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Phase-Shift Calculation of High-Energy Electron Scattering*
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The details of a phase-shift calculation of high-energy electron scattering by nuclei are given, together
with some preliminary results. A new method for summing the Legendre series for the Coulomb scattering
amplitude is described. The results indicate that the erst Born approximation does not give cross sections
accurate enough for a reliable interpretation of the experiments. From a comparison of the few theoretical
cross sections already obtained with the experiments in gold at 125 Mev, very tentative conclusions about
the nuclear charge distribution are drawn. It is pointed out that an analysis of results at two or more energies
will be a much more sensitive test of possible charge distributions.

I. INTRODUCTION

XPERIMENTS on the elastic scattering of high-
- ~~ energy electrons by nuclei carried out. by Hof-
stadter, Fechter, and McIntyre, ' and by Pidd, Hammer,
and Raka' exhibit clearly the finite extension of the
nuclear charge distributions. Analyses of the results of
IIofstadter's group by Hofstadter et al.' and by SchiG, '
using the 6rst Born approximation, led to the tentative
conclusion that the charge distribution was peaked at
the center of the nucleus, tapering gradually towards
the edge. In view of the fact that the Horn approxima-
tion is not accurate for heavy elements, we have carried
out a phase-shift analysis of the process. A brief report
of preliminary results has already been made. 4 We wish

in this paper to give an account of our methods and of
the trend of our results. Our calculations have been of
an exploratory nature, with a view to fitting the experi-
mental data at 125 Mev, ' and we can as yet draw no
de6nite conclusions about nuclear charge distributions.
To do so will require a thorough examination of the
new and more accurate results of Hofstadter's group
at several energies, and we hope to report on this in

the near future.
The literature on electron scattering by nuclei is very

extensive, and we shall not survey all of it here. That
relating to estimates of the eGect of the 6nite nuclear
size using the erst Born approximation has been sum-
marized in SchiG's paper. ' Phase-shift analyses of this
process for the energy region where only one Coulomb
phase shift is modified by the finite nuclear size have
been made in papers by Elton, ' Acheson, and Fesh-
bach. ' Bitter and Feshbach' showed that experiments
in this region can measure only one parameter of the
nuclear charge distribution, namely its root-mean-

~ Supported in part by the U. S. 0%ce of Scienti6c Research,
Air Research and Development Command.

' Hofstadter, Fechter, and McIntyre, Phys. Rev. 91, 422
(1953);92, 978 (1953).' Pidd, Hammer, and Raka, Phys. Rev. 92, 436 (1953).' L. I. SchiR, Phys. Rev. 92, 988 (1953).' Yennie, Wilson, and Ravenhall, Phys. Rev. 92, 1325 (1953).' L. R. B. Elton, Phys. Rev. ?9, 412 (1950); Proc. Phvs. Soc.
(London) A63, 1115 (1950); A65, 481 (1952); A66, 806 (1953).' L. K. Acheson, Phys. Rev. 82, 488 (1951).' H. Feshbach, Phys. Rev. 84, 1206 (1951).' F. Bitter and H. Feshbach, Phys. Rev. 92, 837 {].953).

square radius. Until very recently the only calculation
for an energy high enough to require the modification
of several Coulomb phases, thus yielding a cross sec-
tion characteristic of the particular shape of the nuclear
charge distribution, has been that of Parzen, ' but un-
fortunately his results are not correct. "Other calcula-
tions in this energy range have now been made by
E. Baranger, " and Brenner, Brown, and Elton. "

The model we use is the Dirac equation for an elec-
tron in the electrostatic potential of a static, spherically
symmetric charge distribution. The cross section is ob-
tained by a numerical calculation of the phase shift of
each partial wave. It is unfortunate that the complexity
of the calculation tends to obscure the relationship be-
tween the details of the charge distributions and of the
corresponding cross sections. A method which avoided
the decomposition into partial waves might give more
insight into the process. We do not take into account
the interaction of the electron. with nuclear magnetic
or electric quadrupole moments, or the eGect of nuclear
excitation. Calculations by SchiG" using the 6rst Born
approximation suggest that the 6rst is not important
at the energies under consideration, and that. the other
two are small except with particular elements at large
angles. We also ignore quantum electrodynamic radia-
tive corrections. Schwinger's analysis" predicts a very
small change in the angular dependence of the diGeren-
tial cross section (of the order of one or two percent),
but this also is on the basis of the erst Born ap-
proximation.

In Part II we give an account of scattering theory for
the Dirac equation, neglecting the mass term, as is
justified at high energies. As an excuse for presenting
such a well-studied topic again, we claim that our
version, in which the omission of the mass term is made
before the reduction to partial waves, is simpler and
more transparent than the usual treatment. The only

' G. Parzen, Phys. Rev. 80, 355 (1950).I An error &vas discovered by E. Baranger (see reference 11)."E.Bs,ranger, Phys. Rev. 93, 1127 (1954). We wish to thank
Mrs. Baranger for an interesting discussion of her work and ours.

'e Brenner, Brown, and Elton (to be published). We thank
. Dr. Brown for communicating these results to us prior to their
publication.

'e Reference 3, and L. I. SchiiI (private communication).
'e J. Schwinger, Phys. Rev. 75, 898 (1949).
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If we write p and x for two two-component wave func-
tions, the Dirac equation can then be written

(e.pc+ V E)g = rric'x-, —

(—e pc+ V—E)x= —risc'Q.

Neglecting the mass, we obtain two sets of uncou
equations:

(e pc+ V E)&=0—
(—e pc+ V E)x=0. — (4b)

That such two-component equations should exist can
be seen directly from the original Dirac equation (1) by
noting that when the term involving P is neglected, the
remaining three hypercomplex quantities 0,; can be
represented by two component cr matrices. Solutions of
both (4a) and (4b) are needed, however, in order to
have a complete set of states for Eq. (1)."

Consider plane wave solutions of Eqs. (4a) and (4b)
in the absence of a potential:

@=Iexp(ik x) ()
x=v exp(ik x),

is P. A. M. Dirac, The Principles of Qgaetism Mechanics (Ox-
ford University Press, Oxford, 1947), third edition, p. 256.

'~ A discussion of the relation between our analysis and that of
previous authors is given in the Appendix.

new feature is our summing of the series for the Coulomb
scattering amplitude. It is with reluctance that we
introduce a new notation for the quantum number
characterizing the partial wave. We think it clearer and
more consistent to use j than the k, e, and 1 of previous
authors, since j', the familiar total angular momentum
operator, is actually diagonal in the representation used.

