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It is intended to apply these equations to obtain
the correction to the binding energy of the Thomas-
Fermi atom due to relativistic effects. At present,
the relativistic effect is known only on the basis of
rough numerical estimates, ' although it represents a
significant correction to the binding energy of the
heavier elements. Rudkj9ibing's results can be used
also to obtain a relativistic analog of Hellmann's
equation, in which the angular momenta of the
electrons enter explicitly into the electron density.

s J. M. C. Scott, Phil. Mag. 43, 859 (1952).' H. Hellmann, Acta Physicochim. (U.R.S.S.) 4, 225 (1936).

The expression for the density of states corresponding
to (4), suitably modified to apply to nucleons, may
have application in the statistical theory" of the
nucleus. The analog of Hellmann's equation noted
above, suitably modi6ed to apply to nucleons, may
be of help in clarifying aspects of the spin-orbit coupling
in the shell model of the nucleus.

The author wishes to thank Dr. A. L. Latter and
Dr. R. Latter of the Rand Corporation for helpful
discussions.

'0 P. Gombas, Ann. Physik 10, 253 (1952); 12, 155 (1953);
W. G. McMillan, Phys. Rev. 92, 210 (1953).
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Perturbation effects of electron screening on wave functions and dipole matrix elements of E and L elec-
trons of ions or inner shells of atoms have been computed to order Z '. Some screening effects of this order
have also been computed for the M shell. Some of the terms of order Z~ have also been evaluated and found
to be small compared with those neglected in this paper. The dipole matrix elements have been used to corn-

pute x-ray mass absorption coeKcients and the comparison with the experimental values is discussed.

INTRODUCTION

~ OR many prob1ems, such as the determination of
the photoelectric absorption, ionization by elec-

tron impact, stopping power for fast particles, etc.,
one needs to know atomic wave functions and dipole
matrix elements for atoms and ions. In the case of
highly ionized atoms such as found in stellar interiors,
or for atoms of atomic number of 20 or greater, the
wave functions of E and L shells are suKciently
"hydrogen-like" so that the effects of screening can be
roughly estimated. ' These estimates serve to give the
order of magnitude of screening effects but in many
cases may be off by large factors. In some problems
such as that of determining the Rosseland mean opacity
of matter under conditions of high temperature and
pressure, one needs to be able to calculate the photo-
electric cross sections for a large variety of atoms in all

stages of ionization. The straightforward procedure of
obtaining, say, Hartree wave functions for a sample
of states of each atom for each stage of ionization, is a
prohibitively long program even for high-speed com-
puters. Since the quantities involved are nearly hydro-
gen-like, it is probable that such a program would be
greatly overdoing the problem and that the same
amount of information can be obtained with consider-

ably less work.
A possible analytical approach to this problem might

*Now with The Rand Corporation, 1700 Main Street, Santa
Monica, California,

r H. Hall, Revs. Modern Phys. 8, 358 (1936).

be to employ the set of approximate variational func-
tions of Morse, Young, and Hawrwitz' for the bound
states and Coulomb free functions using an atomic
number equal to that of the nucleus, minus the number
of screening electrons in the shell of the initial state
and those lying inside that shell. ' This procedure suffers
from two dBBculties: erst, in not correctly representing
the actual potential in which the optical electron moves,
and second, in not obtaining the correct wave functions
for even the assumed potential. Since the dipole mo-
ment is the expansion coeKcient of r times the bound
wave functions in terms of the wave functions of the
upper state, this moment may be very sensitive to small
changes in the form of the function assumed. The cor-
rection thus obtained to the hydrogen-like values may
merely represent the error in the assumed solution.

In order to eliminate part of the uncertainty in the
calculation, we have employed a method in which the
potential is assumed but the radial wave equation and
the dipole moment are solved for directly. This enables
one to investigate, without ambiguity, the dependence
of the dipole moment on the form of the potential
assumed. The results of these computations can also be
used as a basis for testing the validity of variational
wave functions since they are solutions of a dehnite
non-Coulombic problem.

The method of the present paper is to extend the

s Morse, Young, and Hawrwitz, Phys. Rev. 48, 948 (1935);also,
L. Goldberg and A. M. Clogston, Phys. Rev. 56, 696 (1939).' J. A. Wheeler, Phys. Rev. 43, 258 (1933).
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computations by developing the wave functions and
dipole matrix elements in power series in the number
of screening electrons divided by the atomic number.
The validity of this expansion is investigated and an
experimental verification is made using the observed
x-ray mass absorption coeScient.

THE CALCULATIONAL PROCEDURE

A. Bound. Wave Functions

Hartree wave functions are solutions of the central
field problem. The radial wave functions R„& of type
nl are solutions of Schrodinger's radial equation

d'R„i 2 1 i(1+1)
+ e„i+——Q'EgV;, — —R„i=0, (1)

y Z»
where Z is the atomic number, e„~ is the energy param-
eter in units Z'e'/2ao, and r is in units ao/Z, where ao
is the Bohr radius. E,; is the number of screening elec-
trons of type ij (the prime on the summation indicates
that the el term whose wave function is being computed
is omitted from the summation). V;, is the screening
potential of a radial charge distribution of type R;,.

