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The very low value calculated by Levinger and Bethe fol the harmonic mean energy for the nuclear
photoeGect is increased by a factor of 3 for Cu and 4 for Ta if correlations between nucleons due to the
Pauli principle are included in the calculation using an independent particle model (IPM). Our calculation
removes the discrepancy between the sum-rule result and Burkhardt's calculation using the IPM for Cu.
If we use a smaller nuclear radius, and include the increase of mean energy due to exchange forces, we And
reasonable agreement between experimental results for Cu and Ta and the harmonic mean energies calcu-
lated for an IPM in a finite square well: i.e., 18 Mev for Cu and 12 Mev for Ta.

I. INTRODUCTION

' 'N a previous paper' (here referred to as LB) one of
~ - the present authors and H. A. Bethe calculated the
eBects of exchange forces on the integrated cross sec-
tion and on the mean energies for electric dipole transi-
tions in the nuclear photoeGect. LB used an approxi-
mate independent particle model (IPM) in which the
nucleons were treated as a degenerate Fermi gas, with
no correlations among the different nucleons. The
calculated integrated cross section was in reasonable
agreement with experiment. " The mean energy W
was not in clear disagreement with experiment; but the
calculated harmonic mean energy SyI was extremely
low. LB therefore argued that there must be strong
correlations among the nucleons: e.g., as in an alpha-
particle model.

In the past several years the shell model, or IPM,
has had striking successes in many fields of nuclear
physics, including some calculations concerning the
nuclear photoeQect. 4 We therefore wish to re-examine
the argument against the IPM advanced by LB. A
more pressing reason for this reexamination is Burk-
hardt's IPM calculation' of electric dipole transitions
for the neutrons in the Cu" nucleus. He finds that the
cross section for photon absorption has a sharp peak at.
about 9 Mev. This result is in marked contrast with
the LB values (for ordinary forces) of 2.9 Mev for WII
and 16 Mev for W, corresponding to a very broad curve
of cross section es photon energy. In particular Burk-
hardt does not And the absorption of low-energy pho-
tons corresponding to the low value of 8'~ given by
LB. While there is some difference between the details
of IPM used by Burkhardt and LB, this diGerence
seems much too minor to explain these major dis-
crepancies between Burkhardt's direct calculation of
the absorption cross section, and LB's sum-rule calcu-
lation of mean energies for photon absorption.

We discuss below the nucleon correlations present
even in the IPM due to the Pauli principle. These

A preliminary account is given in Phys. Rev. 93, 932 (1954).' J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).' L. W. Jones and K. M. Terwilliger, Phys Rev. 91 699 .(1953).' R. Nathans and J. Halpern, Phys. Rev. 93, 437 1954).
4 J. S. Levinger, Ann. Rev. Nuclear Sci. (to be published).
~ J. L. Burkhardt, Phys. Rev. 9I, 420 |,'1953).

correlations have a large eGect on sum-rule calculations
of the mean energies. Including these correlations we
hand good agreement between Burkhardt's results and
our revised sum-rule calculation. (The two calculations
must agree, provided that the same nuclear model is
used ")

In the next section we set up the calculation of mean
energies including nucleon correlations based on the
Pauli principle. In Sec. III we 6nd the mean energies
using the LB model of a degenerate Fermi gas. In the
following section we find the mean energies for an IPM
in a square well for Cu and Ta and compare with
Burkhardt's results, and with experiment. We also
present IPM calculations of the nucleon density as a
function of radius.

and the mean energy,

=&int )3(o/W) dW, (1)

W=g„f,(E„E,)/Q„f, = —oWdW/o; t. (2)

Here o refers to the ground and m to the various excited
states; E„—E, equals the photon energy 8' for a
transition from o to e, and o;„&=J'odW.

The summed oscillator strength P f.„
is independent

of correlation among the nucleons. It has the value
1VZ/A for ordinary forces, and is increased by about
0.8x, where x is the fraction of attractive exchange
(Majorana) force. For the present let us restrict the
discussion to ordinary forces, as was done by Burkhardt
in his calculation for Cu. The denominator in Eq. (1)
and the numerator in Eq. (2) are both dependent on
correlations among the nucleons.