The results are presented in Part III, together with
a brief comparison with the work of other authors, and
the qualitative conclusions that we feel able to draw
at present.

II. THEORY

1. Dirac Equation at High Energies

We shall be concerned with the scattering of elec-
trons at very high energies (E)50 stic'). We then ex-

pect that it should be possible to neglect the. rest energy
of the electron in comparison with its total energy. It
is physically obvious that such an approximation should
not introduce any qualitative changes into the scatter-
ing properties of the electron, and in fact the only
quantitative changes introduced are of relative order
(gssc4/E2) 6,12

In the Dirac equation,

(n pc+Prie'+V)P=EP, (1)

we choose a representation for the Dirac matrices which
will facilitate neglecting the mass term:

Qq= p3(Tq& p =py. 15

where
e (hck)is= Ets,

e ()sck)v= Ev.—

For a given E(&0) and k, these two solutions corre-
spond to the two diAerent spin states of the electron.
Loosely speaking, for the 6rst solution the spin is
parallel to the momentum while for the second it is
antiparallel. The normalized solutions of (6) are

cos-', 0
I=]

k sints8 exp (iy) )

(—sin-', 8 exp( —sq) )
)E. cos-', 0

(7)

where 0 and p are the polar angles specifying the direc-
' tion of k.

If we reintroduce the potential (which for the moment
we assume has a finite extent), scattering states will

have the asymptotic form'7

(1i ] 1
le""'+r 'f (fi p)'I le's'

(0) ( tan-', 8 exp(iy) &

t 0) f' —tan-', 0 exp( —iso) )
I,e's*+r if (e &)

l 1& 4 1

It is easily seen that for a spherically symmetric
potential the scattering in a given direction will be the
same for both spin orientations. "In the following, we
will therefore restrict our attention to Eq. (4a).

with
4 =2 ~i-4i-,

J'Q; =j(j+1)h@;., (10)

"Acheson (see reference 6) has already shown that the two
components of the scattered wave dier by only a factor
tan-, e exp(iy). His proof is based on relationships between spheri-
cal harmonics occurring in the expansions of the components.
Our derivation gives the underlying reason for this.

"This may be seen as follows: If g(x) is a solution of (4a),
then x(x)=4 (—x) is a solution of (4b). If the incident wave part
of p(x) is traveling in the positive s direction, the incident wave
part of x(x) is traveling in the minus 2' direction. If now we rotate
the second solution through 180' about the x axis, we have both
incident waves traveling in the positive s direction and the in-
tensity of the scattered waves in a given direction is the same for
both solutions. Further analysis along this line shows that when
we consider the scattering of electrons from randomly oriented
nonsymmetric nuclei there can be no polarization of the scattered
electrons; this refers only to static moments, of course. At lower
energies where the mass cannot be neglected, polarization in
scattering by a spherically symmetric potential is possible.

2. Scattering Theory of the Dirac Equation at High
Energies

Any solution of Eq. (4a) can be decomposed into
partial waves characterized by the total angular mo-
mentum and its s component:
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and

where
Jcg;m= stt&gjm,

J= r)& p+ stt»8.

For a plane-wave incident in the s direction

'1
y p 1

tJ
I

Icttc i@I le'kc'
&0) ~.0)

We shall next review brieRy the standard scattering
(11) theory for the non-Coulomb case, and finally modify

the results thus obtained to take into account the
peculiar nature of the Coulomb held. At large distances
we expect to And an asymptotic solution of the form

(11 lr 1

(12) 0-I Ic'*-"+x '&f(e)
I

&0) (tan-', 0 exp(sto) )

t' (j+l)Ps+-. («se) &

x =I
&P,+.,'(cose) exp(ego) l

(13)

The partial wave solutions of (4a) then take the form

so that we need be concerned only with the states g; *,.
The spin-angular parts of these states have the forms

(j+—', )P;=; (cos8)

k —P; t'(costi) exp(sp) )

=4'inc+4'scctt (22)

The diGerential cross section is then given by

~/dn=
I
fl'(1+tan'-'0) =sec'-'Ol fl' (23)

(24)

Using the well-known expansion of plane waves, "we
may express the incident wave as a sum of partial
waves of the form (14):

0;;=» 'EG'(r)x '+sF;(r)x,']. (14)
The total wave, determined by the condition that its
incoming wave part is the same as that of (24), is

In derivin the e uations satisfied by F, and G;, the
following identities are useful:

~ &Xs'=&(j s)Xs'—

~ &x'= —&(j+l)x',
(15) EG;x,'+'F x'].

1 p
(25)

~.&Xg'= rX~')

o" rX =rX,
t» p=r '(t» r)(r p)+sr '(ts r)(tr L).

It is then easily found that"

(j+s) (&—I')
G;+ F;=0,

dr r Ac

(j+s) (&—I')
+ F.— ~ =0

dr r Ac

(17)

(18)

(sex/2) V, (x) sinEx —-', (j—-', )sr],

(:;-sinEx—-', (g ——',)~+n,]. (26)

Combining Eqs. (25), (24), and (22) we find that the
scattered wave is given by

f((i)= . & (""'—1)(j+l)(P,—;+P,—;)
2ik

(27)

The phase shifts p; are determined by comparing the
asymptotic radial functions in (25) with those in (24):

It is convenient to handle these equations in dimen-
sionless form. We therefore set

s= kr

ti= V/E,

fe= F/Ac

and

where

Then

In going from the first form of Eq. (27) to the second,

(19) the terms dropped sum to zero, except in the forward
direction (8=0)."

In the case of a Coulomb potential produced by an
extended nucleus, the potential outside the nucleus
tak.es the form

dF (j+s)+ Fs—(1—t)Go=0

(21)
where

v= -q/x,

7=Zes/Ac.
(28)

For use in the scattering calculation, we need those
solutions of Eq. (21) which are regular at the origin.

The potential inside the charge distribution may be

"G. N. Watson, Theory of jesse/ Fttrtcteorts (MacMillan Cotn-
pany, New York, 1946), revised edition, p. 128.

