to an electron leaving
the system with energy 5 e.

The free wave functions are still correctly normalized.
For the free function, the numerical solution to Eq. (1)
is continued by means of the WKB-Jeffreys solution.
This solution has an amplitude factor of the form
(ext V)% If we write V as V=V,+V,, where V; is
the potential due to the nuclear charge plus the in-
ternal screening electrons and, V, is as before the po-
tential due to the external electrons, for small 7, the
amplitude becomes (en+e+V.+V;)~t Using Eq.
(1A) this is just (e.+ V)%, the amplitude in absence
of external screening. For large 7, V—0 and the ampli-
tude becomes (e,1)~% as it should.

Hence, the external screening integrals correspond to
transitions to free functions of kinetic energy n+eo
rather than of kinetic energy 7.



