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The trial functions which recommend themselves are
Yo (1,f) =®,(r,t) and ¢ (r,f) =P(r,f), and where
the ®,(r,f) and ®,(r,f) are further specialized to be the
unperturbed stationary states. From analogy with
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stationary state applications® it would appear legitimate
to expect this choice of trial solution to provide am-
plitudes superior to those obtained in the second Born
approximation.
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A systematic method is developed for the solution of the integral equations of quantized field theory. It is
first shown how to generalize these equations for any number of fermions in interaction with a boson field,
and then how to apply the renormalization procedure to the resulting equations. A method of approximation
to the solution of the “renormalized” equations is described, which yields divergence-free covariant scat-
tering amplitudes, analogous to the Tamm-Dancoff amplitudes. It isshown that the #th order Tamm-Dancoff
amplitudes do not approach limiting values for large #, and that the procedure does not therefore converge;
but that a somewhat modified procedure would probably do so. Singularities in the scattering amplitudes,
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regarded as functions of the coupling constant, are related to the existence of bound states.

1. INTRODUCTION

OST problems arising in quantum electrodynamics
can be satisfactorily solved by perturbation
methods. As Dyson! among others has pointed out, this
is not because the renormalized perturbation series for
scattering amplitudes converge; it just happens that the
fine-structure constant is small enough to give these
series an asymptotic character. In the meson theory of
nuclear forces, the coupling constant is much larger and
the perturbation series give no reliable quantitative
predictions. Attention has therefore been directed to the
solution of the integral equations of field theory by other
methods.

The integral equations for quantum electrodynamics
were first described, though not explicitly formulated,
by Dyson.2 Schwinger? later gave a formal derivation of
the integral equations which was independent of per-
turbation theory, which has been used recently by
Edwards? to obtain a very approximate solution of one
of the integral equations. No systematic method of
solving the integral equations, apart from the pertur-
bation method, however, has yet been described. Mean-
while an apparently quite different nonperturbation
approach to the same problem has been made via what
is generally known as the Tamm-Dancoff method.
Originally this method suffered from the inconvenience
that it was incapable of a completely covariant formula-
tion, but Dyson® has recently established a connection
between covariant amplitudes and the corresponding

1F. J. Dyson, Phys. Rev. 85, 631 (1952); Proc. Roy. Soc.
(London) A207, 395 (1951).

. 2T. J. Dyson, Phys. Rev. 75, 1736 (1949).
(I;gi)s. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452, 455

4S. F. Edwards, Phys. Rev. 90, 284 (1953).
5 F. J. Dyson, Phys. Rev. 91, 1543 (1953).

Tamm-Dancoff amplitudes, and Cini® and Fubini” have
considered covariant modifications of Tamm-Dancoff
equations.

In spite of their very different appearance, the Tamm-
Dancoff equations are closely related to the integral
equations of Dyson and Schwinger. They have hitherto
suffered from the same defect that no way has been
found for the application to them of the renormalization
procedure. Methods so far proposed for the elimination
from them of the divergences either do not work, or
would not work in higher approximation. The author
has therefore considered in the present paper the ques-
tion of ‘“renormalizing” the integral equations, and
devised a method by which this can be explicitly carried
out.

Unfortunately the integral equations in their “re-
normalized”” form are hopelessly nonlinear, and an exact
solution of them is impossible. The Tamm-Dancoff
method of approximation, however, has the great merit
that it produces only linear integral equations which can
be solved by standard methods. Of these, Fredholm’s
method has the advantage that one knows in advance
that the solution will converge. Hence, if one applies the
Tamm-Dancoff method to the solution of the ‘“re-
normalized” integral equations, one is certain of ob-
taining a meaningful result at every stage of approxima-
tion. This, of course, no more guarantees the convergence
of the method than the efficacy of the renormalization
procedure guaranteed the convergence of the perturba-
tion method ; and it will in fact be shown that Tamm-
Dancoff amplitudes of arbitrarily large but finite order
will not closely approximate the exact scattering ampli-

(12

6 M. Cini, Nuovo cimento 10, 526 (1953).
7 S. Fubini, Nuovo cimento 10, 851 (1953).
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tudes. The nature of this calamity, however, suggests a
remedy.

To make our method of determining scattering ampli-
tudes quite general, we first derive a generalization of
Schwinger’s integral equations for an arbitrary number
of fermions in interaction with a boson field. It is shown
how to eliminate the divergences from these integral
equations, and then how to apply a Tamm-Dancoff type
of approximation to reduce them to linear form.