"This is best seen by putting at&"=2l+l in Eq. (46l below.
This gives u~('&=0.
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calculated by using the expression

—ti(x) = oryx-' p(x')x"dx'+4ir7 ~ p(x') x'dx', (29)

where the dimensionless charge density p has the
normalization

Here the subscript R (I) denotes a Coulomb function
which is regular (irregular) at the origin. Both the
regular and irregular Coulomb functions used here are
given by power series expansions about the origin.
The series used are given in the Appendix.

The asymptotic forms of the Coulomb functions are
well known:

goo

4ir j px'dx= 1. (30) G g~sznLx+p ln2x —-', (j—-', )sr+if 3&

G,, z sin| x+p ln2x ——',(j—t)pr+ri;"j,
(34)

The results of the scattering theory must be modified
slightly because of the long-range nature of the Coulomb
potential. The proper asymptotic form of the scattered
wave is

&«&«x ')pJ'(0)I, I
e'l*+& '"'*& (31)

stan-', 0 exp(ip) )

the Coulomb phase shifts being given by"

p sV—1'(p iv)—
exp2~g '= — e '&&+~» )

+-', r(„+
expi(rf;" rf

—)

(35)

while the individual partial waves have the form

G;(x) sinLx+y ln2x —ts (j—ts)ir+ri; j. (32)

1,
—i tantr(j+-', —p;) cothirp

s ~r(j+ ,'pi) -—
(3{))

~
1—i tanir (j+-',—p,) cothsrp

~

The scattering amplitude f(9) is still given by (27).
A complication of the Coulomb potential is that the

phase shifts do not approach a limit as j increases. In
fact, the magnitude of the phase shift increases roughly
like (y lnj) with increasing j.Nevertheless it is possible
to. sum the series (27).""An improved method for
carrying out this summation is given in Sec. 4.

3. Method of Calculation

The computational problem is, of course, to integrate
Eqs. (21) to deterznine the phase shifts, and from these
to calculate the differential cross section. In this section
we shall outline the method, and leave the computa-
tional details to Sec. 4 and the Appendix.

Unless we wish to use simple special expressions for
the potential ~, it is not easy to obtain the solutions of
(21) in a closed form, or even as a power series ex-
pansion. Except for the pure Coulomb case (point
charge), we therefore rely on numerical methods to
integrate (21). These methods are presented in detail
in the Appendix. It suffices to say here that in each
step of the integration all the derivatives of Ii; and G;
through the fourth are treated correctly. In future
calculations we plan to include all derivatives through
the sixth.

Starting with a regular solution obtained by a power
series expansion about the origin, the differential equa-
tions (21) are integrated from x=0.1 to a point xp (the
"fitting-on radius") which lies outside the nuclear
charge distribution. At xp the pair of functions G, (xp),
F, (xp) is fitted to two pairs of linearly independent
Coulomb functions

G;(")=G,G;..(")+D,G;..("),
(33)

F;(xp) =C,F, ( zip)x+D, F;, z(xp).
"N. F. Mott, Proc. Roy. Soc. (London) A135, 429 (1932).
~ H. Feshbach, Phys. Rev. 88, 295 (1953).

where
p =L(j+s)'—V'j'*.

The phase shift of the function G; is given by

sin(rl, "—
ri )

tan(ri; —
rf )=

(C;/D;)+ cos(rf;" ri,')—(37)

6 f= Is 'Arl;e" (j+ )(F *'+2' -.). (38)

In any particular case it is possible to use this relation

TAsr.z I. Values of phase shifts for gold. The phase shift of
the regular Coulomb functions rh' are defined in Eq. (35), and the
difference in phase between the irregular and regular Coulomb
functions s;"—s in Eq. (36). 5 and SP are the additional phase
shifts caused by the 6nite nuclear charge distributions uniform,
kR=4.0 and Gaussian, b=2.12, respectively. 8;=g;—q is de-
fined by Eq. (37).

1/2
3/2
5/2
7/2
9/2

11/2
$3/2
15/2
17/2

0.40736—0.23797—0.53303—0.72659—0.87098—0.98623—1.08218—1.16438—1.23628

—1.17386—0.54728—0.36074—0.26951—0.21523—0.17918—0.15350—0.13426—0.11931

—0.85820—0.27143—0.07633—0.01494—0.00199—0.00017—0.00001—0.00000—0.00000

—0.71689—0.18795—0.04846—0.01064—0.00199—0.00030—0.00004—0.00000—0.00000

2'N. F. Mott and H. S. W. Massey, The Theory of Atomic
Cpllisioas (Oxford University Press, Oxford, 1952), second edi-
tion, p. 79,

Tables of Coulomb phase shifts and functions are being
prepared and will be published in a separate paper.
Some sample phase shifts are presented in Table I.

We now estimate the precision required in the calcu-
lation of the phase shifts. According to Eq. (27), an
error of Aq, in g, introduces the following error into the
scattering amplitude:
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to get a fairly accurate estimate of the error in the
difkrential cross section. For simplicity, however, we
shall make some crude approximations in estimating
the errors. For the charge distributions considered in
the present calculations the greatest errors occur in
the first few phase shifts. We therefore estimate the
total error in

~ f~ to be given by a small multiple ns

of the error arising from Ag~.'

~~f~ =~k- ~~~.~Z(0), (39)

where m is of the order 2 or 3, and E(0) is a factor of
order j. which decreases to zero at 8=m. Analysis of the
quantity (P;=;+P;+,) exactly for small j and asymp-
totically for large j shows that a suitable form for E(0)
is cos,-8. This gives for the error in the differential cross
section

~(do/dQ)

do/dQ k(do/dQ)'
(40)

It is seen that the fractional error tends to be greatest.
where the cross section is least.

For the purpose of comparison with the present ex-
periments it is generaHy sufhcient to require that the
relative error in the calculated cross section be less
than 10 percent at the largest angle compared. Since
the diGerential cross section decreases rapidly with
increasing angle, the relative error at smaller scattering
angles will then be quite negligible. We therefore require

i Ag; i
(0.02k (do/dQ);„&. (41)

Equation (41) has two interpretations: given the cross
section approximately, it tells us how accurately the
phase shifts must be calculated; or when (as in practice)
we know

~ Dg; ~, it tells us roughly the limit of the
reliability of our calculations. In the present calcula-
tions we have estimated

~ Aq,
~

to be smaller than 0.0002
radian, based on the operations involved in obtaining

p~, accordingly our calculations should be suKciently
accurate whenever k(do./dQ)') 0.01.

