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from the following equation

13.56 m„
AE= ev

that the effective mass for holes is about 0.35m.
These values thus are in fairly good agreement. Since
we have not made e-type gallium antimonide, no
independent evaluation of the eGective mass of electrons
is available in our work.

SUMMARY AND CONCLUSIONS

Single crystals of gallium antimonide have been
prepared, and their properties have been determined

' See reference j.2, p 224.

over a wide range of temperature. These properties
have been found to fit well with the present theory of
semiconductors. Of special interest among the results
are the large ratio of electron to hole mobility (about
five), the rather large intrinsic band gap (0.8 ev).
Also, it is necessary to assume two acceptor levels in
the energy scheme to fit the Hall data. A value of the
hole eGective mass has been estimated from the
infrared absorption data, and from the electrical
properties.
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A study is made of the cascade process which describes the diffusion, energy loss, and multiplication of
secondary electrons within a metal. The secondaries interact mainly with conduction electrons through a
screened Coulomb potential. For low secondary energy ((50 ev) the resultant scattering is nearly spherically
symmetric and the transport equation which governs the cascade process can be approximately solved. The
velocity distribution turns out to be spherically symmetric for low secondary energy. Energy distributions are
in agreement with experiment for metals to which the theory is applicable. Calculations are also made of the
rate of change of yield with work function and the results are in accord with observed values. Finally, rough
estimates are made of the total yield and the theory is shown to be consistent with the observed values.

HE phenomenon of secondary electron emission'
can be thought of as occurring in two distinct

steps. First of these is the production of internal
secondaries by collisions between fast primaries and
electrons bound in the metal. The second is the subse-
quent cascade process in which these secondaries diGuse
through the solid, multiplying and losing energy en
route, until they either sink back into the sea of con-
duction electrons or reach the surface with su%cient
energy to emerge as true secondary electrons. These two
steps pose two separate problems, each of considerable
complexity, which must be solved before one can under-
stand the various phases of SE. To date, most of the
theoretical work' in the field has concentrated on the
hrst of these and treated the second in a radically
simplified way. Usually the whole second step is lumped

' Hereafter abbreviated as SE.' For a review and bibliography of work performed prior to 1948
see K. G. McKay's article in Advances in E/ectronics (Academic
Press, Inc. , New York, 1948). Other, more recent, articles are K.
M. Baroody, Phys. Rev. 78, 780 (1950);A. J. Deklrer and A. van
der Ziel, Phys. Rev. 86, 755 (1952);J. F. Marshall, Phys. Rev. 88,
416 (1952).

into an eGective absorption coefhcient o. for the internal
secondaries. Calculations using this approach have given
fair agreement with the shapes of observed total yield
versus primary energy curves, but they cannot predict
the absolute magnitude of the yield since, without
solving the diGusion problem, there is no way of
estimating n.

Other aspects of SE probably depend even more
critically on the details of the internal electron cascade.
For example, the energy distribution of secondaries is .

observed to be independent of primary voltage. This
suggests that the cascade process is almost entirely
responsible for the shape of the spectrum and that the
method of production of the internal secondaries is

relatively unimportant. The aim of the present work is
to investigate this internal electron cascade and to
verify to what extent this hypothesis is correct. The
picture of SE which will arise from this study turns out
to be a reasonable and consistent one which accounts for
a number of the experimental results.

To solve the problem of the internal cascade one

must, of course, know the elementary interactions by
which electrons lose energy within the metal. This
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subject, which is clearly a critical one in, the theory, will
be discussed in the next section. Following that, the
remainder of the paper will be devoted to a study of the
transport equation whose solution provides the energy
distribution of secondaries. Various methods of at-
tacking this problem will be investigated and, finally, a
comparison will be made between theory and the results
obtained experimentally.

k, k(kc

Other potentials have also been used. For example,
Mott' in his paper on impurity scattering employs a
screened potential of the form

(2)
where

4'' /3Pp) '
(3)

Fortunately, for the present purpose the form of U is

rather unimportant. The crucial point is that in all these
potentials the cut-off distance is small; for a typical
metal the values of k, used by Pines' correspond to
lengths of about 1A and the 1/q values used by Mott
are considerably smaller. With such short range po-

' In this paper all energies will be measured from the bottom of
the conduction band.

4 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).' N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936}.' David Pines (private communication).

For an electron to escape from a metal and be ob-
served as a secondary it must have an energy of about
ten volts or more relative to the bottom of the conduc-
tion band. ' In this energy range, where the exclusion
principle does not operate strongly, the main way it
loses energy is by collision with conduction electrons in
the metal. Electron-phonon interactions also undoubt-
edly occur, but the fact that SE from metals is inde-
pendent of temperature indicates that they play only a
minor role in the slowing down process. They will be
neglected here and only electron-electron collisions con-
sidered in calculating energy loss. Furthermore, in
discussing these collision processes the electrons will be
treated as free; no attempt will be made to include the
effect of the crystal field on the scattering. The validity
of this approximation depends to a large extent upon the
material being studied, but for simple, monovalent
metals such as the alkalis and noble metals it probably is
reasonably close to the truth.

The potential U which causes electron-electron scat-
terings is the Coulomb held, screened by the plasma of
conduction electrons. Probably the best calculation of
the effect of the screening is that of Pines and Bohm4
who found

2gik r-

TABLE I. Phase shifts for scattering from screened
Coulomb potential.

