
PH YSICAL REVIEW VOLUM E 95, NUM BER 3 AUGUST 1, 1954

Spherical Model of an Antiferromagnet*

BARRY S. GQURARY AND RQBERT W. HART
A pplE'ed Physics Iaboratory, The Johns Hopkins University, Silver Spring, 3faryland

(Received March 31, 1954)

The sphericalization technique is adapted to the calculation of
the partition function of a body-centered cubic lattice of spins
with isotropic antiferromagnetic interactions between nearest
neighbors and between second-nearest neighbors. Two transition
points may be obtained. The usual Curie point transition from the
paramagnetic state to the antiferromagnetic state (caused by the
sticking of the saddle point) leads to an antiferromagnetic state
with ordering either of the first kind or of the second kind, de-
pending on the value of the ratio of the second-nearest neighbor
interaction to the nearest-neighbor interaction. In addition a first-
order transition from one kind of ordering to the other can occur
if the ratio of the interactions varies with the specific volume in
such a way that it moves through a critical value. Mathemati-

cally, this transition occurs because the largest eigenvalue of the
interaction matrix becomes triply degenerate at the temperature
at which the ratio of the interactions attains the critical value.

The long-range order is measured in terms of long-range order
parameters, which are closely related to the sublattice magnetiza-
tions. The analog of the perpendicular susceptibility is also cal-
culated.

Qualitative agreement with the molecular field theory is ob-
tained for all those properties of the model which depend on the
long-range order. In contrast to the molecular field theory, this
model should give valid predictions for quantities depending on
short-range order.

INTRODUCTION

''N recent years, interest in the study of antiferro-
~ - magnetism has grown steadily. Extensive experi-
mental investigations have been paralleled by attempts
to develop a theory of antiferromagnetism. '—4 Con-
siderable success has been achieved at very low tem-
peratures, where the spin wave theory provides the
necessary mathematical framework. ' ' At higher tem-
peratures, particularly in the vicinity of the critical
points, the situation is far less satisfactory. While the
phenomenological molecular field theory serves a useful
heuristic purpose, it fails to give a consistent and reliable
description of magnetic phenomena near the Curie point.

The Van Vleck molecular field theory starts out from
the well-known physical result that short-range forces
are responsible for antiferromagnetism. Physically, this
clearly implies that the local 6eld acting on each spin is
determined by the local magnetic order. The molecular
field theory, however, proceeds to set the local field
proportional to the magnetization of a sublattice —a
magnetization existing only when long-range order is
present. This approximation has a measure of validity
well below the Curie temperature, where long-range
order is actually present; but it fails completely just
above the Curie temperature, where local order persists
even though long-range order is absent. In the entire
region of the transition temperature, it is not always
clear which predictions of the theory are consequences
of the model and which are due to the approximations.

The purpose of this paper is to adapt the recently
developed "sphericalization" technique to the study of

~ This work was supported by the Bureau of Ordnance, Depart-
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2 P. W. Anderson, Phys. Rev. 79, 705—710 (1950).
3 J. H. Van Vleck, J. phys. radium 12, 262 (1951).
4 J. S. Smart, Phys. Rev. 90, 55 (1953).
5 P. W. Anderson, Phys. Rev. 86, 694 (1952).

Keffer, Kaplan, and Yafet, Am. J. Phys. 21, 250 (1953).
7 J. R. Tessman, Phys. Rev. 88, 1132 (1952).

antiferromagnetism. ' This is a method which can be
applied to a well-defined mathematical model, the
"spherical" model of an antiferromagnet, and which
permits the calculation of pertinent physical quantities
without approximations other than that of letting the
number of spins tend to infinity. The results of these
calculations will, therefore, be rigorously true for the
spherical model. The question still remains whether the
spherical model is a good approximation to the physical
antiferromagnet. We believe that it merits careful study
because of its success in the treatment of ferromag-
netism.

THE SPHERICAL MODEL

I et us define our model. Consider a body-centered"
cubic lattice of Ã spins, each of which is a classical
vector fixed at a point in space but free to rotate about
it. We shall assume that there are isotropic antiferro-
magnetic interactions both between nearest neighbors
and between next nearest neighbors. The spins will be
required to obey the spherical condition

Q; Sg=cVS(S+1),

where the summation extends over the X spins. This
condition will be imposed rather than the more usual
quantum condition,

SP=S(S+&), q=o, &, 2, ".1V—&, (2)

in order to render the model tractable. The substitution

T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
9E. W. Montroll, Nuovo cimento 6, Supplement No. 2, 265

(1949)."M. Lax, I. Chem. Phys. 20, 1351 (1952)."T. H. Berlin and J. S. Thomsen, J. Chem. Phys. 20, 1368
(1952).

"An entirely different approach to the problem has been
adopted by Y.Y. Li, Phys. Rev. 84, 721 (1951).He uses the cluster
method of Bethe, Peierls, and Weiss.

'3 The body-centered cubic lattice appeared to be somewhat
easier to handle analytically than the more interesting case of the
face-centered cubic.
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of the continuum model (1) for the more conventional
discrete model (2) leads to spurious effects at very low
temperatures. Berlin and Kac' have shown, however,
that at higher temperatures the spherical model (1)
closely approximates the discrete model (2). It should,
therefore, be no worse an approximation to the physical
situation than is the discrete model (2).