There is some empirical evidence that this estimate
of the error may be too pessimistic. This is provided
by the calculations for exponential and Gaussian charge
distributions which yield nearly straight lines for
log(do/dQ) vs 0 plots. These curves continue to be linear
in a region where, according to Eq. (40) and the esti-
mate ~hq;~ =0.0002 radian, the error should be com-
parable in magnitude to the cross section itself ~ If the
error were actually as large as predicted by Eq. (40),
the curves should have a tendency to level off at large
angles.

There are two main sources of error in the present
calculation. The first is the lack of accuracy of the
Coulomb functions at the fitting-on radius, due to their
calculation by means of a series expansion about the
origin. Cancellations which occur in the summing of
the series make the final sum have a greater relative
error than any of the individual terms. This error can

be reduced only by computing the terms more accu-
rately; such calculations are now in progress. The
second source of error is the wave function integration.
This error can be reduced by using a smaller interval
or by improving the accuracy of each integration step.
These two sources of error contribute about equally to
the phase shift errors Ag;.

where
f=f.+ (f f.), —

f f,= —Q(exp2ig, —exp2ig, ')(j+-,')(P;;+P;+;).
2ik (43)

Since (g;—g,') approaches zero with increasing j, the
series (43) converges quite rapidly even though q, and

q,' do not individually approach zero. One sees from
the Born approximation' that at high energies and large
angles the scattering amplitude f is much smaller in
magnitude than the Coulomb scattering amplitude f,
This implies that there is almost complete cancellation
between the two terms of Eq. (42), and that they must
both, therefore, be known to high precision. We were
unable to use the published tables of Feshbach, "where
kf, is given to only three decimal places and at large
angular intervals.

We can discover the reason for the poor convergence
of the series (27) for the case of a Coulomb potential by
looking at the corresponding problem in the nonrela-
tivistic case, where the Coulomb scattering amplitude
is known analytically. '

fN a(8) = .expf2in ln sin-', 0+2iqo]
2k sin —,0

(44)

where

00

g (21+1)I exp(2iq~) —1]Pq(cos0), (45)
2ik )=0

and
g~= argF(l+1 —io.),

+=ZAN /5'v

(46)

The series (45) with the phase shifts (46) can be re-
arranged in form so that it closely resembles the series
(27) with the phase shifts (35)."For our present pur-
poses, however, it is not necessary to do this. From
Eq. (44) we see that fN a (0) has a singularity . in both
magnitude and argument at 0=0. This accounts for
the poor convergence of the series (45). Since for large

j values the relativistic phase shifts are nearly the
same as the nonrelativistic ones for /= j——'„ the rela-

4. Scattering Amplitude Series

In this section we present a new method for summing
the scattering amplitude series. In previous calculations,
it has been the practice to calculate erst the Coulomb
scattering amplitude, Eq. (27) with phase shifts given
by Eq. (35), and then the corrections to it due to the
6nite nuclear size:
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2ikf= P G&P&(cos8). (47)

Then the neth "reduced" series is defined by:

(1—cos8) 2ikf=g a&&"'P&(cosH). (48)

Using the recurrence relations for Legendre poly-
nomials, we 6nd that

tivistic series probably has a similar type of singularity.
We accordingly transform f(8) to make it less singular
for small values of 0. This is accomplished by multiply-
ing f(8) by a function which vanishes at 8=0 and then
expanding the new function in a series of Legendre
polynomials.

Let us represent f(8) by
0

5
6
7
8
9

10
11
12
13
14

Reat

0.68608
2.46374
3.22837
1.92010—0.38223—3.19735—6.26093—9.41473—12.55937—15.63076—18.58706—21.40100—24.05511—26.53869—28.84572

Imai

0.72753—0.18893—3.54238—6.59828
8.89930—10.44940—11.32514—11.61261—11.39191—10.73364—9.69883—8,33997—6.70216—4.82425—2.73981

—0.40271
0.46429
0.28802—0.48598
0.10826
0.01935
0.00547
0.00194
0.00078
0.00034
0.00016
0.00007

0.64187—0.39809—0.66577
0.40511
0.02838—0.00448—0.00298—0.00162—0.00091—0.00053—0.00032—0.00020

TABLE II. CoeScients of the T.egendre series for the Coulomb
scattering amplitude. u& are those for the original series in Eq.
(47), and n&&'& are the third reduced coefficients de&ined by
Eq. (49).

For large l, it turns out that

2l—1
(49)

(Z=29, y=0.2116) and for aluminum (Z= 13,
p =0.09486).

(50) 5. Comparison with the First Born Approximation

so that after a few reductions the series converges
quite rapidly. We have found three reductions (m=3)
to be optimum for our present calculations. For gold,
the results are illustrated in Table II, where the co-
eKcients of the series in Eq. (47) are compared with
those of the third reduction.

exponential,

Gaussian,

uniform,

smoothed uniform,

wine-bottle,

p(x)=p« "'
p(x) =po expL —(x/b)'g;
p(x)=ps, x&kR,

=0, x&kR;
p p L1+cx&x—c)]—1 ~

p= po(1+(x/d)')L1+e '* 'j '

Most of the calculations reported here are for gold
(Z=79, y=ze'/bc=0 5765) Afew a.re for. copper

III. DISCUSSION OF THE RESULTS

To obtain the cross section for a given charge dis-
tribution at an energy kkc we must use in Eq. (29) the
corresponding dimensionless function p(x), x being the
radial coordinate measured in units of k '= A. Equations
(21) and (22), together with Eq. (29), then present
the scattering problem in dimensionless form, with
kf(8) as a dimensionless scattering amplitude. The
energy kkc thus enters the calculation in two ways:
first, in the determination of the radial scale of p(x);
second, in the absolute magnitude of the cross section.
For another energy &Vie, this particular p(x) corre-
sponds to a physical charge distribution whose dimen-
sions are altered by a factor k/k', and whose cross
section is altered by a factor (k/k')'. In the following
discussion the term "shape" refers to the various
analytic forms used for p(x), and "size" refers to the
value of the radial parameter involved.