2. DERIVATION OF THE INTEGRAL EQUATIONS
Consider as a preliminary step the equation
['LV—m—f'ya(x)]K(x,x0)=8+(x— xO); (1)

where V=1v,(9/9x,), m is a fermion mass, and fy-a(x)
denotes eyaa* (%), gysas(x), or some similar expression. It
determines the Green’s function K (x,x,) for a single
fermion in interaction with an external field; a(x) is
arbitrary but unquantized, so that no interaction is yet
introduced of the fermion with itself or any other
fermion. The subscript + to the & function may be
dropped, according to Feynman® if s is given an
infinitesimal imaginary part. We shall work mainly in
the momentum representation, and accordingly write

K (xx0) =2, K(p) exp[—ip- (x—x0)], @
a(%)=2"r ax exp[ —ik- (x—x0) ],

within any large but finite region of space and time. For
convenience units will be chosen so that the velocity of
light, Planck’s constant 7%, and also the volume of the 4-
dimensional region considered are all unity. Then (1)

becomes
(p—m— fy- 2 arEQ)K(p)=1, 3)

where p=7v,p* and E; is the incremental operator which
satisfies Exp= (p-+k)Er, ErE,=Eiy;, etc., so that
E K (p)=K (p-+Fk). For a system of » fermions, Eq. (3)
is replaced by

T1 L% —m— - Eh an B IK 90, - p0]=1, (4)
r=1

which, since the fermions do not interact, has the

solution
Kn[P(l)’. . 'P("):|=K[Pm]‘ - K[p™7]. (5)

It should be noticed that, whereas K (p) is represented
by a simple Dirac matrix with 2 spinor suffixes,
K [p®,---p™7] is a direct product of # such factors
and its representative has therefore 2% spinor suffixes;
in (4), p and ¥ form matrix products with K[ p]
but not with the other factors of K,.

Our object in this section will be to determine how
Eq. (4) should be modified to take into account not only
the interactions of the # fermions with the external field,
but also their mutual interactions and self interactions.
We shall freely use the ideas of Feynman? in doing so,

8 R. P. Feynman, Phys. Rev. 76, 769 (1949).
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though one could no doubt obtain the same result by
generalizing the rigorous field-theoretical method of
Schwinger.?

The perturbation solution of (4) is

Ko=T1 | S AL —m]

r=1 | s=0

Dk akEk“)}SEP(’)*m]_l} (6)

in which the sth term in the summation gives the
probability amplitude that the rth particle will interact
s times with the external field, within the region con-
sidered. Now consider the effect of applying the
operator —Dy(0%/ dai-da_y) to the right-hand side of
(6), where D; is the probability amplitude for the
transmission of a boson with momentum £k; this will
remove factors a; and a_y in all possible ways, summing
the results after multiplication by — Dy. So, according to
Feynman, —3% > i Dx(6°K,/dar-da_r) must be the
probability amplitude for the fermions to interact any
number of times with the external field, and just once
among themselves. Similarly, (s)™[—% 2. Dx(8%/day
- da_1) J*K » is the probability amplitude for the fermions
to interact any number of times with the external field,
and just s times among themselves. Therefore,’

Gr=exp[—3> 1 D(6%/ dar-da_1) 1K » (M

is the probability amplitude for any number of external,
and any number of mutual interactions. This is the
Green’s function which we wished to obtain. Regarded
as a function of the a’s, it has the property of a gener-
ating function for all scattering amplitudes involving #
fermions. For, if G, is developed in powers of the a)’s,
thus: :

Gn= ’E)Gn*[b (B MTLo(R) 11 (a)*™®,  (8)

G,*[b(k)] will be the exact scattering amplitude for the
interaction of the set of # fermions with a boson distri-
bution containing (k) bosons with momentum %. This
is what one will primarily wish to calculate.

It should be remarked at this point that, if one wishes
to take account of fermion loops, it is not sufficient to set
D= (B?—u2)™, where u is the boson mass; as shown by
Schwinger,? D; is a function of the a,’s, defined by

{F—w+spurl fr-E_+ 2,(0/9ar)G1(p) [} Di=1.  (9)

Like m, p is given an infinitesimal imaginary part to
ensure that all bosons will carry positive energy.

The expression (7) for G, is very formal, and in prac-
tice it is better to make use of the equation, analogous to
(9), which is satisfied by G, ; this is obtained by applying

9 The author has received a preprint of a paper entitled ‘‘Field
Equations in Functional Form” by S. F. Edwards and R. E.
Peierls, which contains, in effect, a derivation of (7) from (10), for

the special case #=1. Mention is made of a reverse derivation by
T. H. R. Skyrme.



550 H. S.

the operator exp{—3% >.; Di(9%/das-da_x)} to the
Eq. (4) for K,. Bearing in mind the operational form
of Taylor’s theorem f(x-+%)=exp(kd/dx)f(x), the re-
sult is clearly

I L6 —m— fr®

r=1
Soular— Dka/aa_k)Ek(”]Gn= 1. (10)

This will be written, for future convenience, in the form

II (" —m— fLvi - ax— Diy—x" - 8/80r 1} Gn=1, (11)

r=1

where v is short for yE;™, and summation over
repeated momentum suffixes is understood (as for tensor
suffixes in general relativity theory).