P (Rydbergs)
s-wave

phase shift

—24'
—24' 40'
—25'

XD =0.75A
& f p-wave
'/phase shift

—1' 20'
—5' 40'
—5' 40'

—31'
—32

)a =1.00A

—8' 30'
90

tentials the scattering is spherically symmetric (s wave)
over a considerable range of electron energies. By way of
illustrating this point, Table I gives the s- and p-wave
phase shifts for an (e'/r) e,xp( —r/Xn) potential, with Xn
taken as 0.75A and 1.00A. These values were obtained
by numerically integrating the appropriate Schrodinger
equation; from them it is clear that s-wave scattering
predominates for low energies and that even at 50 ev it
constitutes about one-half of the total scattering cross
section. Below 50 ev, therefore, the scattering is roughly
spherically symmetric (in the center of mass system)
which means that, on the average, an electron loses
about half its energy at each collision. This is in marked
contrast to the behavior of faster electrons which suffer
typical Rutherford scattering and lose only a small
fraction of their energy at each impact. In solving the
transport equation, therefore, the correct electron-
electron cross section to use is one that is spherically
symmetric for small electron energy but which develops
more and more of a forward peak as the energy in.—

creases, eventually approaching the Coulomb cross
section. Unfortunately, with such a general interaction
the transport equation, which gives the spatial and
energy distributions of internal secondaries, is far too
dificult to solve. Therefore, in order to get at least a
semiquantitative idea of how these internal electrons
behave, the electron-electron scattering will be assumed
to be spherically symmetric up to an energy W (about
100 ev), beyond which it will be described by Ruther-
ford's formula. This is a very rough approximation but,
fortunately, i.t should not have a grea, t effect on the
shapes of the SE spectra, since they are almost entirely
determined by the behavior of electrons with energies
below about 40 ev. As a consequence of this fact, the
spectra also turn out to be quite insensitive to the choice
of W. The value of 100 ev given above is hardly more
than an intelligent guess based on experience gained in

evaluating the phase shifts for the screened Coulomb
field, but a variation in it by 50 percent in either direc-
tion would only change the energy distribution by a few

percent in the low-energy region. Thus, even with the
crude approximation outlined above, the theoretical
spectra should be fairly accurate in the 0—40 ev range
where most of the secondaries fall. For higher energies,
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Here N(r, Q,E,t) is the number of electrons between r
and r+dr, Q and Q+dQ, E and E+dE at time t, where
r represents space coordinates, 0 is a unit vector in the
direction of the electron velocity, v is the electron
velocity, and E the energy. l(E) is the mean free path
and F(Q,E; Q'E') the probability that, given an elec-
tron at Q'E', one will be found at Q, E after a scattering.
S(r,Q,E,t) is a source term representing the density of
internal secondaries produced by the primary bom-
bardment. It should be emphasized that the factor
F(Q,E; Q'E') takes into account two types of electrons:
those which scatter down in energy from O', E' to Q, E;
and those which are knocked up from the conduction
band to Q, E. Thus, this term speci6cally includes the
electron multiplication and is not normalized to unity as
in Marshak's paper. Indeed, if the eGect of the exclusion
principle on the scattering is neglected, the correct
normalization factor is twice his

0
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Fro. 1. Electron scattering cross section versus electron energy.

of course, the formulas are much less reliable and could
give large errors in the number of secondaries.

For low electron energy, the'numerical value of the
electron-electron cross section is given by the usual
formula'

o = (4s-/l's') sin'-8s,

where the values of bo are taken from Table I. Figure 1
shows the o. es E curve obtained in this manner using a
cut-o8 distance of 0.75A. Of course, this cross section
still has to be corrected for the effect of the exclusion
principle since scatterings in which either of the elec-
trons winds up with energy less than the Fermi energy
are forbidden. For the time being, however, this point
will be neglected; it will be considered in detail at a
more convenient point in the later discussion of the
transport equation.

The equation describing the electron cascade process
within the metal is the same as that given by Marshak'
for neutron slowing down, namely,

BS
(r,Q,E,t)+v gradN(r, Q,E,t)

Bt

nN(r, Q,E,t)
+S(r,Q,E,t)+ dE'

l(E)

l dQYN(r, Q', E', t)
Xj F(Q,E; Q'E'). (5)

l(E')
' See, for example, N. F. Mott and H. S. %. Massey, Theory of

Atomic Collat'ops (Oxford Press, London, 1933).' R. E Marshak, Re. vs. Modern Phys. 19, 185 (1947).

This equation expresses the fact that for each electron in
the cascade which scatters, there are two present after
the collision.