We have considered the following shapes:

The diGerential cross section predicted by the erst
Born approximation is

do ( y q
' cos'-', 8

p(x)e'~'d'x,
dQ 5 2k) sin4-', 8 ~

where &q~ =2 sin',-8, and p, as in Eq. (30), has unit
volume integral. ' The scattering amplitude is real. For
simpler shapes the "form factor" F=J'p(x) exp(i&I x)d'x
has the following forms:

exponential, F= (1+q'a') ',
Gaussian, F=exp (—q'b'/4);
uniform, F= 3(sinqkR —qkR cosqkR)/(qkR)'.

The cross sections for the first two shapes are, on a
semilog plot, smooth functions of 0; for the uniform
shape, on the other hand, F has zeros (where qkR
= tanqkR) and the cross section is a wildly varying
function of 8. In Figs. 1, 2, and 3 the dashed curves are
the Born approximation cross sections for a uniform
shape kR=5.4, exponentials a=0.91 and a=1.06, and
Gaussians b= 2.12 and b= 3.4, respectively.

The cross sections obtained from the phase-shift
analysis are, for gold, usually considerably diferent
from the first Born approximation cross sections. 4 For
the uniform shape, the first zero of the Born cross sec-
tion appears only as a slight undulation, and the second
zero barely as a minimum, which is shifted to a slightly
smaller angle. In Fig. 1 is shown the cross section for
the uniform shape SR=5.4, together with the cross
section for the same shape in copper, suitably normal-
ized to have the same Born cross section. For copper
the agreement with the Born approximation is much
better than for gold, as is to be expected.

The results of the phase-shift analysis for the ex-
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analysis cross section, shown in Fig. 3, is almost
identical with the Born cross section, whereas for 6=3.4
it slopes less steeply. The phase-shift analysis results
for the exponential and uniform shapes could be under-
stood, as suggested previously, 4 in terms of the increase
in wave number as the electron entered the attractive
6eld of the nucleus. The results for Gaussian shapes,
however, lie if anything in the opposite direction, so
the, t such a simple interpretation is ruled out.

The diGerence between the phase-shift analysis and
the first Born approximation is even more pronounced
in the scattering amplitude, which in the phase-shift
analysis is, of course, complex. In Figs. 4 and 5 we ex-
hibit this complex behavior by making polar plots of
loglp~ f(8)

~

versus argument (f(e)). The values 8=30',
50', 70', ~ ~ ~ are indicated on each curve. In Fig. 4 are

IO 50

I
I
I

70 90 IIO l30 i50

ponential shape are shown in Fig. 2. The cross section
is a smooth function of 8, but has a considerably greater
over-all slope than the Born cross section. Thus fitting
experimental results with the phase-shift analysis pre-
dicts a smaller nucleus than 6tting with the Born
approximation.

For the Gaussian shape with 6= 2.12, the phase-shift
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FIG. 2. Cross sections at 150 Mev for scattering by the
exponential shapes a= 0.91 and a = 1.06, for gold.
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FIG. 1. Differential cross sections at 150 Mev for scattering by
a point charge and by the uniform charge distribution kR=5.4,
for gold and copper. The cross sections for copper have been
multiplied by a factor that makes their first Born approximations
the same as those for gold.
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FIG. 3. Cross sections at 150 Mev for scattering by the
Gaussian shapes b=2.12 and b=3.4, for gold.

the results for point scattering on Al, Cu, and Au, and
for the uniform shape M =5.4, in Cu and Au. In the 6rst
Born approximation the scattering amplitude lies along
the horizontal axis. For a cross section with zeros it
crosses the origin. The exact point-scattering ampIitude
is almost real for Al, and becomes more and more
complex as Z increases. The scattering amplitude for
the uniform shape kE=5.4 is for Cu a Qattened spiral
whose major axis is at about 30' to the horizontal axis
and the Born approximation amplitude, while for Au
it is an unQattened spiral. The 6lling in of the zeros in
the Born approximation cross section and the fact that
the exact scattering amplitude is complex are thus the
same phenomenon. In Fig. 5 are scattering amplitudes
for a number of charge shapes in gold. We find that for
a given shape the polar plot is remarkably independent
of size. For the Gaussian shape, for instance, the curves
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for b=3.4 and b= 2.12 are almost the same. The difFer-
ence in the corresponding cross sections occurs because
values of 0 on the b=3.4 curve are shifted relative to
the corresponding values of 0 on the b=2.12 curve.
Another peculiar fact is that the exponential shape
ku=0. 91 and the Gaussian shape kb=2. 12 have very
difFerent scattering amplitudes but almost identical
cross sections.

The first Born approximation cross sections are thus
of little value in suggesting the correct sizes to use when
fitting the data. The fact that the phase-shift analysis
yields cross sections which are always smoother func-
tions of 0 means that a much wider range of shapes
gives a tolerable fit with experiment than was suggested
by the use of the Born approximation.

GOLD

'k
POINT

6. Interpolation

It is useful to be able to estimate the eff'ect on the
cross section of changing the size slightly, without doing
a large number of trial calculations. For the smooth
cross sections yielded by the Gaussian shapes, it is
possible to interpolate by fitting cross sections at a
particular value of 0 to a polynomial in the size pa-
rameter. Since we usually need only relative cross
sections, our procedure is to fit the ratio of the values
of logtsfdo (8)/d0$ —logMLdo (8')/dQj given respectively
by the phase-shift analysis and the first Born approxi-
mation to a polynomial in the size parameter b. Ex-
trapolating in this way from cross sections for b=3.4
and b=2.69 gives a cross section for 5=2.12 which by
later comparison with the phase-shift analysis we have
found to be accurate to about 2 percent. The cross
section for the Gaussian shape 6=3.05 shown in Fig. 10
was obtained by this method.

Such a method is clearly unsuitable for cross sections
given by uniform shapes. For these we make use of the
fact that the "form factor" P(8,kR) defined in terms
of the phase-shift analysis cross sections by

{S(8,kR) }'={do.(8)/dn}/{do. (8)/dn} „;,
has properties very similar to those of the form factor
F(8,kR) of the first Born approximation. '4 There, F is
a function of 2kB sin-', 0 whose analytic form is the same
for all kR (see the beginning of Sec. 5), so that F (8,kR)
and F(8',kR') for two sizes have equal values when kR'
sin20'= M sin'.;0.Hence in the first Born approximation
the cross sections for all sizes can be obtained from a
knowledge of the point cross section and the form factor
F for one size. In the case of the phase-shift analysis
we find that the two angles defined by

P(8,5.4) = P(8',4.0)

are connected by the relation sints8/sin-', 8'= constant&4
percent over the angular range 30' to 150'. The "con-
stant" is roughly (4.0/5.4)".Hence to within 4 percent
5 can be written F(g(kR) sin-', 8), and, as with the first

' This was suggested to us by Dr, McIntyre.