A perturbation solution of Eq. (11) is readily ob-
tained, thus:

-8/0a; 1} (p"—m)™] (12)

and one can verify directly that this solution generates
the Feynman probability amplitudes in their usual
form. The validity of the operational procedures used to
derive (11) is thereby checked, but the solution itself
has not much application except in quantum electro-
dynamics, owing to the fact that it is at best only semi-
convergent. There do exist, however, various ways of
transforming semiconvergent series to convergent series,
and our main hope of obtaining meaningful results from
field theories with medium or strong coupling seems to
depend on finding such a way which is applicable to (12).
An alternative way of posing the same problem is to
demand a nonperturbation solution of (11). The task is
complicated by the fact that even the individual terms
on the right-hand side of (12) are not meaningful until
they have been ‘“‘renormalized.” It is obviously de-
sirable, if not necessary, to adapt the renormalization
procedure to Eq. (11) as it stands, to have reasonable
hope of obtaining any other solution in a meaningful
form. This will be attempted in the following section.

3. THE “RENORMALIZATION” OF THE INTEGRAL
EQUATIONS

It will be found that for the “renormalization” of
Eq. (11), one needs to consider, in the first instance,
only the special case with #=1. We shall therefore con-
sider first

[p—m—f('y;cak—Dw_k-a/aak)]G(p)=1. (13)

According to Dyson? and Ward, the divergences can be
eliminated from this equation by writing ZG for G, Y D;
for Dy, Yay, for ar, Y3 f for f, and m—ém for m, where

10 J, C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951); J. C.
Ward, Phys. Rev. 78, 182 (1950).
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Y, Z, and ém are suitably chosen constants. The result is

To make Z and dm precise, it is necessary to impose two
conditions on G(p), which can be formulated as follows.

Let
L) ={[G®) I} (15)

denote the value of [G(p) ]~ when all the a;’s are given

the value zero; it is the reciprocal of Dyson’s ‘“re-
normalized” S#'(p). Also let
Tu(p)=—{(8/3an) [ fG(P) T} o (16)

denote as usual the vertex function. Then ém and Z are
to be chosen so that

P(Q)=q_m7 P0(9)=7, (17)

if ¢ is a momentum satisfying ¢*=m?.

The elimination of Z and dm from (14) was attempted
first by Utiyama, Sunakawa, and Imamura,! who,
however, were compelled to resort to the perturbation
expansion which it is the purpose of the method to
avoid. A partial elimination has recently been effected
by the author,® and this will now be carried to com-
pletion.

Equation (14) is first multiplied by [G(p) ] from the
right, the result being

Z[p~m+6m— f'yk Ay
—}—ka'y_k . (6G/6ak)G“1] =G (18)

On account of the free operators Ej which are concealed
in v and v_x(0G/day), this step is not as trivial as it
might appear; strictly it involves the expansion of the
left-hand side of (14) in powers of the a)’s, separating
the terms proportional to []x(ax) ™, which are then
multiplied from the right by {G[p+>_r b(k)k]}~%, and
finally reforming the equation. If

Vip)=[Gp) T, Vilp)=—(3/0an) fG(p)T, (19)
Eq. (18) becomes
V=Z(1)—m+6m¥f'y;c-ak)—I—AﬁDk'yhk-GVk. (20)
Hence,
Vi=2Zyi+Zy—i Wi, (21)
where

[No summation over % is implied on the right-hand side
of (22)7. In contrast with T';, V; represents a vertex at
which any number of interactions with the external field
may occur. The significance of Wy, is best described by
saying that (W,s— f2DiGV GV ;)G is the amplitude for
Compton scattering in an external field.

1t Utiyama, Sunakawa, and Imamura, Progr. Theoret. Phys.
(Japan) 8, 77 (1952).

2 H. S. Green, Proc. Phys. Soc. (London) A66, 873 (1952). A
formal method applicable also to theories with scalar or pseudo-
s(cal;r) coupling was given by J. C. Ward, Phys. Rev. 84, 897

1951).
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The elimination of Z from the second term on the
right-hand side of (21) can be carried out in the follow-
ing way. A new operator X ; is defined in terms of W
by the equation

Xjk= ij—W—ikai- (23)

This is formally an integral equation, with kernel W_;;
to determine X ;z when W ;i is known.!3 In practice, how-
ever, it never has to be solved because X ;; represents the
same Feynman diagrams as W, with the exception of
all those which are reducible, in the sense that they can
be obtained by joining simpler graphs end to end. In any
approximate method of solving the integral equations,
the solution Xz, of (23) will therefore be obtainable by
inspection, being in fact a simpler expression than W
itself. Now, if one multiplies Eq. (23) on the left by
Zv—_1 and uses (21), one has

Iy Xp=ZnWip— (Voi— Zy-) X s,

or, changing ¢ to k in the last term,

Z’)’_k . ij= V_kak. (24)
Hence, (21) may be written
Vj=Z'y]-—|— V_kak. (25)

This has the same form as an equation derived by
Edwards,* who, however, did not define X except in
terms of perturbation series. The observation that X
represents a class of irreducible Compton-type graphs
makes it clear that the summation (integration), implied
by the double occurrence of the suffix & in (25), will not
introduce any divergence which is not removable by the
subtraction of a single constant (1—2)y;.

The final elimination of Z from (25) involves the use
of the second of Eqgs. (17), from which it follows that

Vi) =vi+LVi(p)—To(QE;J(m+q)/ (2m)
+L[Vi(p)—To(—QE;](m—q)/ (2m).