The most common geometry in SE experiments is one
in which the primary electrons are incident normally on
a plane surface. With this configuration the problem is
one-dimensional and has azimuthal symmetry, which
means that Eq. (5) simplifies greatly. For the steady
state (BsV/Bt=O) it contains three variables; s, the
distance normal to the surface; 0, the angle that the
velocity of the secondary electron makes with the
normal; and the energy E. Following the usual pro-
cedure (see Marshak's paper, for example) N, F, and S
are expanded into spherical harmonics

N (s, cost),E)= (1/4~) P t (21+1)Nt (s,E)Pt (cost)),

S(s, cos8,E)= (1/4~)P t (2l+1)St (s,E)Pt (cos8),

F(Q,E; Q'E') =F(cosO'; E,E')
= (1/4tr) P I (2l+ 1)Ft (E,E')Pt (cos0'),

where 0 is the angle between the vectors Q' and Q.
With the abbreviation 1l t

——vNt/l(E) the following set of
simultaneous integro-diRerential equations in s and E is
obtained

aP,-, & 1+1 & aP,+
~=&(E) I ! +!(21+1) Bs I 2l+1) r)s

+ dE'F t(E,E')Pt(s, E')+St(s,E). (8)
~E

These are the equations which govern the cascade
process for the simple geometry under consideration.
Most of the remainder of this article will be devoted to
various approximate ways of solving them.
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Since Eqs. (8) are quite complicated it is important
to examine them in various special cases. One of great
interest is that in which P~ is independent of s. This
corresponds to a situation in which the internal second-
aries are produced uniformly deep inside a metal (away
from the influence of the surface). Although this is
rather a far cry from the usual experimental situation in
which secondaries are observed as they leave the sur-
face, the fact that observed secondary electron spectra
are almost entirely independent of primary energy
suggests that the depth of penetration of the primaries
(and hence the distance the cascade develops from the
surface) is relatively unimportant and that calculations
of this type may give reasonably good expressions for
the energy distributions. This expectation is actually
borne out by later work which correctly includes the
space variation for a particular choice of F in Eq. (5).
For the time being, therefore, consider the case in which
iP~ is independent of s. Equations (8) then reduce to a set
of uncoupled integral equations,

F&(E,E') can now be obtained from Eq. (10),

2 ( E)
F g (E,E') = Pg/—

E' E E') (12)

t

dE' ( Ey
P

I

—I4' (E')+S (E).E, & E ) (13)

The homogeneous equations have solutions of the form

)~Qrx l (14)

where the values of n~ are obtained from the formula

(xf-~-'IP,
( ~- [ dx.

)

The factor two which appears here takes care of the
electron multiplication and is the same as that ap-
pearing in the normalization of F [Eq. (6)j. The
integral equations now read

gE F,(E E')PI(E )+S,(E)

These will be solved first with a simpli fed expression for
F~( E, E'). The results of this calculation will then be
used as a guide in treating the problem with a more
realistic choice of F&. F& is determined by inverting
Eq. (7)

Fi(E,E') = dQF(cosO; E, E') Pi(cosO). (10)

In line with the arguments of Sec. II, F is taken to be
spherically symmetric. The simpli6cation mentioned
above comes in also assuming that the conduction
electrons are moving slowly compared to those in the
cascade. This means that the energy of an electron after
scattering is determined uniquely by the scattering
angle and its initial energy (hence the delta function in
the formula below). Under these conditions F is given by

2
F(cosO; E,E') = o[E E' cos'OJ4 cos—O, (1—1)

4m

where the factor 4 cos0 is the Jacobian of the trans-
formation from center of mass to laboratory angles.

1 I

I —TEF (GIVES UNIT AREA UNDER CURVE)SE'

I t I

0 I 2 3 4 5 6 7 8 9 10
E/E F

FIG. 2. fie(E,E') rersns L&/Er for E'= 9Ep.

For the first three spherical harmonics the n~'s turn out
to be ao ———2, ai ———3, a2 ———-', +-', i&3. With these func-
tions the complete solution of Eq. (13) is obtained by
integrat:ing over Si. It is readily verified (by substitu-
tion) that P~ is given by

~" (Eq ~OS,
dE'.

EE') BE'
(16)

(17)E=E' cos'O~

will only give the average energy after a scattering—
there will always be a spread around this value because

Electron multiplication clearly plays an important
role in determining the n ~ values given above. Neg-
lecting it [by replacing the factor two in Eq. (13) by
unity] gives, for example, a& ———1 instead of —2. Thus,
it strongly emphasizes the singularity at zero in the
energy distribution. Another important feature is also
apparent from these figures; namely that in going
towards larger l values the order of the singularity at
zero energy decreases rapidly. Physically this is very
reasonable since a high spherical harmonic represents a
complicated and special angular distribution which is
easily smeared out by scattering. The net eGect is that
at low energies the internal electron velocity distribution
is nearly spherically symmetric since the electrons have
made enough collisions to wash out any angular varia-
tion. Of course, this argument is hardly correct for the
P wave (/= 1), but it will not be highly excited in any
case since the secondaries are mainly produced at right
angles to the primary beam which means a sma11

Pi(cos8) component in S.
The above conclusions have been obtained by using a

special form for F (Q,E; Q,E'), a form which gives a
unique relation between E, E', and cos. In the actual
case the formula
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interactions are not with stationary particles (as was
assumed previously) but with moving conduction elec-
trons. This e8ect strengthens the conclusion that for
small energies the electron distribution is spherically
symmetric. It furnishes another source of averaging so
that angular variations are wiped out even sooner than
the values of n~ given above suggest. Thus, the high
harmonics are only important for large E and are soon
overwhelmed by fp, which grows very rapidly as E~O
and determines the shape of the energy distribution.
For this reason, attempts to improve the approximate
solutions discussed above will concentrate on the
spherically symmetric part of lt.