The Hamiltonian of our system is of the form

II= —p B,gS,"Sg—gpoH p S,.

Here, S, is the classical spin vector at the jth lattice
point, 8;I, the interaction coefficient between the jth
and the kth spins, g the spectroscopic splitting factor,
Po the Bohr magneton, and H the externally applied,
uniform, static magnetic field.

Two types of properties of the model are of interest
to us: the thermodynamic quantities, and the long-
range magnetic order parameters. The former can be
obtained from the partition function. The latter are
closely related to the magnetizations of the sublattices,
and are obtained from the expectation value of the
absolute magnitude of a certain linear function of the S;.

The partition function can be written as

Z= Jt d'So ~d'Sg .
,

I d'S,v g PexP[P A, ,S; S,
23

+K Q S,] 6[+ St2—1VS(5+1)], (4)

where

A;, = (8;;)kT), re= (gp, /t T)H,

the integration is extended over all spin space, and
constraint (1) is imposed by the introduction of the
Dirac delta function under the integral sign. The mul-
tiple integral of (4) can be reduced to a single integral
over an auxiliary variable 3 in the following steps.

(a) Replace the delta function by its Fourier integral
representation,

5{+ 5 ' ES(5+1)}—

dt exp{—t[P; SP ES(5+1)$}, —(6)

choose y large and positive, and interchange the order
of integrations.

(b) Introduce the new variables

S,=o,+C, C=C(t),

where C is chosen so as to eliminate the linear terms
from the exponent. The explicit expression for C is
given in Eq. (25).

(c) Then diagonalize the interaction matrix A
(which will be shown to be symmetric and cyclic) by
the real orthogonal transformation T,I,. The partition

function now becomes

1 p~+

2% 2 p QQQ

where

dt p(t) e xp[XH'G(t) +PS(5+ 1)tj, (8)

p(t) = d Noj~d sy' ' J~d sy

Xexp{—
I Z, (t—~,)~F&}

N—1
=~(3N/2) g (t—g.) 3 y)Max(A ).

Here, the u, are related to the el, by the transformation
equations:

uj =E r Ta~&a. (10)

—x+y+s= p,

+x—y+s= q,

+x-+y —s= s,

p=0, 1, 2. . 2ng 1;—
(=0, 1, 2 . 2m2 —1;
s —O, i)2-- 2@3 1.

(12)

It is clear that the position of each spin can be specified
by the triad of numbers (p, g,s) as well as by the Car-

They are the eigenvectors of A,;. The A, are the eigen-
values of A;; and are given by

A, = (TAT);, . (11)

G(t) is a function of t only, arising from the transforma-
tion of (b). Its explicit form will be given later [see
Eq. (26)j.

One major task of this paper is the evaluation of (8).
The other is the calculation of the expectation value of
the absolute magnitude of a Cartesian component of the
eigenvector u;. It will be shown later that this expec-
tation value is closely related to the magnetizations of
the sublattices,

The actual evaluation of (8) is performed by a saddle
point method. In order to be able to investigate the
existence and location of the saddle point, we must
know the explicit form of the eigenvalues. We shall

proceed to deduce them presently.

THE INTERACTION MATRIX

In order to facilitate the interpretation of our results
in terms of the sublattice picture, the following scheme
is adopted for numbering the spins. The original body
centered cubic lattice is divided into two simple cubic
sublattices, the A and 8 sublattices. ' Then the nearest
neighbors of a spin on A are on sublattice 8, and vice

versa. Sublattice A is further subdivided into two face
centered cubic sublattices A» and A2, so that all the
second nearest neighbors of a spin on A ~ are found on
sublattice A2 and vice versa. A similar subdivision is
carried out on the 8 sublattice.

Analytically this subdivision is effected as follows.
Assume a set of rectangular axes along the cube edges,
and consider the three families of planes (see Fig. 1):
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0 A) SPI AS «&&«s=4 plane

(0,4,-2)
Pro. j.. Some of the
x+y —s= s planes.

0,4,-4)

(4,0,-4)

,0,-4

tesian coordinates (x,y,s). In fact,

~= -'(q+~) y= '(~+p), s=-'(p+q) (-13)

In order that the Cartesian coordinates of each spin
be integers, p, q, and s must be either all odd or all even.
It is then possible to choose the sublattices so that

s=4nz for the A~ sublattice,

A('+~)(j+~) =A'j

A;;=A, ;. (19)

Since the matrix A;; is defined as the matrix of inter-
actions between nearest neighbors and next-nearest
neighbors, it must be symmetric and invariant under a
translation of coordinates. Consequently,

s =4m+1 for the Bq sublattice,

s=4m+2 for the A2 sublattice,

s=4m+3 for the B2 sublattice,

where ns is an integer or zero. The total number of spins
in the crystal is evidently

2Ãy'p$2sg =g. (15)

The position of each spin can also be designated by
the single number j, where

j=s+n3q+n2n, p,
j=0, 2, . S—2 for even P, q, and s; (16)

j 1+(=+nn& )n, 33+ (n, +n,n3),
1V—1+(n3+n2n~) for odd p, q, and s.