Into the right-hand side of this equation one substitutes

Vi(p)—To(£QE;j=V_i(p) X x(p)
—TI x(EQFu(E£QE; (27)

where Fj,(p)=[Xu(p)Jo is what X;x(p) reduces to
when the ai’s are set equal to zero. The result is a
version of (21) from which the divergences have been
explicitly cancelled.

A similar procedure can now be applied to Eq. (20).
One first uses (25) to rewrite it in the form

V=Z(p—m-+om)— fViar
+ (V1= V_;X_1) DiGVi+ fV_iXrjar. (28)

Such divergences as arise from the summations in the
last two terms of (28), taken together, can be removed

(26)

BX_ ;, and —W_;i are reciprocal functions of the boson
momenta in the sense of Volterra: see E. T. Whittaker and G. N.
Watson’s Modern Analysis (Cambridge University Press, London,
1940), Sec. 11.22.
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by the subtraction of a single linear function of p,
(1—2)(p—m—+06m). To carry out the subtraction ex-
plicitly, use is made of the formula

V(p)=p—m+{V(p)—[1+ (pr— 1) (8/99\) I (¢)}
X (m+q)/ 2m)+{V (p)—[1— (r+q)
X (8/9g) 0 (—q)} (m—q)/ (2m),
which follows directly from the first of Egs. (17). Into

the right-hand side of this equation, one substitutes
from (28) and the equation

I'(xq) =Z(£g—m~+om)+ fT_(£q)
—T_j(£ Q) F_1;(£q) 1DxS (£ )Tk (£9),

(29)

(30)

to which it reduces, where all the a’s vanish and p=d=q.
The divergences then cancel, leaving an equation ex-
plicitly free of infinities.

Itshould be noticed that the freedom from divergences
of the equations finally obtained is dependent on two or
more terms, which separately contain divergent inte-
grals, being evaluated together in such a way that the
divergences cancel. There are various ways of doing this
without risk of ambiguity in solving the equations;
when the interaction fy-a(x) contains a term of the type
eyr-at(x), as in electrodynamics, one can most simply
reduce (29) with the help of the identity'?

T(p)—T(9=(g—2) Tep(p).

In other cases, a relativistic cut-off procedure may be
used consistently in the confidence that the cut-off
constant cannot appear in any solution obtained.

The elimination of the infinities from the Eq. (9)
after renormalization is complicated in meson theories
because one has to introduce a direct interaction be-
tween the mesons to compensate for divergences intro-
duced by the indirect interaction via pair production
and annihilation. This complication will be avoided by
ignoring fermion loops in the subsequent discussion,
though of course they should be taken into account. The
approximation involved amounts to setting (22— u?) for
D;. The generalization of the theory of this section to
the many fermion problem will be discussed in Sec. 6.
Meanwhile, we shall consider the principles involved in
solving the equations already obtained.

(1)

4. TAMM-DANCOFF EQUATIONS AND THEIR
TRANSFORMATION TO DIVERGENCE-FREE
FORM

We shall now consider what can be done to obtain a
solution of (14). There is little hope of solving this
equation explicitly, involving as it does the infinitely
many variables ay, since this is not possible even for the
much simpler Eq. (3). But from a formal point of view,
(14) is a partial differential equation in the ax’s-and
requires a set of boundary conditions for the complete
specification of its solution. The only obvious condition
to impose is that G should be a regular function of ¢ for
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a,=0, and this makes a solution in the form
G=S— fSiar+3% 23S riarai— 5 23S imaanart - -,
S=(G)o, Si=—f"(3G/dar)s, (32)

Ski= f~2(8G/ dardar)o,

a practical necessity. When this is substituted into (14),
one obtains the infinite chain of equations

Z(p—mA-om)S=Z 2D jy_;-Sy-1, (33)
Z(p—mA-om)Sit-ZviS=ZDyy—_i-S; (34)
Z(p—m—+om)Su+Z(vuSt+viSr) =Zf2Diy—i*Sin, (35)

etc. In order to solve this sequence of equations, it must
be terminated by introducing some approximation on
account of which one of the terms on the right-hand
side either vanishes or can be simplified. The result will
be a set of integral equations with the great advantage
that it is linear in the unknowns and is therefore soluble
in principle by existing methods. The Tamm-Dancoff
method proceeds in this way.

We shall introduce here not the usual Tamm-Dancoff
method, but an obviously covariant modification of it
which may be described as follows. In the coordinate
representation, an open 3-dimensional surface drawn
through any point on the fermion trajectory will inter-
sect a number of meson lines. The minimum number of
meson lines intersected by such a variable surface de-
pends only on the point on the fermion line selected.
Configurations in which this minimum number exceeds
a certain value # will be left out of consideration in the
nth order approximation of the method adopted here.
Thus, for example, S;x; will certainly vanish in the
second-order approximation.