The expression for fp given in the previous section
[Eq. (14)7 is inaccurate because the Fp used in the
integral equation takes no account of either the ex-
clusion principle or motion of the conduction electrons.
The correct Fo is given by

Fp dQF (c——osO; E,E')

and is just the total probability of scattering from
energy E' to E, irrespective of angle. For 5-wave scat-
tering from a degenerate Fermi gas this quantity has
been evaluated by Goldberger. ' An examination of his
analysis shows that Fo is unaffected by the motion of the
electrons, but is changed through the exclusion prin-
ciple. The resultant Fo, instead of being Oat as a function
of E, has the form shown in Fig. 2. The differences be-
tween this curve and the previous Fo have a clear
physical interpretation. Below E=Er (Es = Fermi
energy) there is a gap because no electron may wind up
with less energy than Ep. For E'&E&E'—EI; the curve
tails oG because collisions are impossible unless the
target electron is within E'—E of the surface of the
Fermi sphere. Within this range, therefore, the number
of conduction electrons available for scattering is de-
creasing, approaching zero at E=E'.

1.2—

where this formula, as well as the curve given for I 0, are
valid for E&2EF. This gives a mean free path

I(E)=
ss.a p (E) (1 7Es /—5E)

(2O)

to be used in calculating cVp from fp. In this formula the
energy dependence of the two factors, o.p (E) and
(1—7Es/5E), is in the opposite sense so that the mean
free path is roughly constant (to within 25 percent) over
the energy range 10—50 ev.

With the new Fp(E,E) the integral equation [Eq.
(13)7 is no longer solved by a fp which is a simple power
of E. As is clear from Fig. 2, the main eGect of the
exclusion principle on Fo is to increase the average
energy after scattering. This can be expressed by
writin g

E=n(E')E', (21)

where E' is the energy before scattering, E the average
energy afterwards, and a(E')=s for E/Ep«1, but:
gradually rises as E' decreases. A rough idea of how this
eGect influences the energy distribution can be gained
by assuming that the energy after collision is always
given by the average energy of Eq. (21). This method
gives the correct 1/E' distribution for large E, and will
also be right for small E(E Er) since there, because of
the exclusion principle, the energy spread around E is
small. This method should, therefore, give a satisfactory
interpolation between high and low E. With it the
integral equation reads

A(E) = 2 ~Ã E'~(E')7A(E—')dE'. (22)

Since there is a one-to-one relation between E and E'
(according to Eq. (21)) one can also write

E=p(E)E~ (23)

The integral in Eq. (22) can now be performed directly,
giving

2

Besides changing Fo, the exclusion principle reduces
the total scattering cross section. This eGect has also
been considered by Goldberger who Ands

o.rr = o p(1 7E—J /5E),

y(E)
! —1.5

x(E) ~o(E) =
~(E) -~(E)-

(24)

This equation has a solution of the form f 1/E*, where

0 1 2 3 4 5 6 7
E/EF

0
9 10

2L~(E)7 (25)

Pro. 3. y(E) and x(Z') versus Z.
' M. L. Goldberger, Phys. Rev. 74, 1269 (1948). Goldberger's

calculation is made for a cross section which is constant in energy.
This is not'strictly true in the present case, but the variation of 0. is
slow enough that his formula is a good approximation.

Fig. 3, y(E) and x(E) are plotted as functions of E.
As expected, x(E) has the value two for large E and
rises slowly as the energy gets smaller. At E=2EJ:,
which is where the energy spectrum begins to be
dominated by the effect of the escape probability
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Fro. 4. Energy distribution of secondary electrons from Li.

LP(E) of Eq. (27)j, x(E) has only reached 2.3. Thus,
the eRect of exclusion on Iio does not change the
spectrum greatly and this rough way of taking it into
account is probably adequate. Using this approxima-
tion, the current is given by

j=Sv= Pp 1 t'Eo) *
= I'(E) (26)

f(E) n,g p(E) (1 7EI /SE) E—E )
Here x(E) is taken from Fig. 2, and I'(E) is a geometrical
factor which gives the probability that an electron with
energy E that strikes the surface will have a large
.enough normal velocity to overcome the work function
and escape. For a spherically symmetric distribution,
I'(E) is given by

where q is the work function.

According to the assumption of Sec. II, Eq. (26) is
valid when Eo&S'. Therefore, when the primary elec-
tron energy is less than 1.00 ev the spectrum of
secondaries can be obtained directly from Eq. (26) by
replacing Eo by V„. A simple metal that has been
studied for bombarding energies in this range is lithium,
which was investigated by Rudberg. " In Fig. 4 a
comparison is made between theory and his results in
this case. Of particular interest is the fact that both the
theoretical and experimental spectra have very small
half-widths —widths which are smaller by a factor of
three than those observed in Au or Ag. This happens
because the work. function of I.i is smaller, in comparison
to its Fermi energy, than those of Au or Ag. Therefore,
in units of EI, the vacuum level in lithium lies con-
siderablv closer to the Fermi level than it does in the
other two metals. Near the Fermi level, however, the
internal energy distribution is falling steeply from the
infinity at E=Ep. The external distribution, which is a

' Erik Rudberg, Kgl. Svenska Vetenskapsakad. Handl. No. 7,
(1929).

product of the internal distribution and the escape
probability of Eq. (27), is therefore quite narrow since
the rapidly falling internal distribution cuts oR the
spectrum very sharply on the high energy side. For Au
or Ag, on the other hand, the work function is con-
siderably larger and the SE spectra are placed higher
relative to Ep. The part of the internal distribution
which determines the spectrum is, therefore, much
Ratter than for I.i which means a broader and smoother
energy distribution.