It is convenient to assume that e3 is a multiple of 4.
Then

(20)A (;+~),=A;;.

The periodicity condition (20) permits us to change the
range of j from the one given in (16) to

j=0, 1, 2, E—1. (21)

This merely rearranges the order of appearance of the
various terms, but does not aGect their value. The
resulting matrix has the form

A;, =c;;—c;,=c, (22)

The problem of determining the interaction matrix
now reduces to that of finding (j i) for ne—arest and
next-nearest neighbors. Let one spin be situated at
(x,y, s) and have the index i, and let the other spin be
at (x',y', s') and have the index j. Then Table I gives

(j—i) for nearest neighbors and for next-nearest neigh-
bors. For nearest neighbors

c, ;=—(J/kT) = E, —(23)

for Ag,

fol By)

for A2,

fol B2.

j=4m
ad=4m+1

j=4m+2
j=4m+3

(14) In order to simplify the calculations, we also impose
periodic boundary conditions on the crystal lattice by
requiring
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and for next-nearest neighbors

c = —(J'/kT) = —E' (24)

J and J' are interaction coeKcients given by the ap-
propriate superexchange theory (in principle at least).
From this table it is clear that the nearest neighbors of
a spin on A & are distributed equally between 8& and 82.
The next nearest neighbors of a spin on A~ are all on A2.
Analogous statements hold for the other sublattices.

Digressing from our subject for a moment, we note
that it is now evident that C in Eq. (7) is

C =x/[2 (t+8E+6K')], (25)

and that G(t) is given by

( gPp
' 1

G(t) =
I I, (26)
t. 2kT) t+8K+6K'

When the external field is zero, Ss——ei, .
We now return to the determination of the eigen-

values of the interaction matrix. It is shown in the
literature that the cyclic, symmetric matrix A;; can be
diagonalized by the real orthogonal transformation T; I„
where the T;I, are given by

T;s (2/N)'* COSL(2——2rjk/N)+-, '2r]. (27)

The eigenvalues become
N—1

h. =P cs cos(22rk222/N) =A2r . (28)
k=o

TABLE I. Values of (j —2) for nearest neighbors and next-nearest
neighbors.

x —x
Nearest neighbors

z' —z P' —P q' —q s' —.s

1

1

—1—1

—1

—1
1—1
1

,
—1—1

1

1

1—1—1—1

3

—1
1
1—3—1

1

3—1
1—3
1

1—1—1
3—3
1

—1

1+S3+S2n3—1 —S3+3S2n3—1+3n3—S2S3
+3—S3—S2S3—3+s3+S2S3

1—3S3+S2n3
1+S3—3S2n3—1—n3 —n2S3

2—2
0
0
0
0

0
0
2—2
0
0

Next-nearest neighbors

0 —2 2 2
0 2 —2 —2
0 2 —2 2
0 —2 2 —2
2 2 2 —2—2 —2 —2 2

+2+2S3—2S2S3—2 —2S3+2S2S3
2 —2S3+2S2S3—2+2S3—2S2S3—2+2S3+2S2S3
2 —2n3 —2S2n3

In order to perform the saddle point integration, it will
be necessary to obtain a more manageable expression
for p2(t) than the one given by Eq. (9). This is done in
Appendix I. A tractable expression is obtained for the
product in Eq. (9), after first factoring out the terms
containing the largest eigenvalue. I.et

l1(o11)o12)ois) = —COS(o11+o12+o12)—COS( —3o11+o12+o12)
—COS(rdi 3o12+o12—)—COS(o11+o12 3o12)

—p/COS2 (—o11+o12+o12)+COS2 (o11—oi 2+co2)

+COS2 (ppi+o12 —ois)], (35)
It is evident from Eq. (28) that all but two of the
eigenvalues are doubly degenerate. The two non-
degenerate eigenvalues are Ao and A~g2. The degeneracy
derives from the symmetry and periodicity of the
matrix (A;;). Substituting the values of the cs, we
obtain the explicit form of the eigenvalues.

A~= —2E(COS(01+02+Qs)+COS( 01+02+02)
+cos(+0,—02+02)+cos(+01+Q2—02)]

—2E'(cos201+cos202+ cos202)
= —8E cosQy cosQ2 cosQ3

—2E'(cos2Qi+ cos202+cos2Q2), (29)

Qi ——(22r2N/N) (222222 —222—1),

02 = (22r212/Ã) (222222+222 —1),
Qs ——(22r222/N) (222222 —222+1).

and
Xsr ——Max(X ).

Note that Max(X ) =MaxLX(oir, o12,o&2)]. The expression
for z1(2Es) can take on one of two forms, depending
on the value of p. Case I:p&-', .

X~=4—3p=h', (37)
corresponding to

2rt =N/2 Or rd 1——o12——0, o12
——2r. (38)

Then

exp[NS(S+1)2Es]p2(2Es)
= (2r/2E)s rs exp' f(s)]/(s —Y)&, (39)

THE PARTITION FUNCTION

It will be convenient to define

s=t/2K,
p=K'/K=/'/X,

X =1t /2K.
In this notation, the partition function becomes

(42)

(30) where

f(z) =S(S+1)2«—
2 (1/2~)'

2m ~2m $2T

X I d, d, d, l L.—~( „„,)]. (40)
~0 ao &0

(31) Case II:p) 2.