To apply the method, it is necessary to know whether
a particular meson is emitted or absorbed; this is
possible if the sign of the 4th component of its mo-
mentum vector is given. We shall, therefore, henceforth
adopt the convention that the 4th component of a
momentum vector is always positive, replacing £ by
—Fk, etc., where necessary in the foregoing. The nth
order approximation to any expression A_;x; involving
momentum suffixes will be denoted by 4_;x:™. It is now
easy to formulate rules concerning the nth order ap-
proximation to products of such expressions. One has,
for instance, (A—_jriBs)™=A_;ju" DB, The general
rule is that the difference between the order of a factor
and the order of the term in which it occurs is the sum
of the number of unrepeated positive suffixes to the
right of the factor and the number of unrepeated nega-
tive suffixes to the left of the factor. (The suffix to a
factor Dj is ignored for this purpose, and a suffix to the
right or left of the factor is repeated if it occurs also in
the factor itself).

The approximation procedure just described affects
the value of the renormalization constants Z and 6.
Since S;@=0, it follows from (33) that Z®=1 and
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m®=0, and

SO=(p—m) (36)
Similarly, from (34) one has
SiO=— (p—m) 1,59, (37)
and by substitution in (33),
ZO(p—m—sm®)SO
=—fDjv-j(p—m)v;SO+1. (38)

It is fairly easy to eliminate the divergent constants Z®
and dm® from (38), but in the higher order approxima-
tions, the elimination of the divergences is impossible
with the Egs. (33)-(35) etc., in their original form.
Looking over the considerations of the previous section,
the reason is obvious: it is G, rather than G, which is
easily “renormalized.”
One is thus led to consider the expansion

V=G'—1=I‘—frkdk+%f2rkzdkaz— ey (39)

in preference to (32). There certainly exists a set of
simple relations between the coefficients of the two
series :

S=I" Sp=—S5T}S,

etc.,, but the I’s are the only quantities to which the
renormalization procedure can be directly applied. A
particular case of this can be seen in the work of Fubini,”
who proposed using the relation

S_p@=—SO[T_3,,®—T_,OSOr,®
—T@SOT_,@]S®  (41)

to calculate the second-order approximation to the
amplitude for meson-nucleon scattering, as defined
above. [The method he suggested for obtaining a
divergence-free I';®, however, does not work; the Eq.
(47) below must be used].

The equations satisfied by the coefficients I, I'y, I'y,
etc., of (39) can be obtained either by substituting (40)
in (33)-(35) etc., or more directly by substituting (39)
in (20). They are

I'=Z(p—m~+sm)+Zf*Diy_1-STs, (42)
Tw=Zyi+Zf*Dyy—;-S(Tjx—TwSTy), (43)

Pkl=Zf2DJ’y_j'S(ijz'—PlePj—rkSFjl—PzSij
+1WST ST+ TSTwSTy),  (44)

etc. All the equations of this section have an obvious
geometrical interpretation. ’

In proceeding from (33)-(35) to (42)-(44) the equa-
tions have lost their linear character. Fortunately this is
restored by the method of approximation which has
been suggested. Thus, (42) and (43) yield

+Z0D 2Dy SOOI (45)
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and

T =Z0 Dy f- Z=9 2Dy

- SE=A[T (0 — [ DS@=DP,m7 (46)

which are linear in the unknowns if S®™ and I'j0
[and S™27 are supposed to be already determined.

For small values of #, no difficulty arises in elimi-
nating the divergence from the equations thus obtained.
As an example, (46) reduces for n=2 to

T'®@=Z0y,— f2Dpy_;- SOT,WSOT,@ (47)

since, as may be seen from (44), I'x;® vanishes. The
cancelling of the divergence [Z®—1Ty; from a corre-
sponding divergence in the second term is now readily
effected. But in higher approximations it is necessary to
adhere closely to the method of the previous section.
Setting the a.’s equal to zero, the function W defined
by (22) reduces to

Rjx=f"D;S(T'jz—TwST)), - (48)
and X to Fjx, where, according to (23),
Fir=R;—R_;;X ;. (49)
Instead of the Eq. (46), one will use
I =Z¢ Dy 4T ™WF ™, (50)

in which F;;:™ is supposed to be already known. Also,
from (28) with the a;’s set equal to zero, one has

I'™=Z® (p—m~+dm)
+ T —T_;MF_ ™D SeDT ™, (51)

The exact order in which the various functions can be
determined will be indicated in the next section.

5. SOLUTION OF THE EQUATIONS

To discuss systematically the principles involved in
the solution of the system of equations already obtained,
it will be necessary to introduce a new general class of
scattering amplitudes, typified by L(j1- - - jrk1-* + ks)S,
where the factor S, inserted for convenience, is defined
in (32). Here ji---j, denote the energy-momenta of
external bosons absorbed by the fermion considered, in
the order of their absorption along the fermion line;
k1- - -k, denote the energy-momenta of external bosons
emitted by the fermion, in the reverse order of their
emission along the fermion line. Since the j’s and &’s
represent boson momenta, they would appear in the
foregoing discussion as suffixes, the %’s prefixed by
a negative sign. But to obtain functions of the
type hitherto considered, one would have to sum
L(ji-++jnki---ks) over all permutations of the j’s
and &’s.