For bombarding energies greater than W, Eq. (26)
cannot be used as simply as above. Electrons with
energy greater than 8" must be followed individually,
their rate of energy loss and secondary production being
calculated from Rutherford's formula, until they reach
energy W where they can be described by Eq. (26).
These fast electrons produce secondaries, by small-angle
Coulomb scattering, which are distributed in energy
according to a 1/E law. For Ep&W, this distribution
function can be used directly in Eq. (16). In addition,
there are also a few secondaries produced with energy
greater than O'. For the bombarding energy of 155 ev
used by Rudberg" on Cu, Ag, and Au they are quite few
in number, however, and can be neglected in analyzing
his data. Thus, of the 155-ev primary energy, 55 ev goes
into a 1/Eps energy distribution extending up to W and
the rest is accounted for by the fast electron which
ultimately winds up with 100 ev and there joins the
cascade described by Eq. (26). The complete source
distribution to be used in the integral of Eq. (16)
therefore consists of one electron with energy H/" plus a
1/E ps distribution containing the rest of the pri-
mary energy. This source function turns out to be
S= (0.1W/Eps)+5(W Eo) if the —maximum imPact
parameter, which determines the minimum value of Eo,
is tak.en equal to the screening radius. In Fig. 5 the
theoretical curve obtained using it is plotted along with
Rudberg's data on silver. As in the case -of I.i, the
theoretical curve is somewhat sharper than the experi-
mental. However, the overall agreement is good and, in

I I I I I I I I I I

0 10 20 30 40 50
E IN eV (MEASURED FROM BOTTOM OF CONDUCTION BAND)

FIG. 5. Energy distribution of secondary electrons from Ag.

"Erik Rudberg, Phys. Rev. 50, 138 (193II).
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VI

In the two previous sections Eq. (5) was solved under
the assumption that X was independent of s. An argu-
ment based on the fact that electron spectra are inde-
pendent of primary energy was then used to suggest that
this solution corresponds closely to the observed energy
distribution. That this is actually the case will be
demonstrated by solving Eq. (5), including the space
variation of ~V, for the geometry discussed in Sec. III.

For this geometry the surface of the metal is taken to
be the plane a=0 and the source function is chosen as

5)——0 (lAO),

Sp= A6(E—Ep) s)0,

Sp ——0 a&0.
(29)

This is a reasonable choice for S& provided the primary
electrons are fast enough not to lose an appreciable
fraction of their energy in a distance equal to the range
of a typical secondary. With this 5, the transport
problem becomes almost identical with one solved by
Weymouth. "His method consists in neglecting all but
the first two spherical harmonics in the expansion of 5'.
The result is a pair of simultaneous integro-differential
equations. For a constant mean free path [l(E)= lp) and
the Ft's given in Eq. (12), they are

lpBPp ( (Ey l dE'
+0 =2„ I

—14 (E')
3 Bs & EE'J E'

(30)

The solutions of these equations can be obtained by
using Weymouth's analysis. This is a purely mathe-
matical problem, however, and will not be treated in
detail here; a brief outline of the procedure is given in
Appendix A. The result of these calculations is that

's John Weymouth, Phys. Rev. 84, 766 (1951).

particular, the half-width is correct to about 15 percent.
As one would expect from examining the q and Ep
values for Ag and Au, the spectrum obtained from gold
is almost identical to that from silver. In copper the
q/Ep ratio is smaller than for Au or Ag, which explains
the fact that it has a somewhat narrower energy
distribution than the other two metals.

When the energy of bombarding electrons is ap-
preciably larger than 8', the above treatment must be
modi6ed to take account of the secondaries produced
with energies greater than O'. However, the argument
given in Sec. II indicates that for low electron energy the
shape of the SE spectrum should be relatively unaltered
since it is mainly determined by the behavior of elec-
trons at energies near or below about 50 ev. Thus, one
would expect to obtain energy distributions like those in
Figs. 4 and 5 for all values of the primary energy.

where @=in(Ep/E). This series approximates closely to

0.50 p" 0.50e& 0.50Ep

Z - ~~ Z Z2
(32)

which is the same energy distribution as that given by
Eq. (14). Thus, as was surmised in Sec. III, inclusion
of the spatial variation of P has only a slight effect on
the spectrum of secondary electrons.

The energy distribution of secondary electrons is not
the only quantity which gives direct information about
the internal electron cascade in metals. The variation of
total yield with work function also determines, to a
considerable extent, the form of the internal energy
distribution. This is so because the yield is proportional
to the integral of the probability of escape [Eq. (27)]
times the internal energy distribution [Eq. (26)$ and
thus depends on the shape of the latter. That is

(33)

For the time being, the energy dependence of l will be
neglected in accordance with the remark after Eq. (20).
This expression can then be simplified by making use of
the fact that J' is a function of (E/Et +p) and using this
quantity as a new variable of integration. 6 is then pro-
portional to

(34)

if x is assumed constant. The integral is now independent
of the work function and a simple diGerentiation gives
the desired result,

8(lnb)/dq =
(Ez+ v)

(35)

This formula is correct to within about 10 percent in the
range where l(E) changes slowly.