2 goo

V,;=+— [R;;]2dr+2 [Rg;]2dr/r. (2),J,
The Hartree method consists of making an initial

guess of the radial wave functions R,,', using these to
compute the potential V;, and then solving the dif-
ferential equation (1) for the resulting set of functions,
say R„i'.These functions are then used in Eq. (2) to com-
pute a new potential V@ which is again used in Eq. (1)
to determine a new set of solutions R„~2 etc., until
there is no change in the resulting wave functions.
Since we are dealing with high stages of ionization and
inner shells of atoms, we take hydrogenic functions as
our initial guess, i.e., R;,'=R;,H.

Each solution of Eq. (1) will be a function of Z, the
number of screening electrons in the configuration, and
the particular stage of the iteration process. We express
this dependence in the following example. The 2s
radial wave function for Z=26, which is a solution of
the differential equation (1) in the configuration
(1s) (2s)&(2p)' in which hydrogen-like screening func-
tions were used in Eq. (2) for the potential, will be
written as R2,'[26; (1s')'(2s')i '(2p')']. In the next
iteration the screening functions would be (»') (2s')™
)&(2p')* so that the function would be written R2,2

y[26 (1s')*(2s')~ '(2p')~]
The method of the present paper is based on the

assumption that the eGect of the screening potential
on any solution of Eq. (1) is given sufliciently well by a
first order perturbation of the corresponding hydrogen-
like wave function. Taking hydrogen-like zero-order
functions, the rth iterative solution of Eq. (1) can be
written as

[V;;-']„,.B„
R.i =R.i +- Z'~;; Z'—,(3)

Z 's n e H —e~H

where as before the indices i, j run over all the screen-
ing electrons, and [Vg" ']~i „i is the matrix element of
V;; ' calculated with the hydrogen-like radial func-
tions R„&H and R„&H. The quantity

[Vij ]elm@, yl
=-~R. (6-'), (4)

H ~ He y

which we will call the change in the radial wave func-
tion of type nl introduced by the radial wave functions
of type (ij '), is independent of the atomic number Z
and of the number of screening electrons present when
hydrogen-like functions are used in Eq. (2). Fquation
(3) can then be written

1
R„i"=R„P+ Q' 1V;—,AR„i(ij ' '). —

Z ij

The 2s radial wave functions for an ion of nuclear
charge Z having a full E and I. shell screened by
hydrogen-like screening functions would be written

R»'[Z' (1so)2(2so)(2p')6] R, a+ (2/Z)AR2, (»')
+ (1/Z)AR2, (2s')+ (6/Z)AR&, (2p'). (6)

Since the AR's are orthogonal to RH to the approxi-
mation used here, the functions on the left-hand side
of the Eqs. (5) and (6) are normalized as they stand
to terms of order (1/Z') Jo"(hR»)'dr.

In the second approximation when one inserts R„~'
from Eq. (5) into Eq. (2) for the potential, V,,' can be
written in a manner analogous to Eq. (5) as

V '=V '+—Q'E ihV (NP)"
Z ~&

if we neglect the term involving the square of DR. If
we neglect the terms ARi, (2s') and ARi, (2p') as is the
usual practice in the Hartree method, the 2s and the 2p
radial solutions of Eq. (1) for a configuration (»)*
X (2s)&(2p)* can be written

R 'LZ (»') (»')" '(2p')']= (»')+-~2.(»')
Z

x(x—1) (y—1)
a„[a„(»')]+ s2, (2s')

Z2 Z

*(y—1), (y —1)(y —1)
+ ~ .9"(1")]+ ~"[~"(2")]

Z2 Z2

(y—1)s s+, ~2.[~»(2p')]+-&2.(2p')
Z2 Z

2'g 'y
+—~..l ~.,(»')1+—~..l ~..(»')]

Z2
"

Z2

s(s—1)
+ ~»[~»(2p')]; (g)

Z2
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R»'LZ; (1~')*(»')"(2P')' ')= (2P')+ —~»(»')z" with R„~ and R„~ defined as in Eq. (5):

(12)

y(y —1) QS
+ ~s.[~s.(»o)]+—».[~s (2P'))

Z2 Z2
"

(s—1) (s—1)x
+ 5, (2p')+ A,„[h „(1s')]

(s—1)y (s—1)(s—1)+- ~.[~,(2"))+
Z2 Z2

X~ „[~„(2p')], (9)

where the expression 0 s,[A, , (1s')] etc. , the change in a
2s due to the change in a 1s by a 1s', etc., are merely
an extension of the notation Ao, (1so), etc. For sim-
plicity in the above and following equations, the E
will be suppressed whenever no confusion from this
results. It is at once apparent from the point of view of
perturbation theory, that the Hartree procedure is a
power series expansion of the radial wave functions in
essentially the number of screening electrons divided
by the atomic number Z. If this expansion parameter
is small, convergence is, of course, rapid. The rapid
increase in the number of terms in the expression with
each stage of the iteration process, as well as the fact
that we have neglected terms of order 1/Z' in the first
iteration, make the extension of the present method
past R„~' unpro6table.