We shall wish also to consider the function
L, (41 -+ frk1- - -ks) which represents a contribution
to L(j1*++jrki---ks) from certain configurations:
namely, those for which (in the coordinate representa-
tion) the minimum number of boson lines intersected by
an open 3-dimensional surface through any point on the
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fermion line is never less than # nor greater than
n. It accordingly represents an #nth order approxi-
mation, of the type already considered, to a function
Ln(j1++ - jrka- - - ks) representing configurations in which
at least m bosons are always “present.” It should be
noticed that L, (ji--7,k1- - -ks) vanishes if m>7 or
m>s+1. For m=0, L,, reduces to the total scattering
amplitude L, and can be expressed in the form

Lo(G1 - jrkr - ko) =Li(ju- - jrsr - -ks)
FLi(f1 oy =)SLi(—, b1+ k). (52)

Since S™=[T™7]L can be expressed in terms of
L™ (4, =), Ls™(4,k), L (—, k) and S™ with the
help of (51), the problem of obtaining L™ is reduced in
principle to that of obtaining L, and L,™, when
L™ (m=0, 1, 2 etc.) are assumed to be already de-
termined.

The equations satisfied by the newly defined func-
tions can be inferred from those of the previous section.
It follows from (40), (43), and (44), for example, that

Ly® (4,k) = SOLy_xSVvj— f2Dry-iSOv; L@ (k) ], (53)
and (47) may be written
Li® (§, =) =SOLZO;— fDry1S Oy, L@ (1, —)]. (54)

Any of these equations has an adjoint, obtained by
reversing the order of the factors in any product, and
interchanging the j’s and &’s in L™ (§1+ -« ki« - ks).
Equations of this type can of course be written down at
once from graphical considerations similar to those used
in formulating the Bethe-Salpeter equation.* In fact,
analytical relations can be obtained in this way which
one would not easily discover otherwise, though they are
relatively easy to prove analytically when known. For
example, one has

Ly® (§17o,k1ks) = L1 (§1,k9) L1® (§2,k1)

= L@ (§1,0) DiLs® (fal,k1ks),  (55)
Ly® (§172,k) = L1 ® (§1,k) L1? (52, —)
— PLi® (§1,0) DiLy® (5ol k),  (56)
and
L1® (j172,k1kz) = Lo® (§1,k2) Lo® (jo,k1)
= fPLo® (j,)) DiLa® (§ol Rrks),  (ST)
Li® (j12,k) = Lo® (j1,k) Le® (j2, —)
- fZLO(Z) (jhl)DlLl(s) (]21,k) ) (58)
Ll(s) (];k) = L0(2) (_ ) k)L0(2) (]1 '—)
— f2Lo®(—, )D,L;® (5L,E).  (59)
To continue, one has
Ls® (§1727s,k1kaks)
= Ly® (j10,koks) L1? (f3,k1) — f2LLs® (f152,k50)
+Ly® (§152,lks) 1D 1Ly (fsl ki)
+ FALLD (f172,1) 4 La® (f172,15) ]
X DiDyL® (jail, bikaks),  (60)

14 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
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etc. Though the equations become more complicated as
one proceeds, their mode of formation is fairly obvious.
The computation of successively higher approxima-
tions to L., in this way involves nothing worse than the
computation of convergent integrals and the solution of

integral equations of the general type
G =G+ [KaliBeddar, (61

where 7, k, and 7 represent sets of momenta 7, - - - 7,
ki- - -k, and Ii-- -l the integration S ---dk denotes
integration over all components of the 4-vectors &; - - - &,
and A, p are spinor suffixes summed from 1---4 when
repeated in any term. This is a somewhat generalized
form of Fredholm’s equation, the solution of which is

(i) = Hr(GD+D f Dn (i) fu(bDdk,  (62)

where

D=1— f Ko (b ) db+ (21)

xff

K)\)\(k7k)Ku>\(k,yk) d ,
Ku(k,k' ) K (R E)

_(3[)ﬁ1fff..., (63)

and

D)\M(j7k) =K)\#<j;k)

-J

K)\u(j;k)KVu (klyk)
K (5,8) K, (K E)

+ey [ o

The series in (63) and (64) are absolutely convergent,
provided the integral Jf"| Ky, (k,k') | 2dkdk’ exists; and
the only difficulty in satisfying this condition arises in
connection with Egs. (53) and (54), which will be dis-
cussed presently. It follows that the only singularities in
ox(J,0), which are not already present in fr(4,}) or the
kernel, arise from the vanishing of D. When D=0, there
is no solution of (61), though there does exist a solution
of the corresponding homogeneous equation

4

()= f K k) eu (D), (65)

which is of the type proposed by Salpeter and Bethe!
for bound states.