Experimental measurements of the change in yield
with work function have been made by a number of
workers. ' The technique used consists in covering the
surface of a high work function metal (tungsten) with a
thin layer of low work function material such as sodium.
By varying the thickness of the Na layer (from zero to
one monolayer) it is possible to obtain surfaces having
work functions ranging from about 2.2 to 4.5 ev. In this
method the amount of low work function metal de-
posited is exceedingly small so that the bulk properties

Pp(O, E) and ft(O, E) turn out to have an energy depend-
ence given by the series

1 0.46p, ' 0.46@' 0.43p,4

—0.54+0.48@+ + + + . , (31)
E
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of the material are unchanged and the internal energy
distributions remain typical of the high. work function
base. Under these conditions the only change in yield
comes through the change in q and should, therefore,
be calculable from Eq. (35). Using for x its value at a
point 2 ev above the vacuum level (estimated most
probable velocity of secondaries), one obtains for
tungsten the values:

B(in')/By= —0.12 ev ' at y=4.5 ev,

B(in')/By= —0.14 ev ' at y=3.5 ev.

These numbers compare well with the experimental
values of —0.12 and —O. IS ev ', respectively. At very
low work functions the assumption 1(E)= constant is no
longer valid so that Eq. (35) should not apply. In this
range l(E) increases rapidly as E approaches Er Just.
such behavior is evident in McKay's data where, below

q =3 ev, the value of 8 increases much faster than it does
for higher values of the work function. At 2.5 ev, for
example, B(in')/By has reached about —0.5 ev '. A
crude theoretical estimate, made by evaluating the
integrand of Eq. (33) numerically for two adjacent
values of the work function, gives B(in')/By= —0.35
ev ' at y= 2.5 ev, again in reasonably good accord with
the observed value. Thus the theory of the internal
electron cascade predicts in a fairly detailed way the
course of the B(in')/By eersgs y curve. As a matter of
fact, the agreement is probably partly fortuitous since
one would not expect a theory based on a free electron
model to apply to a metal as complicated as tungsten.
Nevertheless, it is evident that the change of work
function with yield provides an important tool for
investigating internal energy distributions and it is to be
hoped that further experiments along this line will be
carried out. In particular, it would be very useful to
have measurements of B (in')/By for a metal to which
one could apply the free electron model with real
confidence in its validity.

VIII

The preceding sections of this paper have dealt with
the problem of the shapes of electron energy distribu-
tions. In them no attempt was made to calculate the
absolute yield of secondary electrons. Indeed, any such
calculation is bound to be quite dificult since, as was
pointed out in the introduction, it depends critically on
both of the fundamental steps in the SE process. On the
other hand, the mechanism proposed above to explain
the SE spectra is a rather explicit one and it is important
to know whether or not it is at least consistent with the
observed values of total electron yield. In this section,
therefore, an estimate will be made of the total yield
which, though not good enough to give quantitative
values of 8, will show that the picture of SK developed in
the earlier part of this article is a reasonable one in this
respect.

The total yield values are obtained by solving the

transport equations [Kq. (30)] with a source function
that takes account of the fact that primaries have only a
6nite depth of penetration into the metal. The simplest
function which includes this 6nite range is

So=Ah(E —Ep), (0&s&so),

Sp ——0, (s&0, s) so),
(36)

The necessary value of A and the energy dependence of
zp are obtained from Bohr's" formula for the rate of
energy loss by fast electrons moving through matter.
They are

xepe' 1
Jp)

V~ Ep'

zp V~'.

Here V„ is the bombarding energy, Jp the primary cur-
rent, and np the number of electrons per cubic centimeter
in the metal which are bound loosely enough to con-
tribute to secondary emission. The total yield 8 is now
obtained by integrating over E and Ep. In calculating 8,
the variation of o,gf(E) with energy, as well as the cut-
off factor P(E), will be neglected. The effects of these
two factors are not large, and in addition they tend to
cancel one another, so that for the crude sort of estimate
being made here they can be dropped. The total second-

ary current is then

xnpe Jp t' f 40 lp dE dEp
J,= 1——— —, (39)

2e.~,.nV„~ " . 3~so- EP Eo
'I

where e, is the density of electrons in the conduction
band and 0.,~~ an average value of the electron-electron
cross section. The limits on the two integrations are
y+Ep& E&Ep and y+Ep &Ep & V&. This assumes
that the energy distribution is proportional to 1/E' up
to E= V~. Actually, of course, the form of the distribu-
tion changes when E reaches S', but the contribution to
the integral from electrons with E&lV is small, so the
error made is not large. The result of the integration is

JS pe

Jo 2e,o.g(Vp(y+E p)

40 lo t' Vg
X 1-——»I — I-1 (4o)

3m sp E y+E,)
'3'N. Bohr, Phil. Mag. 24, 10 (1913).

where both zp and A are functions of the bombarding
energy V„.Even with this simple form for Sp, the com-
plete solution of the equations is very dificult, but an
asymptotic formula (for large sp) can be obtained fairly
readily and it will be used in subsequent calculations.
The asymptotic form, which is derived in Appendix B, is