(32) Asr ——3p =X", (41)
corresponding to

33
212=N/2 or 3N/2, or ppi

——o12
——0,

o12=2r/2 or 32r/2.

z=-
mi ~~

ds exp(iN LEPG(2Ez)

+S(S+1)2Ez])p2(2Es), 7') Max(X ). (34)

The largest eigenvalue is doubly degenerate in this case.

exp LNS (S+1)2Es]pp(2Es)
= (2r/2E)2~12 expLN f(s)]/(s —V')2. (43)
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37r

4S(S+l) K

57r
4S (S+ I) K

Zs

5m.

4S(s+ l) K

FiG. 2. Path of integration above T,.

31r
4S(s+ i) K

FIG. 3. Path of integration below T,.

The expression for the partition function becomes,
therefore,

z= (1/2j) (2r/2E)3&&2 —1

X ds e p[1VH'G(2Ks)+1Vf(s)]/(s —& )", (44)

In this temperature region, T&T„ there exists one
normal saddle point. It lies on the real axis, to the right
of ) ~. The path of integration is deformed into the
path of steepest descent given by Im[f(s)]=0 (see
Fig. 2). The saddle point integration is carried through
in the usual manner, giving

where r = ~3 in case I and r =3 in case II.
At the point p= —„)'='A". The largest eigenvalue

becomes triply degenerate. We shall later show that a
transition from one kind of antiferromagnetic ordering
to another can take place at this point.

The susceptibility per spin at zero field is given by

kT 8 (lnZ)
x=

H BH(1V ~

ds s—)~ "G 2K' exp S s

=2kT (45)

)"ds(s—),~)- exp[1Vf(s)]

We shall be interested in the properties of our model
in an infinitesimal applied field. A finite external field
may shift the position of the Curie point, or, if the
applied field is strong enough to saturate the material,
it may prevent the transition from taking place. Most
of these effects, however, cannot be observed except
when a material with a very low Curie point is placed
in a strong held. The inhuence of a finite 6eld may be
calculated by the methods used by Berlin and Thomsen"
and by Lax."In this paper, however, we shall evaluate
(44) and (45) only in the limit of vanishing external
field.

The existence and location of the saddle point are
determined by the equation

f'(s) =O=S(S+1)2E——', (1/22r)3

X d~l d~2 ~ dl03[s ~(~1(~2)~3)] (46)
J

Since the integral converges for all values of s, this
equation can have a solution s, only for IC(E„where

3 fE.= (1/22r)' d(ol da)2 d(o3
4S(Sy1) J

X[1~~—&(~1,~2,~3)] '. (47)

1 ( 7r $
3 ' 27r '* exp[1V f(sg)]

(4g)
2 I 2E) 1Vf"(s,) (s,—y,„)"

f(s)=f( )+2S(S+1)(E—K.)(.—l )
+-', (s—X~)~F (0). (50)

Using the first two terms of (50) and remembering the
contour integral representation of the gamma function,
one obtains

( 7r ) 3~1 ' [2S(S+1)(K K)1V]"—1—
Z=7r

&2K&

Xexp[1V f (Kill)]. (51)

The evaluation of (45) is carried out in the same
manner, remembering that G(2Es) is a slowly varying
function in the region of the saddle point (or the branch
point). The result is

x=2kTG(2Es, ), above the Curie point, (52)
and

x=2kTG(2E'A~), below. (53)

THE THERMODYNAMIC PROPERTIES AND THE
NATURE OF THE PHASE TRANSITIONS

We shall define Il and U, respectively, as limiting
values of the Helmholtz free energy and the internal

If E)E,(T(T,), on the other hand, the saddle
point equation has no solution, and no normal saddle
point exists. A path of steepest descent can still be
found, however, by setting Im[f(s)]=0. Somewhere
along this path (which is shown in Fig. 3), f (s) must
have a branch point. This is the point which now re-
places the saddle point and from whose vicinity come
most of the contributions to the integral. In Appendix
II it is shown that in the vicinity of the point X3r, f (s)
takes the form

f'(s) = 2S(S+1)(K K,)+ (s—)—3r) —:F(0), F(0))0; (49)

and
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where we have made use of the fact that above the
Curie point f'(s, ) =0,"because of the existence of the
saddle point; and below the Curie point,

(dX~/dT). =0.
From (54) we obtain for the pressure

p 8 I' F& Bf(s')—( Bs'& Bf(z') (Bpq
, I

—I+
kT Bv&kT) r Bs (Bv)r Bp EBv)r

(56)

energy per spin as S approaches infinity. Then,

P—/kT= ', ln-(n. /2K)+ f(s'), (54)

where z'=z, above the Curie point and z'=) ~ below.
Before proceeding with the calculation, we must note

that J and J' are functions of the interatomic distances
in the solid. They are, therefore, functions of the specihc
volume, and possibly also explicit functions of the tem-
perature. In the following, the calculation will be sim-

plified by the assumption that J and J' are explicit
functions of the specihc volume only. The specific
volume itself, of course, is a function of the temperature
and pressure. The implicit dependence of p on the tem-
perature gives rise to the possibility of transition from
one kind of antiferromagnetic ordering to another. It
has been demonstrated already that the analytical
form of ) ~ changes at p= 3. This will be shown to lead
to a transition of the hrst order at p=-,'. Such a transi-
tion can occur in a given substance only if the inter-
action coeAicients J and J' vary with the specific
volume in such a way that p passes through the value 3

for some temperature below the Curie point. In this
section, we shall study the thermodynamic character-
istics of the transitions. In the next section, we shall

investigate the changes in magnetic order which occur
at the transition temperatures.