The denominator of Eq. (1) is given in LB as

Q„f./(8 E.)= (2M/)s')—

II. PAULI PRINCIPLE CORRELATIONS

Using the notation of LB we de6ne two mean energies:
the harmonic mean energy,
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Here i stands for protons and j stands for neutrons; the
matrix element is calculated for the complete nuclear
wave function. Consider, for example, the term for
pairs of protons. Omitting the constant factors, and
using closure to express the sum over m in terms of the
ground-state wave function alone we have

In the last term on the right i is unequal to i'. If there
is no correlation in the ground state between pairs of
protons, these off-diagonal terms give zero. The di-
agonal terms were calculated by I.B using the model
of uniform proton density in a sphere of radius E..

D= (P;s,2).,= (1/5) ZE'.

This expression, together with a similar expression
for the terms in Eq. (3) involving neutrons was used
in LB to give the value for the harmonic mean energy as

Wpg=5h'/2MR'=46A ' Mev. (6)

The numerical result is given for r,=1.5, and is pro-
portional to r, '. (The nuclear radius E=r,A &X 10 "
cm.) As stated above, the value of 2.9 Mev for the
harmonic mean energy for photon absorption by Cu is
in serious disagreement with Burkhardt's oalculated
value of 8.4 Mev, and in even worse agreement with
experiment.

However, even in the IPM there is correlation among
the nucleons, since two nucleons of the same charge
must have antisymmetric total (spatial and spin) wave
functions. In three-fourths of the cases the spin wave
functions are symmetric, and therefore the spatial
wave functions are antisymmetric. The negative con-
tribution to the last term on the right of Eq. (4) from
these triplet states is larger than the positive contribu-
tion from the singlet states. Then the denominator of
Eq. (1) is decreased, and the harmonic energy is
increased.

Consider a pair of protons in states k and /, respec-
tively. If the spatial wave function normalized to 2

particles is antisymmetric, we have in Eq. (4):

2-(2's')-(Z's')-= (2's")-
+(E 2 s's')-=D+& (4)

Eq. (7) gives

(sp;)„=—2~ PA,. (r;)spy~(r;)dr;~ Pq(r;)

Xs;.y.(.,')d8.,'= —2(...)2.

For a spatially symmetric wave function occurring in
-~ of the cases we 6nd the same result but with the
sign changed. The complete result for the oG-diagonal
terms is then

&= (ZZ's's')-= —Z~Zi(s»)'. (9)

The correction term 8 then involves the squared
electric dipole matrix element with single particle
wave functions for transitions between occupied states.
LEq. (9) could also be derived by using a product of
single-particle wave functions for the ground state, and
taking account of the Pauli principle by subtracting
transitions from one occupied level to another, which
should not; be counted in the P of Eq. (3).j

In the approximation that E=Z, used in this paper,
the correction factor C to the harmonic mean energy is

C'= 1+8'/D',

&'= —QI Z i(p~~)',

D'= (Z*p")-

(11)

(12)

(13)

LB assumed no correlations, and therefore calculated
just the term D', giving a mean energy for the degenerate
Fermi gas model of 4/5 the Fermi energy, or 16 Mev
for r,= 1.5.

III. FERMI GAS MODEL

C = (1+8/D)

Here 8, the negative contribution of the o8-diagonal
terms for pairs of protons, is given by Eq. (9), while
the contribution D of the diagonal terms is given in
Eq. (5).