---- coppER——ALUMINUM

FIG. 4. Plots of logio
~ f(8) ~

versus argf(9), in polar coordinates,
for point scattering in gold, copper, and aluminum, and for the
uniform shape M=5.4 in gold and copper. The values 8=30',
50', 70', . ~ ~ are indicated on each curve.

Born approximation, is (approximately) a universal
function independent of size. When obtained by the
phase-shift analysis for a particular size it can be used
for other slightly diferent sizes. Of the family of uniform
shapes shown in Fig. 6, the kR =4.0 curve was obtained
by the phase-shift analysis, and the rest by this in-
terpolation method, as was also the uniform M=5.8
curve of Fig. 10.

7'. Comparison with Other Calculations

Calculations of other authors seem to confirm our
results fairly well. Numerical errors have been dis-
covered in the published work of Parzen. ' "In any case
it seems physically rather unlikely that the phase-shift

FIG. 5. Plots of log&&I f(8) ~
versus argf(a), in polar coordinates,

for a point charge and the following shapes, all for gold: uniform,
AX= 5.4; exponential, @=0.91; Gaussian, b=2.12.
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8. Cross Sections for Gold at 125 Mev

Experimental results for gold at 125 Mev are in-
cluded in Figs. 6, 7, and 8. They are part of the new
data obtained recently by Hofstadter's group. "They
indicate a cross section which decreases steadily with
(I (on this semilog plot) out to about 120', with a slight
dip at about 60'. We have found a wide variety of
charge shapes all of which give cross sections having
roughly this character, although these cross sections do
not all fit the experimental results equally well. Since
it appears that a comparison with experiment at sever3. 1

5 .25k
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FIG. 6. Cross sections at 125 Mev for scattering by three uni-
form shapes, M=4.0, 4.4, 4.7, for gold, together with the experi-
mental data. All have been normalized to the same value at 35'.
The ordinate scale refers to the kB=4.0 curve. This was obtained
by the phase-shift analysis, the other two by interpolation. The
nuclear radii corresponding to these shapes have rp values of
1.09&(10 '3 cm, 1.19X10 ' cm, 1.27X10 '3 cm, where R=rpA~.
From Eq. (40) the estimated error in the kR=4.0 curve is 10
percent when do(8)/dQ —3X10 " cm' per steradian, i.e., when
8—120'. For 8 larger than 120' the error is larger.
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analysis cross sections should be many t,imes the hrst
Born cross sections. A phase-shift analysis in which the
phase shifts were obtained by the W.K.B. approxima-
tion has been made by Baranger. " The cross section
she obtains for the uniform shape kR=5.0, in mercury,
Z=80, resembles closely our cross section for the uni-
form shape kB=5.4 in gold, although its plateau (cor-
responding to the Born approximation second zero) is
a little higher than that of our curve. Brenner, Brown,
and Elton" have obtained phase shifts by numerical
integration. Their cross section for the uniform shape
kR=4.4 in mercury seems to agree very closely with
our uniform kR=4.4 shape in gold. For the uniform
kR=5.28 shape, however, their cross section tends to
be rather larger than ours (obtained by interpolation
from kR=5.4) at large angles. Their results for a
smoothed uniform shape, with a slightly difFerent
analytic function from that we have used, check very
closely our conclusions on this shape in Sec. 8. Both
Baranger, and Brenner, Brown, and Elton, however,
have used Feshbach's values of the Coulomb scattering
amplitude" for mercury, Z=80. Results for Z=80
should not differ appreciably from results for Z=79,
but, as we point out in Sec. 4, Feshbach's values are
probably not accurate enough to yield reliable cross
sections at large angles.

30 50 70 90 I IO l30 I 50
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FzG. 7. Cross sections at $25 Mev for scattering by the uniforni
shape kR=4.0, the exponential @=0.91, and the Gaussian b =2.12,
for gold, together with the experimental data. When all are nor-
malized to the same value at 35' the cross sections for the Gaussian
and exponential shapes coincide. The ordinate scale refers to the
Gaussian shape. The rms radii of the three shapes are, respec-
tively, 3.10K,, 3.16K, and 2.60K Inset are scale drawings of p.

energies is required to obtain the charge distribution
accurately, 'we want in this paper only to give the trend
that our present calculations suggest.

In Fig. 6 the cross sections of a family of uniform
charge distributions are plotted together with the
experimental results. That for kR=4.0 is obtained
from our phase-shift analysis, the others by the in-
terpolation method given in Sec. 6. Since the measured
cross section is only relative, the scale of the interpolated
curves has been altered so that they have the same
value at 35' as the cross section for kR=4.0, and the

~5 The data with which we compared our calculations as they
were made were means of the earlier published cross sections {see
reference 1) and later unpublished ones, all obtained before im-
provements in the experimental apparatus enabled Hofstadter's
group to obtain their new and more accurate data. These means
of the old data agreed very well with the new data, although
their probable error was of course much larger. %'e are grateful
for Professor Hofstadter's permission to quote the new results
before their publication,
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experimental 35' point has been plotted here also. It
seems from Fig. 6 that it will be de.cult to fit both the
general slope in the range 35'—80', and the fact that
there is no plateau, with a uniform charge distribution.

Figure 7 contains the cross sections for the exponen-
tial a=0.91, Gaussian b=2.12, and uniform M=4.0
charge distributions, normalized at 35', together with
the experimental results. It is remarkable that over the
whole ra~ge of 0 used, the cross sections for the first
two shapes are so closely proportional that in this
figure we are unable to distinguish between them.
Indeed, for angles less than 90' the cross sections of all
three shapes are not very diferent. As regards com-
parison with experiment, it is seen that the cross sec-
tions of the exponential and Gaussian do decrease
steadily with angle, but they have no dip at 60'. A
shape having some of the features of each of those of
Fig. 7 seems to be indicated. The root-mean-square
radius may be taken as a measure of the relative size

a IO-'5

CI

lK
LU

~ IO"

0 27R'

almost the same as that of the uniform shape, whereas
the shape with a smoothing distance of 2 (i.e., 2K) has
a cross section which approaches that of an exponential.
It thus appears that at this energy only smoothed uni-
form shapes with smoothing distances between X and
2K have cross sections distinctly diAerent from those of
uniform or exponential. It seems lik.ely that by appro-
priately choosing c and E a cross section can be ob-
tained which will have the features shown by the
experimental one. Such a shape would have about the
same rms radius as those of Fig. 8.'"