The internal energy is

dp FqU=T'
I

——
I

= ', kT 25(5+1—)Js'—, (55)
dT& T)

(d~/d"). = n= o. (5')

This is obviously a condition which cannot be expected
to hold in all materials under all circumstances. Thus
it is clear that, in general, p, n, and T cannot all remain
constant through this order-order transition. The transi-
tion is, therefore, a Iirst order transition.

One other macroscopic property of the model which
can be readily obtained is the susceptibility corre-
sponding to the equilibrium conhguration of the spin
system in a vanishingly small external held. Since no
anisotropy has been introduced into the model, the
spins tend to assume fixed orientations with respect to
each other, but not with respect to a hxed direction in
space. When a vanishingly small external magnetic
field is applied, the intrinsic magnetizations retain their
orientation with respect to each other, but the entire
conhguration rotates to assume minimum energy. In
the molecular held theory, this corresponds to the
perpendicular susceptibility. From (52), (53), and (26),

ever, exhibits quite diferent characteristics. Here the
first term on the right-hand side of (57) is not zero at
the transition temperature, for no saddle point exists
in this temperature region. It is now easy to show that
this transition is of the first order by demonstrating
that p, v, and T cannot all be continuous through the
transition. This is established by supposing that p, v, T
are all continuous in Eq. (57) and considering the
increment in the right-hand member as we pass through
the transition temperature. Since this increment must
be zero, we have

3(1)3 21K /'2'T

0= 2ES(5+1)—-I —
I

i d„& d~2
2 &2~) ~ 0 ~0

1 fdpq
x ( d„, —

I

—
I

. (58)
0 s ~(Q)~)Q)2~@)3) p=Q/3(dp J p 2/8

Since no saddle point exists in this region, the term in
the bracket cannot vanish. We have, therefore,

~BJi 25(5+1)s' 3
+I —

I(Bv)r kT 2J
(57)

g2p02

x=2kTG(2Es') =
4J ("+4+3')

(60)

The order of the Curie poin t transition is now readily
established. We note that the right-hand member of
(57) and its first partial derivatives are continuous
through the Curie point. From (54) and (55), we can
easily obtain the entropy and show that it and its first
partials are also continuous through the Curie point.
The second partials are discontinuous, however. Thus
the Curie point transition is of the third order. It is
clear, therefore, that the inclusion of the next-nearest
neighbor interaction in the Hamiltonian has not
changed the order of the Curie point transition.

The other transition point (whenever it occurs), how-

"We shall continue to use the notation f'(s') for (df/ds')p z'.

From (46), it is clear that far above the Curie point,

T=4S(5+1)Js'/3k. (61)

We write, therefore,

where

5(5+1)g'Pg' 1

'=45(5+1)Js'/3k,

(62)

(63)
and

8=45(5+1)(4J+3J')/3k. (64)

At very high temperatures, r—+T. Below the Curie
point, 7. and 0 depend on the temperature only through
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the temperature dependence of J and I'. At p= —„the
susceptibility at constant pressure suGers a discon-
tinuous change because of the jump in s'.

N—1-=—2 «
l o=

LONG-RANGE ORDER PARAMETERS AND
SUBLATTICE MAGNETIZATIONS

The commonly used measure of long-range order is
the sublattice magnetization per spin, defined by the
equation

t:S (~l)+V(~o)+t (&l)+t (&o)],
4gPo

uy/2 1 iv—i
o l cos(lrl)

~'iV cV &=0

(66)

4 og
P(P)= P S, , P=Al, Bl, Ao, B.,

g
(65) I (9(~l)+5(~o)}—(P(&l)+P(&o)}] (67)

4gPo

j summed over the p'th sublattice.

The expectation values of these sublattice magnetiza-
tions are obviously zero, for our model is spherically
symmetric. The calculation of the expectation values
of the absolute magnitudes of the p(p) is not feasible.
Consequently, it is inconvenient to use the sublattice
magnetizations directly as a measure of long-range
order.

Below the Curie point, the model is predominantly
in one eigenstate, the eigenstate of lowest energy, which

determines the prevailing long-range magnetic order.
The corresponding eigenvector may be expressed as a
linear combination of the sublattice magnetizations. It
is a simple matter to calculate the expectation value of
the absolute magnitude of a Cartesian component of an
eigenvector of the interaction matrix. These quantities
are also easily obtainable from molecular field theory,
and we shall therefore use them as our long-range order
parameters.