B. Free %lave Functions

The free radial wave functions result from a solution
of Eq. (1) for positive values of the energy parameter
~ ~

——g. In the one-electron problem, q is, of course, the
kinetic energy of the escaping electron. The expression
analogous to Eq. (5) for the free function is

where we neglect terms in Z 'J'o"R„~rDR„~dr. Matrix
elements involving E2,' and E2„2 can be obtained from
Fqs. (8) and (9) on replacing D»(1so), Do, [do, (2s')7,
etc. , by DI, ,""(1so) and DIs,""[hs,(2so)), etc. , re-
spectively.

Care must be exercised in the use of Eq. (12) in
computing [I &"")'as (1/Z) AI is not necessarily small
compared to I, so that terms in (1/Z') [AI )' must be
retained.

Ri '[6; (1so)), R&,'[6; (»o)], R»'[6; (»o)],

R 'L6;(1 ')], R.'L6; (1")],

R '[26; (1v')'(2s')] Ro, '[26;

Ro"[6; (»')),
Roy'[26; (1s') (2s') ],

(»')'(»')),

R3 [26; (1s')'(2s')],

Rod'[26; (1s')'(2s')], Rs '[26; (1s')'(2Po)]

Ron'[26; (1s')'(2P')),

Ro '[26; (1s')'(2P')), Ro '[26; (1so)'(2P')],

Ro"[26 (»')'(2P'))

R„'[6; (1s')), Rm'[6 (1s')), R'„~'[6; (1s')),

R r L6' (»'))
R [26; (» ) (2so)]» R i[26; (»o)s(2oo)]

R a'[26; (»o)'(2so)],

R r'[26; (1so)o(2so)] R '[26 (1so)'(2po)

COMPUTATIONAL DETAILS
A. First-Order Terms

In order to evaluate the erst-order terms in Eqs.
(g) and (9) the following computations were made:

R,2=R,P+ 2' K;~R„i(&j), —
Z i7 Rofi[26' (»')'(2P')).

R„s'[26; (»') (2p')],

where we have replaced m by g as a subscript of E.
Since second-order eGects are likely to be unimportant
for the free functions, no second-order terms are con-
sidered. We should point out that R„P in Eq. (10) is
the wave function for the same eriergy e„.~ as R„~0.

C. Matrix Elements

Consider the matrix element I„~""defined as

The free functions were computed for g=0.00, 0.25,
0.50, 1.00. The International Business Machines Card
Programmed Calculator was used for this computation
using the Noumerov method. A description of this
method has already been given by Pratt. '

The free functions were computed numerically out
to distances required to evaluate the matrix elements.
At that point they were joined to a WEB-Jeffreys
solution for purposes of normalization.

Since the method involves taking of differences,
considerable accuracy was maintained throughout the

4 G. W. Pratt, Jr. , Phys. Rev. 88, 1217 (1952).
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TABLE I. Energy parameters. '

—0.7949720—0.1838118—0.1749160—0.080076815—0.077584471—0.077171480

&~.[6' (»')]
ss,[6; (lss)]
~ss 6; (1s )]
eg, 6; (1s'))
s3„[6;(iss)
sss[6; (1s')

ss*[26' (1 s)o'(28)]
ss„[26; (1$0)'(2s')]
aa,[26; (isa)s(2so)]
sIy[26; (1s')'(2so)
was[26; (1ss)'(2ss)

~s,[26; (1so)s(2PO)]
~sr[26; (1~)'(2p')1
8$ [26; (ls )'(2p')]
e3,[26; (is')'(2p')]
&3d[26; (is )'(2p')]

sg,[6; (1s')]
es,[6; (is' )]
s~.[6; (is')]
ss,[26; (is')']
cs„[26; (1s')']

ss,[26; (1s')'(2s')]
es,[26; (1s')'(2s')]*
ss„[26; (1$')s(2$')]*

~s [26 (is')'(2p')]*
~sr[26' (is')'(2p')]*

—0.207294688-0.201800451—0.090172552—0.088502789—0.087328213

—0.206515011—0.200498725-0.089998252—0.088238438
-0.087186374

—0,801402423—0.184327493-0.175211915

—0.218559937-0.213908925

—0.207711391-0.206912949—0.201314780

—0.206124176—0.199982918

I See footnote to Table III.

is'= 1s + (1/6)h~, (1$ ) for Z=6,
is'= is + (1/26)h&, (1$0) for Z= 26.

(13)

For the E2, function the 2s' and 2p' screening functions
were taken to be, respectively,

calculation. In all the work 10 decimal places were
carried in the computation, and the wave functions are
expected to be good to 6ve or six places. In this approxi-
mation, the radial functions for the same Z and screen-
ing are strictly orthogonal. Our numerical functions
turned to be orthogonal to about 1 part in 10'.

In Table I are listed the energy parameters obtained
in the calculation of the bound functions. A plot of the
various AR's can be found in ANI —5008.' The plotting
accuracy is sufhcient so that if one desires 6rst-order
wave functions, they are obtainable from these graphs
and a good table of hydrogen-like wave functions. In
Table II are listed the intensity integrals, I, computed
with these functions, and the AI's. For reference, a list
of hydrogen-like integrals are also given. The functions
&„,[26; (1s')'(2p')) were not computed because they
should be very similar to E„,[26; (is')'(2s')). The
latter function was used to compute the intensity in-
tegral Is„&'[26; (1s )'(2p )). This should be permissible
since these transitions are not very important in most
applications. As a matter of fact, most of the free func-
tions might have been taken as Coulomb functions for

'

Z=Z Nb w—here Nt, is the number of bound screening
electrons. A check of this was made in one case by
setting V;;=2 in Eq. (1) for Z=6 apd /=1 and com-
puting the free wave function for g=4'. The corre-
sponding intensity integral I],» was 1.26017 as com-
pared with 1.24435 for the correct wave function, while where
that of I2,» was 1.65975 as compared with 1.65106 for
the correct wave functions.