The contribution of off-diagonal terms to the
numerator of Eq. (2) for the mean energy can be
calculated in an analogous manner, using matrix
elements for p, the momentum component along the
polarization direction of the photon. We 6nd a correc-
tion factor C' less than unity given by

Terms such as

—P, (r;.)Pg(t,)J's;s,'d'r, d'r, '. (7)

LA(&') l'LA(r') j's's' d'~'d'»'

vanish because of the de6nite parity of the single
particle wave functions. The exchange terms do not
vanish. For an antisymmetric spatial wave function,

Calculations of the correction factors C and C' to
the LB values for WJr and W, respectively, must be
based on some specific model for the nucleon wave
functions. In this section we use the model of a degen-
erate Fermi gas of constant density in a sphere of
radius R. This model is different from Burkhardt's, so
our result will not be in perfect agreement with his.
This model is not self-consistent, as the nucleon
density cannot be constant inside the nucleus,
suddenly changing to zero at the nuclear surface. It
turns out that surface terms are of importance in these
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TAsLE I. Correction factor for harmonic mean energy,
using Fermi gas model.

Mass number A

35
69

119
174
283

Function g(y)

0.246
0.295
0.329
0.356
0.384

Correction factor Cs

1.64
1.88
2.10
2.30
2.57

a The function g(y) and the correction factor Cz are given in Eq. (1S)
of the text.

calculations, particularly for the correction factor C'; so
that the Fermi gas model is not reliable for quantitative
results. Still, it gives semiquantitative results appli-
cable to all nuclei.

The matrix element s~~ depends on q, the magnitude
of the difference of the propagation vectors for nucleons
in states k and t:

ss& ——(3i coso'/q)j s(qR) (14)

Here 0' is the angle between the vector q and the
direction of polarization of the photon, while j2 is a
spherical Bessel function. We see that the matrix
element has a maximum value of order of magnitude E,
corresponding to pairs of states 0 and / where q is

small, of magnitude 1/R. This matrix element is squared,
and summed over all pairs of states k and l by integrat-
ing over the distribution function for q, giving

since both 8 and D are proportional to r,'. The correc-
tion factor Cp for the harmonic mean energy W& is
given for various values of A in Table I. We see that
C& is about two for moderate and heavy nuclei, and
increases with A. Then Wrr ——Cs (Wrr) i,n decreases
with A less rapidly than A '.

We have also calculated the correction factor C' for
the mean energy W, but this result is unreliable, since
it becomes negative for large A. The surface effects,
poorly treated by our Fermi gas model, are of more
importance for the calculation of C' than of C, and
even lead to appreciable errors in the calculation of
C, as we find below by comparison with our calculation
of C using a square well IPM.

TABLE III. Oscillator strengths for transitions between
occupied shells for Cu. '

is
1P
id
2$
1f

Summed
Vnused

2.06

~ ~ ~

2.06—0.06

]p6

—2.06
~ ~ ~

6.77
1.27

~ ~ ~

5.98
0.02

1d10

~ ~ ~

—6.77

~ ~ ~

13.67
6.90
3.10

2s2

~ ~ ~

—1.27

~ ~ ~

1.27
3.27

1f14

~ ~ ~

—13.67

~ 0 ~

—13.67
27.67

IV IPM FOR SQUARE WELL POTENTIAL

Calculations of the corrections to the mean energies
due to Pauli principle correlation have also been made
using IPM wave functions in a square well potential.
Calculations were made for two nuclei, called here by

a The summed oscillator strength for a level equals the sum of oscillator
strengths for transitions to occupied levels of higher energy minus the oscil-
lator strengths to occupied levels of lower energy. The unused oscillator
strength represents the strength of all transitions to unoccupied levels.
(The unused oscillator strength should be non-negative; the value —0.06
for the 1s2 level shows lack of sufficient accuracy in the calculations. )

In this approximate model the correction factor is

independent of the parameter r. for the nuclear radius,

TABLE II. Proton binding energies in Mev for IPM
in square well. '

Shell Cu(N =Z =34) Ta(N =Z =92)

ih~
3$
2d10
ig18
2P6
1f'4
2$
id10
ip6
is~

Vilell depth V,

r, =1.5
~ 0 ~

~ ~ ~

10.0
14.15
16.7
22.4
27.0
31.4

r.=1 2
~ ~ ~

~ ~ ~

10.0
16.35
20.2
28.9
35.9
42.6

ro= 1.5
8.0
8.03
9.29

12.72
14.48
16.92
19.13
20.55
23.61
26.04
28.38

r, =1.2
8.0
8.21

10.06
15.21
17.97
21.71
25.08
27.28
31 99
35.74
39.35

& The binding energy of 10 Mev for 1f protons in Cu, and 8 Mev for ih
protons in Ta is estimated from experiments. This determines the well
depth V0, and the binding energies of the other protons. The Coulomb
potential is neglected. The radius parameter ro =RA& X10», where R is
the radius of the square well.