Our first task is, then, to express some of the eigen-
vectors in terms of the sublattice magnetizations.
Clearly,

From (28) we recall that the two eigenvalues Xlo.~4 and
A.3~/4 are degenerate. Thus, any linear combination of
the eigenvectors u~~4 and usN~4 is an eigenvector of the
interaction matrix. We use, therefore, the linear com-
binations

1
V1y1t4 = (u 3Nf4+ uN/4)

+1V Q(21V)

V2 lo —l (~ly K2
=—P el cosl

I
= I:w(~l) v(~)&] (68)

l=o ( 2 ) 4pog

V3N/4= (u vry4 &iv)4)—
y~V g(21V)

K2 iv—l (wl ) V2
0'l slllI

I LP(~1) P(~&)] (6~)
ly l=o ( 2 1 4I3,g

which have a simple meaning in terms of the sublattice
magnetizations. Defining vo=uo and v~~~=upg~, we
introduce the long-range order parameters I.; (i=O,
1V/4, 1V/2, 3X/4), where

d'~o .
I d'o& l s', 6(Q op —1VS(S+1))exp(p A, a~; ~a)

+1V j'k

I do&~,g(p lrp —1VS(S+1))exp(p A, l,e,.'0'l)
j

(7o)

Note that we are considering the case where no external
field is applied.

By methods similar to those used in the evaluation
of the partition function, ' we reduce (70) to the form

It is now easy to show that above the Curie point, l.;
goes to zero as E tends toward infinity. Below the Curie
point, there are two cases to be considered. If i/3E,

(72)
p +2oo

I, (2 E)lr; I ds(s —), lI)—"
expI 1Vf(s)] this quantity vanishes in the limit. On the other hand,

if i =M,
)o'+ioo

ds(s —Ale)
—'(s—X;) "'expI1Vf(s)]. (71) ~M

r(r+-,')
(73)
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Above the Curie temperature there is no long-range
order. This follows from the fact that the L; are all zero.

1
(l~*(~i)+~ (~~)—~ (&i)—~'(&2) I)

4gpo
(74)

v

L3~)4 0= ——(I ~ (~i)—~.(&~)
I &

4g o

According to the sublattice picture, this implies that
all the sublattice magnetizations vanish.

Below the Curie temperature, there are two cases to
be distinguished. In Case I, p& —„and only L~~~/0.

Lo= Lx]4= L3+~4=0,

1 ( T)
I-m2=- S(S+1)

I
1——,- I

2 & 1'.)

In terms of the sublattice picture, this implies antifer-
romagnetic ordering of the first kind. This means that
most of the spins on the A sublattice are parallel and
most of the spins on the B sublattice are parallel, but
the A spins are antiparallel to the 8 spins. In Case II,
on the other hand, p) 3 and L~~4=L3~~4/0. In fact,

Lo= L~(g ——0,

v2
(I ~*(~i) —~ (~ ~) I ) (76)

4g o

16 ) T~
I;~(4= S(S+1)

ys~

The interpretation is that ordering of the second kind
prevails. The net magnetization of the A sublattice and
the net magnetization of the B sublattice vanish. The
magnetization of the A j sublattice is equal and opposite
to the magnetization of the A2 sublattice, and similarly
for the B~ and B2 sublattices. The magnetizations of
Ai and Bi (or 82) appear to be completely uncorre-
lated.

DISCUSSION

The range of validity of the classical spherical model
of the antiferromagnet is bounded at the low tem-
perature end by the omission of quantum sects. The
quantum conditions have been violated in two ways:
On the one hand, the operator S,"S, has been treated
as a c number; on the other hand, the use of the spheri-
cal condition means that the quantization of each SP
has been relaxed. Practically, this limitation is prob-
ably less serious in the case of antiferromagnetism than
it is in ferromagnetism. In ferromagnetism, interest is
usually centered on the behavior of the saturation mag-
netization, a quantity best observed at very low tem-
peratures where quantum effects are paramount. In
antiferromagnetism, on the other hand, interest is
usually centered on the behavior of the susceptibility
in the vicinity of the transition temperature where
quantum eGects are probably less important and the
sphericalization procedure may be expected to hold.

The spherical model combines into one formalism
many of the advantages of the molecular field theory
and the Bethe-Peierls-Weiss-Li (B.P.W.L.) cluster
theory. It retains much of the simplicity of the molecular
6eld theory below the Curie point and yet it holds in
the region of the transition temperature and above. It
predicts a transition of higher order at the Curie point,
the local order smoothing the way for the onset of long-
range order. A more thorough investigation of the local
order can be easily performed by calculating the correla-
tion function (S,"S,). The onset of local order wel]
above the Curie point is predicted by the spherical
model and the B.P.W.L. theory, and is confirmed by
experiment, but is not envisaged by the molecular field
theory.

Below the Curie point, long-range order parameters
L; are introduced to furnish a quantitative measure of
long-range order. The L; are expressed in terms of the
sublattice magnetizations for convenience in com-
parison with molecular 6eld theory. It should be noted,
of course, that the sublattice concept facilitates inter-
pretation, but is not essential to the spherical model.