As a shape in which charge is dispersed towards the
edge of the nucleus we have considered the "wine-
bottle. '"' As Fig. 9 shows, such a shape, with d=c,
having the same rms radius as the uniform kR=4.0,
and a maximum charge density 1.46 times its central
density, has a cross section almost identical with the
uniform OR=4.0 shape.

The experimental data at 125 Mev can probably be
fitted with quite a range of charge distributions. The
situation is much more definite, however, if a fit is
made at two energies. For example, Fig. 10 shows the
cross sections at 180 Mev given by the Gaussian and
uniform nuclear charge distributions whose cross sec-
tions at 125 Mev are shown in Fig. 7. These were ob-
tained by the interpolation methods described in Sec. 6.
Experimental results at 180 Mev should be able to dis-

criminate between them.
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FIG. 8. Cross sections at 125 Mev for scattering by the uniform
shape M=4.0 and two smoothed uniform shapes: K=4.40,
c=3.86; and %=2.20, c=3.51, for gold, together with the experi-
mental data. The "smoothing distances" of the second and third
shapes are K and 2X at this energy. The rms radii of the three
shapes are all 3.10K. Inset are scale drawings of p.

of these charge distributions. In units of k it is re-
spectively 3.16, 2.60, and 3.10 for these three shapes.

The smoothed uniform shape represents a charge
distribution intermediate between uniform and ex-
ponential. The two cross sections in Fig. 8 are for
smoothed uniform shapes having the same rms radius
as the uniform A= 4.0 distribution. They have smooth-
ing distances of 1 and 2, in units of k '. (We define
smoothing distances as the distance over which p de-
creases from 0.9 p(0) to 0.1 p(0).) The shape with a
smoothing distance of 1, that is X, has a cross section
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Fro. 9. Cross sections at 125 Mev for scattering by the uniform
shape kA=4.0 and the "wine-bottle" shape with E=5.45 and
c=d =3.67, for gold. These shapes have the same rms radius, and
the second has a maximum charge density 1.46 times the central
density. Inset are scale drawings of p.

'"Footnote added in proof.—Later calculations indicate that
the rms radius will be a little larger (about 5 or 10 percent) than
those of the charge distributions of Fig. 8.

~' Such a charge distribution has been suggested by E.Feenberg,
Phys. Rev. 59, 593 (1941).
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where"
(—n' pc —p'mc'+ V)p'= Fp',

a1n', =PIO-;, I =Pa.

(A1)

(A2)

The two representations are connected by

equation given by Darwin. " It seems worth while to
show here the connection between Darwin's treatment
and ours.

In place of (1), Darwin uses

O -29
UJ IO
V)

IFORM, kR=5.8
EXTRAPOLATED)

where
—n,'= U 'n;U, —p'= U 'pU, (A3)

(A4)
O -30o IO

GAUSSIAN, b-3.0
I 0 —(INT ERPOL AT ED)

The partial wave solutions of (A1) take the form

(A5)
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FxG. 10. Cross sections at 180 Mev for scattering by the
Gaussian and uniform nuclear charge distributions whose cross
sections at 125 Mev are shown in Fig. 7. At 180 Mev they corre-
spond to the uniform kB=5.8 and Gaussian b=3.05 shapes. The
cross sections were obtained by the interpolation methods of Sec. 6.

9. Conclusions

It seems likely that the experimental results in gold
at 125 Mev, or at any one energy, can be fitted by quite
a range of charge distributions, and that comparisons
between theory and experiment at several energies will

be needed to obtain a unique result. From the few
calculations we have already made it appears that a
smoothed uniform charge distribution with smoothing
distance a little greater than K (for terminology, see
Sec. 8) could fit the 125 Mev data. It would have a
root-mean-square radius about equal to that of a uni-
form distribution with radius R= 1.1&10 "A ' cm " But
we have tried only a small sample of all conceivable
charge distributions, and it may well be possible to
find another one quite different from this which also
fits the data at 125 Mev.

We wish to thank Professor I.. I. SchiG for his advice
on all phases of the work, and Professor R. Hofstadter
and Dr. J.A. McIntyre for many stimulating and fruit-
ful conversations. Advice on programming for the Stan-
ford I.B.M. Card-Programmed Calculator by Professor

J. G. Herriot and Mr. J. Carter, and instruction in its
operation by Mrs. H. Van Heusen, are much ap-
preciated.

APPENDIX

1. Comparison of the Present Treatment of the
Dirac Equation with Those of Other Authors

Most previous treatments of the electron-scattering
problem are based on the separation of the Dirac

d 5:„(n+1) (F. V—mc')—
+ b =0.

IE

(A7)

F „ i, g i satisfy the same equations with n replaced
by n 1. Comp—arin—g Eq. (A7) with Eq. (18), we find
that in the limit n;.—&0

&m = —g-n-2 =F~+-,' (AS)

Transforming Eqs. (A5) and (A6) to the representa-
tion used in the present paper, we obtain

1
Z(0) v2

(A9)

)Oy 1
(f„+if 2).

Eg;;) v2
(Aio)

The states (A5) and (A6) have definite parity while

(A9) and (A10) do not.
The index n in Eqs. (A5) and (A6) seems to have

been selected because it is the order of the spherical
harmonics in the third and fourth components of f '

and P „ i' and not because of its connection with any
particular quantum number. An alternative is to use
the quantum number k(=&(j+-',)), defined by the
operator

hk= p'(e'. I,+A). (A11)
2r C. G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).

5
—'5'—-i«)x -*.')