AEp 40 l
4i(0 E)=

2E' 3x zp
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This formula is most conveniently tested by maximizing
8 and comparing the calculated 8, values with those
obtained experimentally. Using the form given in Eq.
(38) for the energy dependence of ss one obtains

4( ''I ( ol

3 &O.,tt) Ee.) (ie+Ep)Vp(max)

(Vp(max) y
)& in[( q+Ep) )

r (Ep En) dEsdE—
g2 (42)

where E~ is the binding energy and the limits now are
y+Ep&E&Es —Eg and E~&Ep&Vp. The result of
the integration is approximately

1 (Vp)
inj /

—1,
(y+Ep) t Eg)

(43)

whereas without the binding energy this term is

1 p Vp

(y+Ep) (p+Ep)
(44)

where eo is the Bohr radius. In evaluating 8, the
values of Vp(max) will be taken from experiment. In
principle, of course, Vp(max) could also be calculated
provided one knew the constant of proportionality in
Eq. (38). However, with the somewhat oversimplified
source function that is being used it is rather hard to
know what value to choose for this constant. The
present method avoids the difhculty by using only the
energy dependence of so in calculating 8

Before using Eq. (41) to obtain e, some method
must be found for evaluating tt,s/I, . For low Vp(max)
(Li, for example) ms/ts, is equal to unity since all but the
conduction electrons have a binding energy which is of
the order of Vp(max) and hence cannot contribute
appreciably to the SE. At higher bombarding energies
the electrons in lower shells begin to play a role. An
approximate idea of how important they are can be
obtained by including a binding energy correction in the
integral of Eq. (39).The effect of the binding is to move
each internal electron cascade down in energy by just
the binding energy. The integral then becomes

Thus the effectiveness of the bound electrons is meas-
ured by the ratio:

ln(Vp/E~) —1

ln[Vp/(y+Ep)] 1— (45)

The number of bound electrons in each shell will be
multiplied by the appropriate factor of this type to
obtain the effective number of electrons contributing to
eo. Tabulated in Table II" are 6, values obtained
using this procedure. Considering the crudeness of the
approximations used in deriving and. evaluating Kq.
(41) the agreement with experiment is satisfactory,
indicating that the cascade theory of SE is at least
consistent with the observed values of total yield.

In calculating the 5, values for Table II, o-, ff was
taken equal to +a02. Actually, in elements such as K or
Na it should be considerably larger since the density of
conduction electrons in these metals is quite low.
Conversely, in Al or Be the correct values of 0-,«are
probably somewhat lower than xa02 since these metals
have an especially high electron density. Inclusion of
this eGect would give better agreement between theory
and experiment but, since really good values of 8,
could only be obtained by a considerably more refined
approach than that given above, it was not deemed
worth while to perform the extra calculations necessary
to incorporate it into the table.

The theory presented in this article predicts the
shapes of secondary electron spectra from monovalent
metals by investigating the behavior of the electronic
cascade process within the solid. The agreement with
experiment that is obtained suggests that this is a valid
and useful way of picturing the second stage of SE.
Probably it could be applied with equal success to study
SK from more complicated metals. However, in such
cases the conduction and secondary electrons could no
longer be treated as being free so that, before the
cascade process could be investigated, one would have to
understand how electron-electron scattering is modified

by the presence of a strong crystal Geld.
In conclusion the author would like to express his

indebtedness to Dr. K. G. McKay who, through a
number of stimulating conversations, has contributed
greatly to his insight into the whole problem of SE. He
would also like to thank Conyers Herring for helpful
comments and discussion on the topics discussed here.

Element

Al
Cu
Li
Ag
K

TABLE II. Total yield values.

Bmax (CR1C)

0.7
1.3
0.6
1.1
1.3

Bmax (obs)

1.5
1.3
0.5
1.5
0./

APPENDIX A

Equations (30) of the text are most simply solved's by
Laplace transforming with respect to s and Mellin
transforming with respect to E. The result is the

'4 Experimental values here are the work of various authors.
They are all taken from McKay's review article."The analysis culminating in Eq. (Sa) is essentially the same as
Neymouth's. For a more detailed exposition, see his paper.
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Po(y, s) = dze "* dEE'fo(z, E),

e(y, )=

aJ p

~00

Jp

aJ p

F00

dze o* — dEE'Pj (z E)
kp

xo(s) = dEE'Po(G, E),

x (s) = I'
ZEE'y (O,E),

So(y,s)= ' dze &*

J,
dEE'So (z)E) =A Eo'/y (3a)

The solutions of these algebraic equations are easily
obtained; for example,

&oXi+~o y~o

0
-loxo (s—k)l(s+ o)

(s—1)(s—o)
p'y'

(s+1)(s+-,')
(4a)

In inverting the Laplace transforms to obtain f(z,s),
there are poles at

v3 ((s—1)(s—-', )) &

I
=y+(s), (»)

4 ((s+1)(s+-,o))

one of which will give an exponentially rising solution,
the other a decaying one, for large positive z. Since l)!o

and P~ must remain bounded as z—+~ one of the bound-
ary conditions is that the coe%cient of the positive
exponential be zero, i.e.,

l,x,+AE, /y+(s) t,y (s)
(6a)=0

o~oXo (s—k)/(s+o)