Since the first-order functions R„~', have all been
computed in the same potential, the sum rule,

P [I.,-' ') = Z„,r Z„,dr,

should hold exactly. For completeness, we have also
computed Jo"E„~r'R„~dr for the bound states, and have
included this in Table II.

A check of the over-all numerical procedure, as well

as the method of normalization of the free functions,
was made by computing the hydrogen-like intensity
integral Ij,» for q=0.7949720. The numerical result
was 0.5120256 as compared with the result of 0.5120225
obtained on evaluating the usual formula.

B. Second. -Order Terms

Second-order terms have been computed for the L
shell only. The following computations were made:

Rs,'[6; (1s')), R&n'[6; (1s')], E~,'[6; (1s')),
It'. '[26; (1s')'] Rs„'[26; (1s')'] E '[26; (1s')'(2s')]
R '[26; (1s')'(2s')], Rs,,s[26; (is')'(2P')),

& '[; (1 ')'( p'))
~ R. E. Meyerott, Argonne National I.aboratory Report

ANI, —5008, 1953 {unpublished).

2s'= 2s + (2/26)hs, (is )+ (1/26)6$, (2$'),

2p' = 2p'+ (2/26) 6$~ (1$0)+(1/26) 6$„(2$').
(14)

For the Es~' function the 2s' and 2p' screening functions
were taken to be, respectively,

2s'= 2s + (2/26)hs, (1$ )+ (1/26)h„(2p'),
2p'= 2p'+ (2/26) &s„(1$')+(1/26) Ds~ (2p').

(»)

The functions is', 2s', and 2p' used in computing
the potential were normalized even though this is not
assumed according to our procedure. As stated before,
this is a small correction.

By mistake, the sign of the correcting terms in Eqs.
(13), (14), and (15) was reversed in computing the
functions used for E$82[26; (is' )'(2s')), Rs„'[26;
(1$')'(2p')]) 24/'[26; (1$')'(2$')], and Rsg'[26; (1$')'
X (2p')). This should not cause any trouble but merely
change the sign of some of the differences. To check
the consistency of the result, Rs,2[26; (1s')'(2s')) was
computed with the correct signs of the correcting terms.
Any differences between the two functions are due to
higher-order terms appearing in Eq. (3).

The functions computed are insufhcient to evaluate
all the quantities needed in Eqs. (8) and (9). We can
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only evaluate

h,[h, (is )), 6 „[6,(is )), 6»[5»(iso) (2s')),

~~.l ~»(»')'(2s')), ~»[~~ (»')'(2P'))

~ .[~.(»')'(2P')).

0.00 2.00996
0.25 1.24534
0.50 0.846387
1.00 0.463290

Z =6(is') screening

12e $8

6.22435 2.27097
1.65412 0.469878
0.776522 0.190117
0.298905 0.0596231

TABLE III. Second-order integrals.

1)4

7.84849
1.23067
0.448074
0.129059

Since these second-order terms are small, we have re™
sorted to an approximation in order to reduce the
amount of computing necessary.

Inspection of Figs. 2 and 3 in ANI.—5008 shows that
hs, (iso), hs. (2s'), and A~, (2p') are approximately pro-
portional, as are 6»(is'), A»(2s'), and 6»(2P'). Also,
since the changes due to the is are considerably larger,
not much error will be made if we assume those due to
the 2so and 2p' are strictly proportional to that of 1s'
for the purpose of computing the second-order terms.
The proportionality constant has been chosen at the
6rst maxima for the 2p function and second maxima
for the 2s function. This is on the assumption that this
region is the most important for the I.-shell functions.

%e then have

Z =26(isi)~(2si) screening

I „&'*

0.00
0.25
0.50
1.00

5.64154
1.64003
0.791521
0.310500

1.86353
0.448450
0.191707
0.0633291

6.9001
1.29724
0.495553
0.147244

0,00
0.25
0.50
1.00

Z =26(1si)~(2pi) screening
gag I ps'

5.65849 1.91256
1.62687 0.455107
0.778468 0.193193
0.306751 0.0631279

6.90200
1.28726
0.490782
0.145772

2
E»'[Z (1s')'(2s')'(2p')') = (2s')+ —6»(is')

Z

a The I's in this table marked with *, and also the Z~t of Table I marked
with +, refer to those functions mentioned in part B of the section on
Computational Details, computed using the wrong sign of the second-order
potential correction.

6» (2p') =03696» (is'),

d,s, (2p') =0.3256» (1s'),

d»(2s') =0.2366»(is' ),

6» (2s') =0.2236» (»').