' A. Winslow, Ph.D. thesis, Cornell University, 1952 (nn-
pubHshed).

the approximate names of Cu(iv= Z= 34) and Ta(cV= Z
=92). These nuclei have closed sub-shells in the square-
well IPM (no spin-orbit coupling) which simplifies
the sums over k and l. We have calculated for two
different values of the parameter r, for the radius of
the square well: r, = 1.5, and r, = 1.2. The former value
was used by Surkhardt in calculations on Cu. The
latter value of r, is near that of recent Stanford' and
Columbia' measurements. We find below that the
correction factors C and C' are insensitive to the value
chosen for r„though there is some dependence on r,
in contrast to the Fermi gas model treated above.
Since the LB values for WII and 8' are each proportional
to r, ', the mean energies calculated here keep a
strong dependence on the value chosen for r,. We shall
find that use of the smaller value for r, does give
reasonable agreement between IPM calculations and
experiment; but this agreement may well be fortuitous.

We shall first present our results on the IPM energy

r Hofstadter, Fechter, and McIntyre, Phys. Rev. 92, 978 (1955).
s V. L. Fitch and J. Rainwater, Phy~s. Rev. 92, 789 (1953).
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TABLE IV. Oscillator strengths for transitions between occupied shells for Ta.

1$
1P
1d
2s
1f
2P
1.g
2d
3$
1h

Summed
Unused

1s2

1.95

~ ~ ~

2.00
0.00

1p6

—1.95
~ ~ ~

6.45
1.20

~ ~ ~

0.15
0.06

~ ~ ~

5.91
0.09

1d10

~ ~ ~

—6.45

~ ~

14,20
2.35

~ 0 ~

10.10—0.10

2$2

~ ' ~ ~

—1.20

3.11

0 ~ ~

1.91
0.09

~ ~ ~

—14.20

~ ~ ~

23.08
3.55

~ ~ ~

12.43
1.57

2P6

—0.05
~ ~ ~

2035—3.11

~ ~ ~

8.78
2.41

~ ~ ~

5.68
0.32

1g18

~ ~ ~

—23.08

35.91
12.83
5.17

2dM

~ ~ ~

—0.15

~ ~ ~

—3.55—8.78

~ ~ ~

—12.48
22.48

—0.06

~ ~ ~

—2.41

~ ~ ~

—2.47
4.47

~ ~ ~

—35.91

~ ~ ~

—35.91
57.91

a For interpretation see notes on Table III.

levels, and matrix elements sI, ~ for electric dipole
transitions. We then calculate the correction factor C
for the harmonic mean energy by performing the sums
over k and l. We shall compare this correction factor
with that found above using the Fermi gas model.
We then give the correction factor C' for the mean
energy, and 6nally compare various calculations and
experimental results for Cu and Ta.

The energy levels for protons in Cu and in Ta are
given in Table II for two different radii for the square
well. In each case we have determined the well depth
by using rough experimental values for the binding
energy of the least tightly bound proton or neutron.
Note that we are making the approximation S=Z,
and neglecting both the Coulomb potential and spin-
orbit coupling.