4——1 r
I

'
l(n=1, 2, 3, ), (A6)

g (r)x„)
where the two-component functions g' and y' are given
by Eq. (13). The radial functions F„and g„satisfy

d g„(n+1) (F. V+mc')—
g+ r„=0,

A
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This notation has been used by Acheson. His radial function and its derivatives at x=x . Alternative ap-
functions f~„and g+„are related to those of Darwin proximate formulas, given by Milne so for y„+t at
as follows: x +t ——x„+h are

g.= B.-t(x=&=j+s) (A12) y~, =y„+&k(y„r+y~, ')
~ (A19)

With this notation the radial equations become

g „=b . &(~= —k= j+-,'). (A13) +.I,( ~ )
+ (1/12)h'(y„"—y„+,"), (A20)

dg~„s: (Z—V+mc')
~ gym+ fate=0

dr r AC

&Jf~„~ (Z—V—mc')
~ fye+ g+„=0.

dr r Ac

(A14)

We have not used this notation because the partial
waves (A9) and (A10) are not eigenfunctions of k.

2. Calculation of Coulomb Functions

Mott and Massey have given the Coulomb functions
in terms of conQuent hypergeometric functions. " We
use instead the more rapidly convergent series solution
given by Elton "8

y~r =y-+ 2&(y-'+y-+r')+ (1/10)&'(y-"—y-+r")

+ (1/120)h'(y„"'+y„+r"'). (A21)

The respective errors are of order Je'y'"/12, 7e'y&'&/720,

Je'y&"/100 800. The method can easily be extended to
take more derivatives into account. We use Eq. (A20)
to obtain the results of Part III.

Since Eqs. (21) are linear, " we may solve Eqs.
(A19—A21) exactly for y„+r in terms of y„. Let y„be a
column matrix composed of Ii, „and 6;,„

(A22)

Then from Eqs. (21), the derivatives of y„can be
represented by matrices acting on y„:

F;=Xe~N; P f &l&X",
en=0

y„'=2„y„, y„"=B„y, y„"'=C„y„. (A23)

For example,

vr here
~ =+p =+I:(j+s)'—v'1'.

The positive sign gives the regular solution, and the
negative sign the irregular solution. The coeKcients of
the series are given by

(j+l)lx—(1—&.)

& —(1—e„) (j+-',)/x„)

The solutions of Eqs. (A19—A21) are given by

(A24)

&a=~/(~+i+a),

together with the recurrence relations:

(A16) Je q-') h
y~, =I 1—~~, I I

1y-~. Iy., (A25)

m(m+2s, )b &&'&= —yb
+ (&j+m y s)+tn-1 Je h'

X I 1+ A+ B„ Iy„, (A26)-—
)The normalization, obtained by comparison with Mott

and Massey's solutions, is

m(m+2$g )Gm ~ = 'YG~y ~

Je h'—(s;+m+j+s)b r ", ym& ——
I

1 Amr+ Bm&—I-—
(A») & 2 12

3. Numerical Integration of the Radial Dirac
Equations

We use a step-by-step procedure based on deriva-
tives rather than differences. Let y, y' ', y ", ~ be a

ee L. R. B. Elton, Proc. Phys. Soc. (London) A66, 806 (1953).
There is a sign error in Elton's Eq. (3.14).

Ig h' h'
X 1+-a„+—B„+ C. y„. (A27)

2 i0 120

ee W. E. Milne, Ngmerecal Soluteon of Defferereleal Ec&galeome

(John Wiley end Sons, Inc., New York, 1953), pp. 76-78.
'o When this method is applied to nonlinear differential equa-

tions y„+& is obtained from y by an iteration procedure.



YEN N j: E, RA VENHALL, AN 0 9/I LSON

We can make some estimates of the errors involved
in using this method. Inside the turning point (which
is at x=j), any small errors made in an integration step
will bring in a small amount of irregular function.
However, in this region the regular function increases
rapidly with increasing x, while the irregular function
decreases rapidly. Thus, in this region, the effect of a
small error tends to be damped quickly. Of course the
normalization near the origin may diGer from that
outside the turning point because of these errors, but
that does not affect the present calculations since we
need only the ratio (F:,/G;) at the fitting-on radius.

Outside the turning point the error in the phase can
be estimated by replacing the Eqs. (21) by the equations

where
X= 1—h'/12,

X= 1—h4/720,

X= 1—h'/100 800,

respectively. The total phase error in a distance L, is
therefore

by =h'L, /12,
"oP =h4L/720,

bp =h'L/100 800,

for the three approximations.
If we require b&&10 ', for L=8 we find in the re-

spective cases:
g'= f, f'—=+g,

which have the solutions

g= cosx, f= sinx.

Equations (A19—A21) have the solution"

g= cos) x, f= sinXx,

"This was pointed out to us by Professor L. I. Schiff.

(A28) h& 10-', k&0.3, h&1.

The interval that would be required using Eq. (A19)
is prohibitively small. With Eq. (A20) there is more
computing work at each step of the integration, but the
interval is reasonable. One could not use such a large
interval with Eq. (A21) as estimated here because of
the variation of A„with x. With a smaller interva
Eq. (A21) may be useful in obtaining greater accuracy
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Elastic scattering measurements have been carried out with electrons in Au197 at energies of 84, 126, 154,
and 183 Mev and in Pb"8 at 84, 153, and 186 Mev. Diffraction effects are observed which appear to vary
with momentum and angular position as if a fundamental parameter p sin(8/2) were equal to a constant
for a given diffraction feature. Such a behavior would be predicted by the Born approximation. A com-
parison of the scattering in Au"~ and Pb~' suggests that inelastic scattering does not materially inhuence
the scattering curves presented. The appearance of diffraction effects indicates a model more nearly uniform
in charge density than early tentative conclusions based on Born approximation calculations.

I. INTRODUCTION

'N the 6rst paper of this series with the above title'
~ ~ experimental electron scattering curves were pre-
sented for several materials at 125 Mev. Elastic prohles
were shown, the apparatus was described, various
checks on the experimental information were discussed,
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We shall refer to this paper as I.

and other relevant information was given. A preliminary
attempt to explain the at-that-time unexpected absence
of prominent diGraction peaks was ynade in terms of a
first-order Born approximation calculation for various
nuclear charge distributions. "These approximate cal-
culations led to a tentative interpretation which indi-
cated a smooth decrease of charge density from the
center to the outer regions of heavy nuclei such as
gold and lead. It must be borne in mind that the con-
ventional values of nuclear radius (for example, root-
inean-square values) were retained in this interpreta-
tion.

It has recently been shown by Yennie, Wilson, and
Ravenhalls that an accurate phase shift calculation for

s L. I. SchitI, Phys. Rev. 92, 988 (1953).' Yennie, Wilson, and Ravenhall, Phys. Rev. 92, 1325 (1953).