(16)

2
+ ~»[h»(is'))+ —hs, (2s')

Z' Z

1.8729 6
+ As~[6»(1$0)2(2$0))+ Ass(2po)

Z2 Z

The various 4's are given by

d,s„[h»(is')) = 0.4221hs„[hs„(is')'(2P')),

~&n[h»(2s )) = 0.0942&&~[&»(iso)'(2P')),

~.[»(2P')) = o 1558~»[»(»')'(2P')),

A»[6»(1$')) = 0.43016»[ks, (is')'(2p')),

5»[d~, (2s')) = 0.10128»[h~,(is')'(2p')),

~»[~»(2P')) = 0.13988&n[h»(is')'(2P')),
(1&)

~„P„(iso)) = 0.4472~,.P „(iso)s(2so)),

4~,[h~, (2s')) = 0.10556~,[6~,(1s')'(2s')),

A&.[h»(2P')) = 0.14558,g.[hg. (1s')'(2s')),

&»[&»(is )) = 0.44984/8[4»(is')'(2s')),

h, [h „(2 ')) = 0.10036,[6 (1 ')'(2 ')),

+»[+»(2p')) = 0.1659~2a[+»(is ) (2s ))
For a full K and I. Shell, substitution in Eqs. (8) and
(9) gives

9.'7782
+ h»[h»(iso)s(2so)), (18)

Z2

2
R»'[Z (1s')'(2s')'(2p')')= (2p')+ —6»(»')

Z
'

2 2
+—~»[~„(iso))+-~»(2so)Z2' Z"

3.6004 5
+ ag„[ag, (is')'(2p'))+ —d, (2p')

Z Z"
9.058

+ 6 „[6 (is')'(2p')). (19)
ZQ

The second-order I.-shell functions were used with
the corresponding first-order free functions to evaluate
the intensity integrals. These are listed in Table III.
As before in Z=26, we have insuKcient functions to
evaluate all the dI's needed. %e can evaluate

».."[~ (1~)'(2P'))».."I ~"(»')'(2p')),
AI»»[5»(is')'(2s')), AI»&"[h~„(is')'(2s'))

aI„"[S„(iso)'(2P')),aI,„"p„(is')'(2p')).
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TABLE IV. Second-order b/'s.

0.00
0.25
0.50
1.00

0.00
0.25
0.50
1.00

0.00
0.25
0.50
1.00

AI„'Ln,.(iso)g

—1.00654
+0.110054
+0.141244
+0.0951983

AIs "E».(ls')1
—0.60932—0.09714—0.06068-0.02715

nI»&'t as*(1so)s(2PP)g

—8.6206—0.6028
+0.1281
+0.1551

»s "'L» (»')'(2P') j
—10.9453

102717-0.2796
+0.0695

AI&."rpng, (1s')j
—0.301896
+0.035808
+0.121108
+0.129326

nIs "~)As (1S )s(2S )g

—1.00976
+3.11999
+1.82818
+0.68336

rtIss "s'Pn»(1s')'(2sP)g

—3.27519—2.68340
+1.93914
+0.80006

AI,„P'LA„(»P)g

+0.3978
+0.3534
+0.2171
+0.09886

nI„. &"t'A„(1so)s(2p')g

+10.6743
+5.3768
+2.0019
+0.3990

at» "La»(1so)'(2p') j
+11.711
+6.869
+2.938
+0.7803

The DJ's corresponding to the hE's can be found
from Eq. (1'/). The corresponding A's are given in
Table IV. For atoms or ions having full E and J shells,
the substitution of I for R in Eqs. (18) and (19) lead
to expressions for J of the form

HI pl'+ g pl'/Z+ g pl'/gs (2p)

In Table V are listed the u's and b's for the case of
atoms or ions having initially full E and I shells.

For ions having electrons in E and L shells only, the
I„~&' are those which correspond to electrons leaving
the system with kinetic energy q. It is shown in Ap-
pendix I for atoms or ions which have electrons in 3f
or higher shells, that the intensity integral is the one
for an electron leaving the system with kinetic energy
r)+ep where ep is the change in the ionization energy
due to external screening.

ACCURACY OF THE PERTURBATION APPROXIMATION

The diGerence between erst- and second-order radial
functions for the same Z and screening is due to the
change in the potential. This has been computed and

TABLE V. Values of u and h for Eq. (20) for atoms
and ions with full E' and I. shells.

found to be small, as is indicated by the small change
in the intensity integrals. Since this change is so small,
we can compare As, (1s') or A»(1s') computed for
Z=6, with the same quantities computed for Z=26
as a measure of error introduced due to neglect of
further terms in Eq. (5). In Fig. 1, As, (1s') and hs„(1s')
are plotted for Z=6 and Z=26. To the accuracy of
this graPh, As, (1s ) and As~(1sP) comPuted for Z=6
would be coincident with hp, (1s') and Ds~(1s') re-
spectively computed for Z=6. It can be seen that the
6's computed for Z=6 and Z=26 agree to about 10
percent, so that, since the 3's themselves do not con-
tribute more than about 10 percent to the total wave
function, the use of either d would give errors of the
order of 1 percent. The difference between the 6's for
Z=6 and Z=26 which is due to neglect of further
terms in Eq. (5) is several times larger than the change
in the 6's because of the change in the screening po-
tential from its hydrogen-like value. ' Repeating the
calculation for one more Z value would enable one to
evaluate terms of order Z '. In that event, the Z '
terms computed here due to the change in screening
from its hydrogen-like value can be used and need not
be recomputed.