The matrix elements sI„-~needed for the calculation of
the off-diagonal terms 8 and 8' are found using the
method of Courant' and others. In Tables III and IV
we give the oscillator strengths of each shell for electric
dipole transitions of protons between the various
occupied shells. (Results for r.=1.5 are very close to
the tabulated values for r,=1.2.) We have summed
over the ns values for the closed shells using an equation
given by Bethem and have also summed over spins.
The oscillator strengths are presented as a square
matrix with elements above the diagonal negative
since the energy difference is negative. The oscillator
strength summed for each shell is found by adding
each column, giving the next to the bottom row of
the tables. The difference between the oscillator
strength summed for the shell and the number of
protons in the shell gives the "unused oscillator
strength" given in the bottom row of the tables. We
see that the lower levels have used almost all of
their oscillator strength, transferring it to the higher
levels, with the result that for Ta the 32 protons in the
2d and ih levels have about 90 percent of the total
oscillator strength of 92. (Since the oscillator strength
is merely transferred from one level to another, the

' E. Courant, Phys. Rev. 82, 703 (1931).
's H. A. Bethe, Handblcb der Physr'k (J. Springer, Berlin, 1933),

Vol. 24/1, Eq. (39.14).

TABLE V. Correction factor for W~ using IPM in square well. '

Correction Previous
factor section

C Cz

Ta

r, = 1.5

t'.=1 2

r,= 1.5

r, = 1.2

—4.26

—4.58

—13.7

—13.9

6.63

7.0

18.5

2.8

2.9

4.2

40

1.9

2.3

&The off-diagonal terms B are given by Eq. (9) using the oscillator
strengths of Tables III and IV. The diagonal terms D are about equal to
Z/5 corresponding to a sphere of radius R and uniform charge density.
The correction factor C=(1+B/D) ~ is compared with the correction
factor Cy using a Fermi gas model, given in Table I,

sum of the unused oscillator strength is the t.otal
number of protons. )

We now find the correlation correction to the har-
monic mean energy by calculating 8, given by Eq. (9),
for the sum of the squared dipole matrix elements
between occupied levels, using the oscillator strengths
tabulated in Tables III and IV. While the summed
oscillator strength for transitions between bound levels
cancels to zero, this cancellation clearly does not occur
for the sum of (sk~)', or (psP). The numerical results
for 8 are given in Table V for the two nuclei and two
values of r, treated in this paper. The diagonal term
was found by numerical integration of the proton
density distribution to 6nd its moment of inertia.
In all four cases the value found for D/R' is quite
close to the value Z/5 given by a uniform charge
distribution in a sphere of radius E. The correction
factor C for the harmonic mean energy is then found
by Eq. (10).The last column gives Cr, using the Fermi
gas model of the previous section. We see that the
correction factor C found for the IPM in a square well
is much larger than the more approximate correction
Cg. The difference in the two correction factors is
due to the difference in the matrix elements s~g, and
remains large even for nuclei with very many nucleons.
The IPM square well correction factor C is very insensi-
tive to the value of r„and increases with A about as



422 J. S. LEVI NGER AN D D. C. KENT

TABLE VI. Mean energies for photon absorption by Cu. "

Harmonic mean Wa
Mean W
J'(0/W) d W

LB
ro =1.5

2.9 Mev
16. Mev
0.34 barns

Burk-
hardt

ro =1.5
8.4

10.5
0.11

Ex-
This paper change

ro =1.5 ro=1.2 ro ——1.2

8.1 12.7 17.8
9.0 13. 32.
0.12 0.08 0.08

Ex-
peri-
ment.

20.
25.
0.08

a For LB see reference 1;for Burkhardt see reference 5. PVe have included
the protons in Burkhardt's value for J'(a/W)dW. J The calculations of
this paper are based on Table V for R'e, Eq. (11) for W, and LB, Eq. (47)
for the integrated cross section. The values for exchange forces (x =$) are
based on LB. Experimental values are estimated from Jones and Ter-
williger, reference 2.

TABLE VII. Mean energies for photon absorption by Ta.'

Harmonic mean 8'~
Mean energy 8J'( /W)dW

LB
ro =1.5

1.4 Mev
16. Mev
1.9 barns

This paper
ro =1.5 ro =).2
6.0 8.7
6.5 10.4
0.45 0.31

Ex-
change
ro 1 2

12.2
30.
0.31

Ex-
peri-
ment

15.
20.
0.32

& For interpretation see notes on Table Vl.