The other boundary condition is the requirement that
there be no incoming current at the metal surface; that
lsd

$1 p1

Xo cos8d(cos8)+ Xy3 cos 8d(cos8) =0)
p ~p

or
kxo+x~=o (7a)

These two equations may now be solved for gp, g1,
which are the quantities needed since they determine

following pair of algebraic equations:

(s—1q
14'o(y s)+loki(y, s) =4x~(s)+&o(y s),

&s+1J
(1a)

ylo fs o) lp

~o(y, s)+I; I4i(y, s) =—Xo(s).
3 Es+-,'J 3

8RANCH --~--
&O~NTS

FIG. 6. Path of integration in complex plane.

the current at the surface. For instance,

3(s—1)(s—o)
x)(s) =AEo'

— (s+ 1)(s+l)-
3(s—1)(s+o) '

X 1+-'. . (ga)
(s+ 1)(s——',)

The Anal step in the analysis is the inversion of this
Mellin transform. To do this one must evaluate the
integral

p 81ice

x, (s)E-&~'&ds
2+i ~a—i„

1 t'+'" 1 3(s—1)(s——,') —i
AS@

2zo J o—' E (s+1)(s+-', )

3( —1)(+-') *

X 1+-' ds (9a)
(s—1) (s—2

where p=ln(Eo/E). The path of integration, which is
parallel to the imaginary axis and to the right of all
singularities, may be deformed to encircle the four
branch points of x)(s) as shown in Fig. 6. With this
contour s ranges only over 6nite values so that for small

p the inversion can be performed by expanding e'& into
a power series and evaluating it term-by-term. The eth
term in this series has the form

1 ( )" 3( —1)( —')
2o.o E I! (s+1)(s+—', )

3(s—1)(s+-,') &
—'

x 1+-'. ds, (10a)
- (s+1)(s—l)—

where the contour of integration is the loop in Fig. 6
which encircles all the singularities in the 6nite plane.
For s= ~ the integrand has a pole; hence the value of
the integral can be obtained by replacing s by 1/q and
calculating the residue at q=0. When e is big the
evaluation of this residue is very tedious so that for
large p the method is not practical. Fortunately, how-
ever, for SE one is only interested in values of p, up to
about 2 (a factor of 10 in energy). In this case only the
erst 4 or 5 terms in the series are necessary. Equation
(9a) is then given by

1 0.46 0.46 0.43—0.54+0.48'+ p'+ go+ p'+ ~ ~ ~, (11a)
jv 2I gt 4t

which is just Eq. (31) of the text.
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As was mentioned above, this series expansion method
is not useful for large p. In this case, though, the
integrand in Eq. (9a) has a sharp minimum on the
positive real s axis and the integral can be evaluated by
saddle point integration. Calculations show that with
the two methods it is feasible to perform the inversion
for all values of p from 0 to ~.

~p(y'(s),s), 3(s+1)(s+p) ' -'
xi(s) = 1+p

lo (s+ 1)(s——',)

In the present case Sp(y+(s), s) is given by

(1b)

APPENDIX 3
With a finite range source LEq. (33)] t.he transport

equations can be solved by the same method used in
Appendix A. As a matter of fact, Eq. (8a), when
rewritten in terms of So, gives exactly the solution
desired:

For large 2'o the exponent has a sharp maximum near
s=1. Therefore, to obtain the first term in the asymp-
totic expansion set s=1 in all slowly varying terms.
The result is that Eq. (3b) becomes

)p+ ioo g

2~i & p-,. Z I 3(s—1)/10)-'

—sp 3(s—1) '* Ep
Xexp —ds. (4b)

10 E

Now let s—1=it and integrate up the line defined by
R(s) =1 (going to the right of the branch point at s=1).
Equation (4b) then breaks into two integrals:

1 (3 q'*sp

. exp —
I
—

I

—(1+')v'&
2m. "

p (3/20) &(1+i)t & 20) ip

~p(y'(s), s)=
AE pip(1 exp) —y+(s)sp])

VSy+(s)
(2b)

Et) 1
X d~+

E 2~ ~, (3/20)~(1+i)t

2~i ~ s-' —sp 3(s—1)(s—p) & (Eoi'
3 exp

ip (s+1)(s+-,') i E )
(3b)

3(s—1)(s+p) '
1+p

(s+ 1)(s—-', )

X
3(s—1)(s p) '

(s+ 1)(s+—,')

Without the exp( —y+(s)st term (1b) reduces to (8a)
and can be inverted by the method given there. The
part of the integral involving expL —y+(s)sp) is much
more complicated and will only be evaluated in the
limit of large so. It is given by the expression

f 3 ) 2 sp Pp
Xexp —

~

—
~

—(1—i)gt di (—Sb).
(20& i, z

(20/3pr) (AEp/I~). (6b)

Combining this with the calculation of Appendix A, one
is led directly to Eq. (37) of the text.

The fact that (1+i) appears in the first and (1—i) in

the second of these integrals is due to the fact that the
two integrals refer to diGerent branches of the square
root. These integrals can now be rewritten as the sum of
two real ones and it is a straightforward calculation to
show that this 6rst term in the asymptotic expansion is