0.00 1.5311
0.25 1.0137
0.50 0.7201
1.00 0.4162

0.00
0.25
0.50
1.00

0.00
0.25
0.50
1.00

2.923
1.384
0.7374
0.2611

~I2y

1.3535
0.39925
0.18359
0.08268

5.4142
1.2629
0.51928
0.16354

4.6888
1.5463
0.77891
0.31669

82p 11S

62.37
6.769
1.145—0.04312

—35.93—20.18
+22.67

9.29

28.82
4.198
1.0022—1.932

99.50
9.902
1.459—0.2427

145.0
82.3
34.3
8.70

—131.4
-13.884—2.193
+1.1336

THE ENERGY PARAMETER

Some problem exists regarding the interpolation of
the energy parameter, e„~. In the 6rst-order solutions,
R„P contains terms of order 1/Z, and hence the corre-
sponding energy parameter e„&' ~ can, in principle, be
determined to terms of order 1/Z. To do this, we can

' The quantities A, 8, C, D, (1/26)hs, Lhr, (1sp)7, and (1/26)
Xr4s EAi~(» )) shown in ANL —5008, were computed using
&s,(1s') and n»(1s') from 2= 26, and As, (18) and h»(1sp) from
S=6. It is evident that the functions plotted there are essentially
due to the higher terms in Eq. (g) and not to the change in the
potential.

According to this notation, e & is the hydrogen-like energy
parameter. e„P is the erst-order energy parameter computed with
hydrogen-like functions and then e„P would be that computed
with the function E P.
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make use of Fe(nl, rt'l') ' integrals computed analytically
with hydrogen-like wave functions. The Grst-order
energy parameter for say the 2s function in the con-
6guration (1s) (2s)&(2p)* would be

es, ' ——es,o+ (a/Z) Fe (1s,2s)+ t (y —1)/Z)Fe (2s,2s)

+ ( /Z)Fo(2p» ) (21)

.e-

+st ls')

0

The energy parameters e„g' given in Table I found
in the 6rst-order computation can then be used to
determine the terms of order 1/Z'. However, when we
use R„ts, this contains terms of order 1/Z' so that the
energy parameter should contain terms of order 1/Z'.
We have no method for using the computed parameters
e„~' to determine the coefficients of these terms.

Fortunately, we can make use of screening constants,
as was suggested by Slater. In Eq. (21), ss,'————,', if
we write Eq. (21) as

4

e

I e s I I e I ~ I ~ I a e a I ~

R e 8 8 io fa ie ~8

1 a4Fs(1s,2s) (y—1)4Fs(2s,2s)
I

4 2Z 2Z I I ~

R e 8 8 10 iR ie

s4Fs(2p, 2s) ' Fro. 1. Ar, (ls') and Ae„(1s') plotted as a function of r. The
solid curves computed from Z=6, while the points indicate the
same quantities for Z=26.

we have an expression which is identical with Eq. (21)
to 6rst-order terms but includes terms of higher order.
The energy parameter given by Eq. (22) compares
favorably with that obtained in the second-order com-
putations so that we have used this approximation to
obtain our energy parameters. The quantities

is given by

4xsnas'A 1 Max(l, ll)
tt/p=& t & r vLI t"'j'

MZ' 3 (2l+1)

4.8596X 10' 1 Max(l, l')
N r v I„t&'j',

MZ' 3 (2l+1)

(24)

o „p,.t = —',rt'Fo (rtV, rtl) (23)

are screening constants and turn out to be practically
the same as those derived by Slater. ' For reference,
Table VI is a list of these constants taken from Harris
Mayer. "

TAM.E VI. Screening constants.

e (el', nl)
2s

1s
2$
2p

0.6250 0.8395
0.6016

0.9712
0.6484
0.7266

e See E. V. Condon and G. H. Shortley, The Theory of Atomec
SPectra (Cambridge University Press, Cambridge, 1950), p. 177.' J. C. Sister, Phys. Rev. 86, 37 (1930).

'e H. Mayer, Los Alamos Report LADC-464 (unpublished).

THE MASS ABSORPTION COEFFICIENT

If the linear absorption coefficient is denoted by p,
for rnatter of density p, then the contribution to the
mass absorption coeflicient tt/p, by transitions el~rtl'

where X ~=number of electrons per atom in the state
speci6ed by nl', ao ——radius of the 6rst Bohr orbit,
0.=6ne structure const. , A =Avogadro's Number, 3f
=molecular weight of the substance, and v= frequency
of radiation absorbed expressed in Rydberg units.

Equation (24) assumes product-type wave functions
and neglects exchange eGects as well as lack of or-
thogonality of the initial and final state wave functions
of electrons not making the transition.

The methods discussed. in the previous sections can
be used with Tables II to IV to calculate the I's in
Eq. (24). However, since the mass absorption coefR-
cient varies approximately as v ', it is important to
know the value of v with some precision. Strictly
speaking, when we use the 6rst-order wave functions
and compute the I's to order 1/Z, the energy parameter,
which is taken to be the same as the ionization energy,
should be taken to order 1/Z'. Second-order corrections
in the I's are not as important as the eGect of change
in the frequency, v.