Two kinds of antiferromagnetic ordering can occur
below the Curie point. A first-order transition between
the two kinds of order is predicted, in agreement with
the thermodynamic theory of Smart. 4

The susceptibility corresponding to the equilibrium
con6guration of the spin system in a vanishingly small
external field has been calculated on the spherical model.
It agrees qualitatively with the perpendicular suscep-
tibility of the molecular field theory, to wh''ch it cor-
responds. Below the Curie temperature. it assumes a
constant value for a given kind of long-range order, if
the interaction coeKcients J and J' do not vary with
the volume. Above the Curie temperature, it follows a
modi6ed Curie-Weiss law. The analog of the parallel
susceptibility cannot be calculated from an isotropic
model with a single spherical constraint.
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The qualitative features of the sphericalized antifer-
romagnet agree well with the available experimental
information. ''' A quantitative comparison with the
experimental data was not attempted because the
authors are not aware of any data on body-centered
antiferromagnets. For the same reason we have not
carried through the discussion of the case of one ferro-
magnetic and one antiferromagnetic interaction, or the
evaluation of the integral for E,. The latter quantity
is required for the numerical calculation of (0/T, ), a
ratio convenient for the quantitative comparison of
theory and experiment. The present theory appears to
be easily adaptable to the somewhat more complicated
case of a face-centered cubic lattice, for which experi-
mental data are available.
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APPENDIX I

In part I of this appendix, we shall obtain the maxi-
mum eigenvalues of the interaction matrix. In part II,
we derive a tractable expression for q (/).

Part I. It is clear from part II that the 0's may be
regarded as independent variables. We therefore deter-
mine ),„"by regarding the 0's as continuous vari-
ables, and verify that A. , actually occurs for an
integral m. It is now clear from Eq. (29) that the equa-
tions W,/BQ„=O, (r=1,2,3), become

m= N'/2.

Case II
cosQy = cos02 = cosQ3 =0.

(A-1-5)

The maximum eigenvalue for this case (li") is given
by

X"=3p. (A-I-6)

To determine the value of nz for which these conditio~s
on cosQ are satisfied, note that each 0 must be an odd
half-integer multiple of x, i.e.,

and
Qi ——(vi+-, )s, Q2 ——(v2+-, )7r,

Qg ——(v3+-', )m. .

It follows from Eq. (A-I-3) that

(A-1-7)

which limits (va —vi) to the possible values 0, 1, 2, 3.
It follows from Eq. (30) that only the values va —vi ——1,
3 are consistent with (A-I-6), so that the values of m
corresponding to case II are

terms of the v's as

m= (N/2) (v,—v,). (A-I-4)

It is evident that the two possible values of v~ —v~ which
are consistent with 0 &m &S—1 are the values 0 and 1.
The unique value of ns for which the three conditions
(cosQi ——cosQ~ ——cosQ3 ———1) are satisfied is readily deter-
mined by substituting the above possibilities into Eq.
(30). The result is that the value of m corresponding to
X'=4—3p is

sinQi[cosQ, cosQ1+p cosQi] =0,

sinQ, [cosQ3 cosQi+ p cosQ2] =0,

sinQ3[cosQi cosQ2+p cosQ3]—0.
(A I 1) and

m =N/4,

m =3N/4.
'

(A-1-8)

(A-I-9)

The two roots which can be absolute maxima correspond
to the following two cases:

Case I
cosQy = cosQ2 = cosQg = —1.

The maximum eigenvalue for this case (X') is given by

The two roots are plotted in Fig. 4. From this plot it
is clear that for p& 3, ) ' is the largest eigenvalue while
for p)-'„X" is the largest. The two eigenvalues are
degenerate when p= 3.

X'= 4—3p. (A-I-2)

To determine the value of m corresponding to this
case, note that each 0 is an odd multiple of +, i.e.,
Q, = (2vi+1)m-, Q, = (2v2+1)~, Q1 ——(2v3+1)m. where vi,
v~, v3, are integers or zero. From Eq. (30),

m= (N/4~) (Q,—Q,). (A-I-3)
0

For this case, the above equation can be rewritten in

"See Eq. (36). FIG. 4. The roots.
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Part II
For the purpose of performing the saddle point inte-

gration in the text, it is convenient to put the rapidly
varying part of the integrand into the exponent. Con-
sider the product

N—1

(t—A. ) 3~2= (2E) 'N"(s —X3r) "
m=o

The sum in the exponent can now be rewritten in the
form

1 N—1—P' ln(s —X„)
g m-o

2nI—2 2n2—2 2n3—2

p' in[s —~(M1,M„M3)]
2'gl'g2'g3 &1=0 &2=0 &3=0

even p's only

(—3 N

Xexp l
P' »[&—l1 ] I» (A-I-10))'

2nI—1 2n2—1 2n3—I1
+ P P Q ln[s —X(M1,M2,M3)].

2e1e2n3»=»2-»3=1
odd p's only

(A-I-14)

where the prime on the sum indicates that the maximum
eigenvalue(s) is (are) omitted from the summand. The
reason for treating the term(s) containing the maximum
eigenvalue separately is that the summation in the
exponent will be replaced by an integration. In this
limiting process, each term in the sum loses its identity:
the density of terms is what counts. Consequently, this
replacement can be legitimate only if the summand does
not contain terms whose singularities lie arbitrarily
close to the path of integration. Since (as is readily
shown) the separation between adjacent eigenvalues
near )~ is of order Ã '~', the path of steepest descents
can not come arbitrarily close to any singularity except
X3r, and this term(s) is (are), therefore, removed from
the summand before converting it to an integral.