A" thus decreasing greatly the A: dependence of
%II found by LB.

The correction factor C' for the mean energy 8 is
calculated in a similar manner. The o8-diagonal terms
8' [Eq. (12)$ are calculated using the oscillator
strengths for transitions between occupied levels given
in Tables III and IV. The diagonal terms D' for the
expectation value of the kinetic energy are fairly close
to the value given by LB for a degenerate Fermi gas.
They can be found more accurately using the kinetic
energy for a nucleon of binding energy E as b(V, —E)
—(1—b)E, where b is the fraction of the time that the
nucleon spends in the square well potential of depth
V,.The value of b is about 0.9 as calculated by numerical
integrations. The correction factor C'=1+8'/D' has
the value of about 0.5 for Cu and 0.4 for Ta. C' is
insensitive to r, and to A.

Using the correction factors C and C' for the harmonic
mean energy W~ and the mean energy W, respectively,
we obtain the results given in Tables VI and VII for
the mean energies for photon absorption by Cu and
Ta. In Table VI for Cu (X=Z=34) the column
labelled LB is calculated neglecting the Pauli principle
correlation. We observe the large discrepancy between
LB's results and Burkhardt's mentioned in our first
section. The results of this paper, for r,=1.5, are in
reasonable agreement with Burkhardt's values. (We
should note that our models are quite similar, but not
identical, as Burkhardt includes spin-orbit coupling,
which we have neglected. Incidentally, we believe that
Burkhardt treats spin-orbit coupling in an inconsistent
manner. Instead of treating each level as split into two
diferent levels for di6'erent relative orientations of I.
and 5, Burkhardt treats each level as a single level,
but 611s them in the order of the Mayer-Jensen spin-
orbit coupling model. ) The next column gives WII and

W increased by a factor of (1.5/1.2)'=1.56, using
the smaller nuclear radius. Finally, the next to the
last column gives still larger calculated mean energies,
using the LB corrections for half exchange force.
LThis calculation, based on reference 1, Eqs. (43)
and (46), uses r,=1.37. W~ is insensitive to ro, but
8' is quite sensitive to r,. Also, we have here modified
the LB equations to include the Pauli principle correla-
tion. j The calculated mean energies are compared with
experimental values, estimated from measurements of
neutron yield made by Jones and Terwilliger. 2 LThese
mean energies are found by making an approximate
correction for neutron multiplicity, and integrating to
70 Mev. See reference 4 for a discussion of the appro-
priate upper energy in the integrals of Eqs. (1) and (2).
The value for 8'~ should be fairly good, but that for
W is unreliable. f

We see that the three successive increases in the LB
value of 8'II, due to Pauli principle correlations, use of
a smaller radius, and exchange forces, gives a calculated
value of t/I/'~ of 17.8 Mev for Cu in reasonable agree-
ment with the experimental value of about 20 Mev.
The calculated value of t/t/' is 32 Mev if exchange eGects
are included, or rather higher than the experimental
value of about 25 Mev. Here neither the calculated
or experimental values can be considered reliable.
(Our main purpose in calculation of W is to compare
with Burkhardt for ordinary forces, and to show that
for pure ordinary forces the photon absorption curve
exhibits quite a sharp peak, since W is close to Wlq. )

We also compare calculated and experimental
values of the integrated cross section J'(o-/W)dW, as
here the calculated value does not depend on exchange
forces, but only on the nuclear wave function. Again
we see the discrepancy between the LB and Burkhardt
values. (We have added the proton contribution to
Burkhardt's calculation of the neutron contribution
to this integral. ) The results of this paper for r, =1.5
are in good agreement with Burkhardt. (This check is
redundant, as this paper and Burkhardt agree on the
value of 0-;„~and O'Il, and therefore must also agree
on the value of J'(o/W)dW. ) The calculated value
using r,=1.2 is in good agreement with the Jones and
Terwilliger measurements, where we have included the
eGects of proton emission.