We shall accordingly take the point of view that any
zero of D,™™M—the value of D corresponding to a
kernel K formed from L, ,‘—is associated with a
bound state of the fermion and # bosons (a hyperon in
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nuclear theory). This point of view is justified by the
fact that amplitudes, solutions of (65), exist for the
creation of such bound states through the successive
absorption of # bosons by the “bare” fermion. The
states so defined are highly idealized because the true
amplitudes do not describe exclusively configurations in
which the number of bosons “present” varies within
such narrow limits. An actual hyperon will fluctuate
continually between the ideal state and other ideal
states; such fluctuations, however, are virtual and may
be regarded as self-energy processes of the hyperon
concerned. The suggestion is simply that all processes,
both real and virtual, can be conveniently interpreted in
terms of transitions of the fermion between states, in
any particular one of which the number of virtual
bosons ‘“present” is either # or n-1.

It should be noticed that D, is a function of w?,
where w is the resultant energy momentum vector of the
system of the fermion with its % or »+1 bosons, and
that for sufficiently large values of w?, D, is com-
plex. The roots of the equation D, (w2)=0 are
therefore of the form w?= (M, "+V+4iN, D)2 where
M,V may beregarded as the mass of the ideal hyperon
and N, as its reciprocal lifetime—which may be
very large. The effect of virtual transitions to other
ideal states will be to modify the mass value and
lifetime so determined. So far as transitions to states
with fewer bosons ‘“present” are concerned, one can
allow for this by solving the equation D™ (%?) =0
instead of D, (w?)=0; but to take into account
transitions to states with more than # bosons “present,”
one would have to raise the order of approximation of
the kernel from which D;*+D is formed.

It is known'® that the right-hand side of (63) can be
obtained by expanding the exponential, and regrouping
the terms so obtained, on the right-hand side of

D*=exp[— [ Rt

1 f f K0 Koo (k) djdk

1 f f f Enn(G ) K (b))

X Kol j)djdbdl— - ] (66)

In fact, D= D* within the range in which the exponent
of (66) is meaningful. The “first” zero of D therefore
corresponds to tue radius of convergence of the series in
(66), and can be obtained by solving the equation

(n)
f .o fK)\“(jl,j2)Kuv(j2}j3). e

XKw)\(jnyjl)djl' ‘ 'd]nz 1 (67)

15See E. Hellinger and O. Toeplitz, Integralgleichungen
(Teubner, Leipzig, 1928), Sec. 11.



INTEGRAL EQUATIONS OF QUANTIZED FIELD THEORY

for sufficiently large values of #. The identity of D and
D*, within their common range of significance, enables
one to see the connection between Fredholm’s and
Liouville’s solutions of (61), for

DM*u,k):D*[KM(j,k)

+ [Kntip - ] (68)

defines a function which, where it exists, is equivalent to
that defined by (64).

We return now to the consideration of the difficulties,
additional to those resolved by ordinary renormalization
procedures, which arise in the solution of (52) and (53),
as well as similar equations of higher order. The kernel
for both (52) and (53) is

K(j,k)=— SO (w— j)y-1DpS® (w— j—k)vi,

and the integrals spur/SK(4,7)dj, spurSS K (j,k)
X K (k,7)djdk, which appear in Fredholm’s solution of
these equations are logarithmically divergent. Let the
divergent parts of these integrals, constants chosen so
that the convergent remainders vanish when w?=m?, be
Ci, Cs Cs, etc. Then it is clear from (66) that if
exp(Ci1+3Co+3Cs+ - - -)D* is expanded and the terms
of the expansion suitably regrouped, the divergences will
cancel identically. Also, if exp(Ci+3Co+3Cs+--+)
X Dy, *(4,k) is expanded and the terms of the expansion
regrouped, the divergences will cancel identically. In the
solution of (53), but not of (52), additional divergences
appear; these, however, can be eliminated by standard
renormalization methods, in the course of which the
divergent constant Z is reduced to 1.

One indisputable conclusion, which can be drawn
from the above considerations, is that the singularities
in the Tamm-Dancoff amplitudes are all associated with
the existence of (not necessarily observable) bound
states. If L,™ approached a limiting value L,, when
became very large, it could be concluded immediately
that all singularities in the exact amplitudes were
likewise associated with bound states of the type con-
templated. Unfortunately L,™ does not approach a
limiting value, as we shall immediately demonstrate.

It is sufficient for our purpose to notice a contribution
to the amplitude for the scattering of a single boson by a
fermion, namely — f2ST/ST_,"S, where I';/ is defined by

Fj/ = Z”Yj_ f27_lDlS(0)Pj/S(0)7l. (69)

This is an equation of the type whose explicit solution
was attempted by Edwards; he obtained a solution of
the homogeneous equation for a particular case, but
nothing corresponding to the general Fredholm solution
—probably because of the divergences, not removed by
ordinary renormalization procedure, which have already
been noticed in connection with the similar Eq. (53).
Now the nth order approximation to the solution of (69)
is a polynomial of the nth degree in f2. The general
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solution does not approach a limiting value for large #,
as one can infer from the mere existence of a solution of
the homogeneous equation with Z’=0.16