For purposes of experimental comparison, the mass
absorption coeKcients have been computed for alumi-
num and copper for frequencies beyond the K absorp-



R. E. M E YE ROTT

+l—)P

lex IO
IO

IO
ioalo

8 «lo
IO

K SHELL xa & 29 CII

AI25)

KXP.

4 xloIO

exloIO

EXP OIFFERENCE

I I I I I

I200 2000
v IRhc)

I

400
I

2800
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Experimental data by Schulz.

u'(-")
P

12xlO
a

loxlo-9

K SHELL 2 = l3 AL

KX P.

8xlO "9

6xlo-9

94xlo-

exlo-9

L SHELL EXTRAPOLATE

~+ ~, DIFFERENCE
x + I I

IOO 200 300 400 500 600
2p (Rhc)

Fxo. 3. vs(p/p) for the ff shell of aluminum. The points below
E edge are taken from Hill. The points above E edge are taken
from Victoreen.

tion edge, and for aluminum, copper, and silver for
frequencies between the L absorption edge and the E
absorption edge. Since the mass absorption coe%cients
for the photoelectric eGect vary approximately as
v ', vs(tt/p) was plotted instead of p/p. The results are
shown in Figs. 2 to 6. For comparison the experimental
values of the same quantities are shown. These data
were taken from Landolt-Bornstein (data by Schulz,
Jonsson, Andrews), Victoreen, Hill, Biermann, and
Tomboulian and Pell,"as indicated in the 6gures, and
have been corrected for scattering by the tables given
by %hite."

Unfortunately only the total absorption is measured
and not the contribution due to the various electron
shells. It is only at the absorption edges that one

' H. H. Landolt and R. Bornstein, Zaleezverte +ed Iiulktionem
tttts Physeh, Chemk Astrortomee (.Springer Verlag, Berlin, 1950),
sixth edition, Vol. I, pp. 314-3I6;J. A. Victoreen, J. Appl. Phys.
20, 1141 (1949); R. D. Hill, Proc. Roy. Soc. (London) A161, 284
(1937); H. H. Biermann, Ann. Physilt 26, 740 (1936); D. H.
Tomboulian and E. M. Pell, Phys. Rev. 83, 1196 (1951).

~ Gladys R. White, National Bureau of Standards Report
NBSR—1003 (unpublished).

knows that the increase in absorption is due to a new
shell. Here also, there is uncertainty since the sects
of the lattice structure gives the experimental points
considerable scatter.

The results of the present calculation and the magni-
tude of the absorption from the 3f and higher-lying
shells can be somewhat better understood by making
a comparison with the Coulomb result for some effective
Z. Since v'(tt/p) varies like Z' for the Coulomb problem,
it seems likely that the maximum value for this quantity
should be that computed for the effective Z*=Z, the
nuclear charge of the atom in question. For the E
shell, where screening is relatively unimportant, we
have shown for comparison, the Coulomb result for
Z*=Z—0.625 the screening constant result. It can be
seen that our theoretical curve lies somewhat above
this curve. The diGerence between the theoretical curve
and the experimental curve in copper is a reasonable
extrapolation of the L-shell absorption below the E
edge. In the case of aluminum, the experimental data
has considerable scatter so that we have used Victoreen's
curve for the E absorption and Hill's experimental
points for the L absorption. In this case, the difference
is small but is in reasonable agreement with experi-
ment, considering the experimental difficulties in the
longer-wavelength regions.

In the region of the L shell the Coulomb result for
the L shell is shown for Z*=Z—2 and Z*=Z—6.522,
the latter being the energy screening constant result.
It can be seen that in the frequency range considered,
our theoretical curve starts in the neighborhood of the
Z—6.522 curve and becomes asymptotic to the Z—2

curve, indicating the more or less complete screening
of the two E electrons on the L shell.

It is not possible to use the mass absorption coeK-
cient for the 3f shell for neutral atoms computed from
Table II since the M-shell screening has not been taken
into account. However, we have plotted in Figs. 7 and

8, v412 averaged over the 3f shell for Z=6 and Z=26

& Ip)

6x IO
IO

xS s 47 Ao

Sxlo
IO

IO
4x IO

pLSHELL tZ 2)

~THEOR.

IO
3%IO

exloIO

LI. I Z-8.522)

XIIII SHELI. IZ-2)
IO

I xlo
OIFFERENOK

I s I ) I ~ I x I x I s I

o 4oo aoo Ieoo leoo eooo e4oo aeoo
y {Rhc)

Fxo. 4. v'(p/p) for the L shell of silver ~ and the data repre-
sented by the solid curve below the I. edge are from Bierrnann.
6 data are from Andrews. g g data are from Schulz.
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from the values given in Table II. Since in Z=6, there
was screening by a is' charge distribution, and in Z= 26
screening by a (1s')'(2s') charge distribution, the Cou-
lomb values of v4P for Z*=6 and Z*=5, and Z*=24
and Z*=23, respectively, for Z= 6 and Z= 26, are also
shown. In the case of Z=6, it can be seen that the
Z*=5 6ts the calculations reasonably well. In Z=26,
however, the calculation behaves at high frequency,
more like Z—2 than Z—3. The I.-shell screening in
this limit has little effect on the M shell.