We write m in the form

223=p1+231p2+231232p3, p1=0, 1, 2 2231—1,

p, =0, 1, 2 2232 —1, (A-I-11)

p3
——0, 1, 2 . .2233—1,

(all p's even or all odd);

As e1—+~, e2—+~, n3—+00, this becomes

where

lI (Ml,M2zM3) = COS(Ml+M2+M3)
—cos(—3M1+M2+M3) —cos(M1—3M2+M3)
—cos(M, +M2 —3M3) —p[cos2 (—M1+M2+M3)

+cos2 (M1—M2+M3)+ cos2 (M1+M2 —M3) ]. (A-I-16)

Thus,

where

~
3N/2 &Nf (z)

+ K (2Zs)-~
&2Z)

(A-I-17)
(s—X31)"

3 ( 1 q
3 ~2zz tz2zz ~2zz

f(s) =S(S+1)2Es—-~ —
~

' dM1
I

dM2
I dM3

2 E2~) ~,

( 1 ) 3 2zz (2zz 27r

dM1 dM2 t dM3 ln[S X(M1 M2,M3)]
(2' ~p Jo ao

(A-I-15)

and introduce the variables

M z = 2I Pz/23 zz 17 27 37 (A-I-12)

X in[2 —l1 (M1,M2,M3)]. (A-1-18)

APPENDIX II

which will become continuous as E approaches infinity.
It is clear that since the P's are independent, the M's,

too, are independent variables.
For convenience, we shall let e~ be even. Then

Our problem is to determine the behavior of f(s) in
the neighborhood of the point s=+X31. This can be
done without actually evaluating the integral. We
shall introduce the notation

M1 ' G)2 Q)1

fi1=M1 —M2 —M3+2r (232p3+ p2 p3)

~12=M1+M2 M3+2r (232p3+ p2+ p3)

6= (s—l1III)'

positive and real for s—)~)0.

D(M1&M2zM3) P M ~(M1zM2zM3)]

(A-II-1)

(d 1 C02 C01

e2 'l3 e2'S3
(A-I-13) 1 1 1 iA 1 1

s—X 62+D' D' 2 D'(D —iA) D'(D+iA)

C01 G)2 GD1

o3=M1—M2+M3+2r ('02p3+ p2 —p3) + +
e2 'S8 'Sos

1 iA~ 1 1
+— — (A-II-2)

l13f—X 2 l D'(D —ih) D'(D+i 6)
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3(]
j'(s) = 25(5+1)E—-i —

i
d(o&

~ d(og2~2) &,

The quadratic form now factors into

D2= R'C'2(8) y), (A-11-6)

2'
X ~ ~~3

X(Mi&Mo, M3)

3zg ( 1 )3 p2~

der& ~l drg2 d&g4&2)~,

where C is positive for all values of 0 and q. We first
perform the integration over R. This gives

3$ f 1 ) 3 1I' 2w

F(&)='
~

—
~

' d8sin8 ~ dyC '(8, q)J,
B0

X
D'(D —iA) D'(D+iA) p

R'dR.
R'(R —iA/C) R'(R+ iA/C )

=25(5+1)(K—E,)+AF (A). (A-II-3) 3i(1)' t
r

d8 sin8
4 &2~) &,

Here, dye '(8, q)

3t 11'
F(~)=-I —

I (—i) ~ u~,
~,

&~, t&+3
4 (2~) (Ro—iA/C')

X»~ ~+~', (A-II-))
& R,pi~/C)X — . (A-II-4)

D'(D —iA) D'(D+ia)
where Ro is the upper limit of the validity of the ap-
proximate expansion. If we now let 6—&0, we obtainWe can readily show that F(0)—=limq o+F(A)WO, and

we can also determine its sign. This will su%.ce to
indicate that f"(s) has a branch point at +X~, and also
to show the direction of the path of integration.

We note that the largest contribution to the integral
in (A-II-4) will come from the region where D' is very
small. Since the zero of D is also its minimum value,
we expand D' about this point in a Taylor's series in
(~i—~P), (~2—~2'), and (~3—cu3'), retaining only the
erst terms, which give a positive definite quadratic
form in the (co,—cu;o)'s. We now introduce the spherical
coordinates R, 0, and p, dined by the equations

3~(1 )3 ~~~

F(0)=—
~

—
~

~ ~& ~8 )0. (A II-S)
4 &2m) ~p Jo 4'(8, q)

sin0

The first three terms in the expansion of f(s) about
+X~ are, therefore,

f(s) = f(+KM)+25(5+1) (E E,) (s—lb~)—
+-', (s—X~) '*F(0), (A-II-9)

~~—coy =R sln0 cosp,
cv2 —co2 =E.-sln0 sing,
co3—co3 =E.cos0.

where F(0))0.
Setting ImLf(s))=0, we can now find the path of

(A-II-5) integration near the branch point of the integrand of
Eq (4.4)