To discover the physical reason for this failure of the
Tamm-Dancoff method, it should be noticed that (69)
is an equation of Fredholm’s type, and the divergence of
the solution when expressed as a power series in
f? is a consequence of the existence of a zero of the
Fredholm denominator corresponding to the kernel
— 2D y—SO LSOy, e, The latter is precisely the
lowest order approximation to the kernel of the original
Bethe-Salpeter equation for bound states of a pair of
fermions. The vanishing of the particular Fredholm
denominator we are considering is therefore associated
with the existence of such bound states. Fermion pairs
in a bound state can be created in the vacuum, and
these will influence the amplitudes for scattering of
bosons by a single fermion. Quite generally the existence
of bound states of a system of # fermions will spoil the
convergence of the Tamm-Dancoff method applied to a
single fermion. Very probably the existence of such
bound states is also the only cause of failure of the
approximation method we have examined; if this is
conceded, two conclusions may be drawn. Firstly, the
singularities in scattering amplitudes—which are the
prime cause of the failure of the perturbation series—are
all associated in one way or another with transitions,
real or virtual, to bound states. Secondly, if account
could be taken of bound states involving any number of
fermions, the failure of the Tamm-Dancoff method of
approximation applied to the single fermion problem
would be removed. Without attempting a detailed
solution of the problems thus raised, we shall therefore
briefly examine the generalization of the previous con-
siderations to systems of more than one fermion.

6. THE MANY-FERMION PROBLEM

The interaction of a system of # fermions with a boson
field is completely described by the generating function
G, which is the solution of Eq. (11). This equation,
when formally renormalized, assumes the form

Zr I p" —mA-om— flvi” - ar
r=1

——Dk'y_k(” . (a/éak)]}Gn= 1. (70)

One can write down immediately a partial solution of
(70), which effectively reduces the many-fermion prob-
lem to the single-fermion problem already considered;
it is
Z{ P —m+dm— fLyp'™ - ar

- Dk’Y.‘k(") . (a/adk)]}Gn= Gn_1. (71)

16 At the particular value of the total energy for which Edwards
solved the equation, the Fredholm denominator vanishes for a
rather large value of the coupling constant, which would have to be
exceeded before the perturbation series diverged. At other energies
the divergence would occur sooner. See also J. S. Goldstein, Phys.
Rev. 91, 1516 (1953) and a paper by the author to appear soon
in Proc. Phys. Soc. (London) A.
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As a matter of interest, one can construct from this the
Schrodinger-like equation

23 {$0—mt-om— T ay

r=]
— Dy (9/9a1) [}Gr= 32 Goa®”, (72)
r=1

where G, is the function G, with a set of energy-
momenta p®- .. p™ excluding p, as its arguments.
This last equation, though more symmetrical, is not
fully equivalent to (71), which is therefore to be
preferred.

In considering (71) further, we shall write p for p™
and vy for vx™ for the sake of simplicity and to avoid
confusion with the notation developed in the previous
two sections. It will be found convenient also to set

Gn=GGn 1H,, (73)

where G is the function of p, i.e., ™, considered ex-
clusively in No. 3 and No. 4. When (73) is substituted
into (72), and use is made of the equation satisfied by
G, (72) reduces to

Gn—IHn+Zka7—k ‘ G[(aGn~l/aak)Hn
+Gr1(0H ,/001) 1=Gna. (74)

Dividing by G.—: on the left and H, on the right gives

H, ' =1-ZfDyy_1GL(0G -1/ 3a1)Gn
+H,(0H,Y/dar)]. (75)

Here Zvy_; may be replaced by I'_,—T'_;X_;;, com-
pleting the elimination of the divergent constants.

The functions most easily expressed in a divergence-
free form are clearly the coefficients U, Uy, etc., in the

expansion
H,l= U——kadk‘l‘%]QUkzakdl— tet (76)

When these coefficients have been determined, it will be
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possible to determine G, in the form
Gu=GG U1+ fLU s +3f(UUU,
+U1U_1Uk—— Ukl)dz:lde"l-l- s } (77)

The equations satisfied by U, U, étc., are easily
written down from (75); one has

U=14+ZfDyy_i-S(Prx+U"Uy), (78)
Uz=Zf2Dk’y_k'SzS(Pk+ U—lUk)
+ZDiy_ 1 SLPu+ U (Un—U,UUR], (79)
etc., if
(0Gn—1"Y3a1)Gr1=Pi— fPriai+- - -. (80)

The Eqgs. (78), (79), etc., are very closely analogous to
those connecting T', I';, etc., and this fact alone suggests
that they should be soluble by an approximation pro-
cedure similar to that developed in No. 4. Thus, for
example, (78) yields at the nth approximation

UM=14+ZDyy_s
S P L [UEDT]AY ™. (81)

One has, accordingly, at one’s disposal at least one
method of solving the equations which does not depend
on a perturbation expansion at any stage.

The method thus sketchily indicated for the solution
of the many-nucleon problem leaves one still very far
from an exact convergent solution to even the single-
fermion problem. What is needed to carry one further is
a system of classifying the bound states which arise in
many-fermion-boson interactions, and a somewhat less
restricted method of approximation which ultimately
takes all such states into account. There is reasonable
hope that these can be found ; but until they are found,
one will not be able to say with certainty whether the
exact equations of field theory are soluble in principle, or
not.
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