In Table VII we compare calculations and experi-
ment for Ta(X=Z=92). The LB value for W~ is
only 1.4 Mev, but it is increased by the Pauli principle
correlation, by use of a smaller nuclear radius and by
half exchange forces to give 12.2 Mev, in reasonable
agreement with an experimental value of about 15 Mev.
The calculated mean energy 8' is smaller than experi-
ment, if exchange forces are omitted, and larger than
experiment if half exchange forces are included; but
as discussed above, neither the calculations nor measure-
ments of W are reliable. The integrated cross section
f (o/W) dW is in good agreement with experiment if
we use the smaller radius r,=1.2.
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for Pb"', Touschek (using r, =1.5) would estimate
that there should be a dipole level below about 1.4
Mev, in contradiction to the experiments of Elliott
et ul'." who 6nd no dipole levels up to an excitation
energy of 3.7 Mev. The Pauli principle correlation
increases the value of 5'~, and estimate of the position
of the lowest dipole level, to a value of about 6 Mev,
which is not in disagreement with present experiments.

further by use of a smaller radius, and by including
exchange forces. )

We believe that we have shown that the IPM is not
in clear disagreement with experiments on the nuclear
photoeGect. The IPM should provide a good starting
point for making less approximate calculations.
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Analysis of Proton-Proton Scattering at 9.7 Mev*
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The Berkeley data on the 9."l-Mev differential scattering cross section have been subjected to a phase
shift analysis. An S phase shift in agreement with earlier work has been found, but with somewhat better
precision. This value agrees with that expected from a Yukawa potential.

This experiment shows some suggestion of a repulsive 8-state interaction, while the Los Alamos data
show a similar but attractive E-state interaction. It is observed that the apparent discrepancy in the small-
angle differential scattering cross section is large enough to warrant further measurements in the small-
angle region.

'HE scattering of protons by protons near 10 Mev
has been measured by several experimenters. ' '

This report summarizes the analysis of the most recent
experiment.

The differential scattering cross section obtained by
Cork and Hartsough' has been htted in a least-squares
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FIG. 1. The percentage difference between the experimental
cross section and the least-squares 6tted theoretical cross section
involving only S and I' scattering, as a function of angle.

~ This work was performed under the auspices of the U. S.
Atomic Energy Commission.

t Now with Headquarters Strategic Air Command, Operations
Analysis, 08utt Air Force Base, Omaha, Nebraska.' R. R. Wilson, Phys. Rev. 71, 384 (1947).

~Allred, Armstrong, Bondelid, and Rosen, Phys. Rev. 88, 433
(1952).

3Bruce Cork and Walter Hartsough, University of California
Radiation Laboratory Report UCRL-2373, 1953 (unpublished).

sense to a two-parameter phenomenological angular
distribution by simultaneous adjustment of the 5 and I'
phase shifts. 4 Two systems of weighting were used,
Method I weighting observations at a given angle by
the reciprocal square of the fractional absolute error,
and Method II using the reciprocal square of the frac-
tional statistical error. Method I gave nearly equal
weights, the ratio of maximum to minimum weight
being 2.6. Method II assigned markedly unequal
weights, the corresponding ratio being 31. The phase
shifts resulting from the two assignments were in good
agreement, as shown by Table I.

Inasmuch as the differences are negligible, further
comments will be restricted to the first set of phase
shifts for simplicity.

The fitting of nine observations by a two-parameter
function is over-determinate, so the character of the
residuals, (o;„,—a&i,)/oq„ is a gauge of the goodness of
6t achieved. Figure 1 exhibits these residual deviations
together with the absolute uncertainties, both expressed
in percent.

There is no apparent suggestion that the residuals

have the angular distribution characteristic of D scat-
tering, since this would require opposite signs above
and below 55' for a small D phase shift.

Figure 2 presents the matter in a somewhat more

revealing light. Here the isolated points represent the

4 H. H. Hall and J. L. Powell, Phys. Rev. 9D, 912 (1953).