For Z=47 and 29 the Coulomb result of v'(ls/p) for
the M shell computed with Z*=Z—2 is also shown in
Figs. 4 and 5. In Z=47 the difference between the
experimental curve and the theoretical curve extrapo-
late reasonably well from the experimental points
below the I. edge. This difference cruve lies somewhat
below the M shell Z—2 curve and the remainder of
the absorption is of the correct order of magnitude for
the remaining 19 electrons in the S' and higher shells.
In the case of copper, the difference curve lies some-
what below the M shell Z—2 curve, indicating that the
M shell Z—2 limit may not apply for that low a nuclear
charge.

The 6rst point on the difference curve seems to be
too high for silver and perhaps for copper depending
on how one wishes to draw the curve. This "bump"
does not appear in the curves for tin as published in
ANL —5008, but an error was found in the Landolt-
Bornstein Tables" from which the data was obtained,
and when one uses the original data of Biermann this
"bump" also appears in tin. %hile there is no other
data for the M shell below the I. edge for elements in
the neighborhood of Z= 25, the difference curve shows
the same behavior for nickel in the region of the I.
absorption as it does for copper.

V Cy)

8?XIO- L SHELL (K-2)
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$X IQ
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FIG. 6. v (p/p) for the I shell of aluminum. X X data by Hill.
H data by Tomboulian and Pell.
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FIG. 7. v (P)A~ for the jll shell for Z=6, with fsv screening.
The curve labeled v'(Irp)Av was computed from the integrals in
Table II.
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Fro. S. v'(a/p) for the I. shell of copper. ~ + data by Jonsson.
Q Q data by Andrews. Solid curve below L edge represents 3
points taken from Hill.

' Apparently the measurements given by Landolt-Bornstein,
page 316, from X2.0988~X9.8678 for Sn and Ta should be for
Ag and Sn, respectively.

The origin of this apparent irregularity is, of course,
not known. It may be due to effects not considered in
this paper, such as the neglect of the penetration of the
M-shell charge distribution into the I. shell, exchange
effects or two-electron transitions. An estimate of the
latter effect appears to amount to a correction at the
edge of less than one percent. It is very likely that
fault lies with the present scaling procedures and that
the terms of order 1/Z' in Eq. (5) contribute errors at
this point where first-order corrections themselves are
large.

In the case of the absorption due to the I shell of
aluminum, there are very few data in this long-wave-

length region, and the effects of screening are large.
The ratio of the number of bound electrons to Z is
10/13 vrhich is not a small quantity. Nevertheless, the
qualitative agreement between the theoretical curve

and the data is surprisingly good. The fact that the one

experimental point due to Tomboulian and Pell falls

on the theoretical curve is not to be taken too seriously,
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APPENDIX I

If there are screening electrons whose charge dis-
tribution is external to that of the optical electron,
then in carrying out the integration of Eq. (1) for the
charge distribution of the optical electron, P. «. V;; for
these external electrons according to Eq. (2) will be just

Fro. 8. v'(P)A, for the M shell for Z =26 screened by (1s')'(2s ).
The curve labeled y'(Iss)A„was computed from the integrals in
Table II. ext.

dr= —e, a constant.

since this point was obtained from a small logarithmic
plot in the published paper.

CONCLUSIONS

The scaling procedures used in this paper which

properly take into account the first-order corrections
to Coulomb wave functions and dipole moments, give
corrections to the theoretical mass absorption by
factors of two over the screening constant approxima-
tion. The comparison with experiments, while it is
apparently better than the screening approximation, is
not conclusive. Further experiments designed to meas-
ure the absorption due to each shell separately are
highly desirable. Such information might be obtained
by a study of the velocity distribution of the ejected
photoelectrons.

The separation of the absorption by each shell might
be handled theoretically by computing the dipole

.moments for a complete atom in the neighborhood of
atomic number 30. A comparison of the E- and I-shell
absorption with our scaled values would provide a
further check on these. numbers. The 3f-shell computa-
tion could be used to check the diGerence curve be-
tween the theory and experiment. One could then see
whether the Hartree functions are good enough to
explain the observed absorption or whether other
eGects must be taken into consideration.

Thus the energy parameter for these cases ~„~', plus this
interaction term, —eo, will have to be the same as the
energy parameter without external screening, e &. Hence,

or
t-'nl = &nl &op

1

enl ent+ es.l~
(1A)

The energy differences are the same as before, except
that the free function having energy parameter p that
corresponded to an electron leaving the system with
kinetic energy q, now corresponds to an electron leaving
the system with energy tf+es.

The free wave functions are still correctly normalized.
For the free function, the numerical solution to Eq. (1)
is continued by means of the WEB-Jeffreys solution.
This solution has an amplitude factor of the form
(e„t'+V) &. If we write V as V=V,+V., where V; is
the potential due to the nuclear charge plus the in-
ternal screening electrons and, V, is as before the po-
tential due to the external electrons, for small r, the
amplitude becomes (e„t+so+ V,+V;) . Using Eq.
(1A) this is just (e &+V;), the amplitude in absence
of external screening. For large r, V—Q and the ampli-
tude becomes (e„tt)-& as it should.

Hence, the external screening integrals correspond to
transitions to free functions of kinetic energy tf+es
rather than of kinetic energy g.


